On implicit coupled systems of fuzzy fractional delay differential equations with triangular fuzzy functions

In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define the solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics Jg. 6; H. 4; S. 3741 - 3760
Hauptverfasser: Wu, Yu-ting, Lan, Heng-you, Liu, Chang-jiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: AIMS Press 01.01.2021
Schlagworte:
ISSN:2473-6988, 2473-6988
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define the solution of the implicit coupled system as a triangular fuzzy function matrix consisting of real functional matrices. The method of triangular fuzzy function, fractional steps and fuzzy terms separation are used to solve the implicit coupled systems. Further, we prove existence and uniqueness of solution for the considered systems, and also construct a solution algorithm. Finally, an example is given to illustrate our main results and some further work are presented.
AbstractList In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define the solution of the implicit coupled system as a triangular fuzzy function matrix consisting of real functional matrices. The method of triangular fuzzy function, fractional steps and fuzzy terms separation are used to solve the implicit coupled systems. Further, we prove existence and uniqueness of solution for the considered systems, and also construct a solution algorithm. Finally, an example is given to illustrate our main results and some further work are presented.
Author Liu, Chang-jiang
Wu, Yu-ting
Lan, Heng-you
Author_xml – sequence: 1
  givenname: Yu-ting
  surname: Wu
  fullname: Wu, Yu-ting
– sequence: 2
  givenname: Heng-you
  surname: Lan
  fullname: Lan, Heng-you
– sequence: 3
  givenname: Chang-jiang
  surname: Liu
  fullname: Liu, Chang-jiang
BookMark eNptUMtqwzAQFCWFpmlu_QB9QJNaD1v2sYQ-AoFe2rNYy1KiINupJFOSr6-dB5TS0y6zM8PO3KJR0zYaoXuSzFnB-GMNcTOnCSWU0is0plywWVbk-ejXfoOmIWyTZGBxKvgYufcG23rnrLIRq7bbOV3hsA9R1wG3BpvucNhj40FF2zbgcKUd7HFljdFeN9H2kP7qYLgG_G3jBkdvoVl3DvxF3TVHdbhD1wZc0NPznKDPl-ePxdts9f66XDytZsAJjTOT5yITxnClM6oFY5oYylPGgBR9wKIStFKmECplpTAVT0soBKUcygQ0ywiboOXJt2phK3fe1uD3sgUrj0Dr1xJ8tMppKThVRcaJUhnhmamAqaLkkKVMkETppPeiJy_l2xC8NrJv6hg3erBOkkQO9cuhfnmuvxc9_BFdnviX_gOCGIui
CitedBy_id crossref_primary_10_3390_fractalfract6030132
crossref_primary_10_1007_s00521_022_07696_2
Cites_doi 10.1016/j.fss.2017.10.002
10.1007/s00500-019-04619-7
10.1016/j.chaos.2017.08.035
10.3934/dcdsb.2010.14.289
10.1016/j.jmaa.2007.06.021
10.1186/s13661-015-0475-5
10.1016/S0019-9958(65)90241-X
10.1186/s13662-019-2246-6
10.1186/s13661-019-1230-0
10.1016/j.fss.2015.12.002
10.20852/ntmsci.2017.180
10.1007/s00500-017-2818-x
10.1007/978-0-387-21593-8
10.2478/s13540-012-0040-1
10.1186/s13661-019-1222-0
10.2307/1940005
10.1016/j.cnsns.2012.06.008
10.3390/e17020885
10.2298/FIL1912795S
10.1016/j.carbpol.2014.07.047
10.4995/agt.2019.11683
10.1007/s10483-015-1914-6
10.3934/jimo.2018139
10.1007/s10700-018-9296-1
10.1155/2019/4208636
10.1016/j.fss.2019.10.012
10.1016/j.ins.2015.05.002
10.1007/978-1-4419-7646-8
10.1109/TFUZZ.2017.2659731
10.1016/j.aml.2015.10.004
10.1007/978-3-642-14003-7_11
ContentType Journal Article
CorporateAuthor South Sichuan Center for Applied Mathematics, and Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing, 643000, Zigong, Sichuan, P. R. China
College of Mathematics and Statistics, Sichuan University of Science & Engineering, 643000, Zigong, Sichuan, P. R. China
CorporateAuthor_xml – name: College of Mathematics and Statistics, Sichuan University of Science & Engineering, 643000, Zigong, Sichuan, P. R. China
– name: South Sichuan Center for Applied Mathematics, and Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing, 643000, Zigong, Sichuan, P. R. China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021222
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3760
ExternalDocumentID oai_doaj_org_article_742c9641cc6146fda3c9b4a653710ce0
10_3934_math_2021222
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a412t-f88767ff4ce62e733e1f24533a192029d72dcf97c53b7fd45ba97224ab0ae3613
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672862500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:52 EDT 2025
Sat Nov 29 06:04:16 EST 2025
Tue Nov 18 22:22:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a412t-f88767ff4ce62e733e1f24533a192029d72dcf97c53b7fd45ba97224ab0ae3613
OpenAccessLink https://doaj.org/article/742c9641cc6146fda3c9b4a653710ce0
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_742c9641cc6146fda3c9b4a653710ce0
crossref_citationtrail_10_3934_math_2021222
crossref_primary_10_3934_math_2021222
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021222-9
key-10.3934/math.2021222-24
key-10.3934/math.2021222-23
key-10.3934/math.2021222-7
key-10.3934/math.2021222-26
key-10.3934/math.2021222-8
key-10.3934/math.2021222-25
key-10.3934/math.2021222-28
key-10.3934/math.2021222-27
key-10.3934/math.2021222-29
key-10.3934/math.2021222-20
key-10.3934/math.2021222-22
key-10.3934/math.2021222-21
key-10.3934/math.2021222-1
key-10.3934/math.2021222-2
key-10.3934/math.2021222-5
key-10.3934/math.2021222-6
key-10.3934/math.2021222-3
key-10.3934/math.2021222-4
key-10.3934/math.2021222-13
key-10.3934/math.2021222-35
key-10.3934/math.2021222-12
key-10.3934/math.2021222-34
key-10.3934/math.2021222-15
key-10.3934/math.2021222-37
key-10.3934/math.2021222-14
key-10.3934/math.2021222-36
key-10.3934/math.2021222-17
key-10.3934/math.2021222-39
key-10.3934/math.2021222-16
key-10.3934/math.2021222-38
key-10.3934/math.2021222-19
key-10.3934/math.2021222-18
key-10.3934/math.2021222-31
key-10.3934/math.2021222-30
key-10.3934/math.2021222-11
key-10.3934/math.2021222-33
key-10.3934/math.2021222-10
key-10.3934/math.2021222-32
References_xml – ident: key-10.3934/math.2021222-20
  doi: 10.1016/j.fss.2017.10.002
– ident: key-10.3934/math.2021222-19
  doi: 10.1007/s00500-019-04619-7
– ident: key-10.3934/math.2021222-2
  doi: 10.1016/j.chaos.2017.08.035
– ident: key-10.3934/math.2021222-39
  doi: 10.3934/dcdsb.2010.14.289
– ident: key-10.3934/math.2021222-8
  doi: 10.1016/j.jmaa.2007.06.021
– ident: key-10.3934/math.2021222-12
  doi: 10.1186/s13661-015-0475-5
– ident: key-10.3934/math.2021222-37
  doi: 10.1016/S0019-9958(65)90241-X
– ident: key-10.3934/math.2021222-36
  doi: 10.1186/s13662-019-2246-6
– ident: key-10.3934/math.2021222-38
  doi: 10.1186/s13661-019-1230-0
– ident: key-10.3934/math.2021222-4
  doi: 10.1016/j.fss.2015.12.002
– ident: key-10.3934/math.2021222-7
  doi: 10.20852/ntmsci.2017.180
– ident: key-10.3934/math.2021222-15
  doi: 10.1007/s00500-017-2818-x
– ident: key-10.3934/math.2021222-3
– ident: key-10.3934/math.2021222-18
  doi: 10.1007/978-0-387-21593-8
– ident: key-10.3934/math.2021222-1
  doi: 10.2478/s13540-012-0040-1
– ident: key-10.3934/math.2021222-5
  doi: 10.1186/s13661-019-1222-0
– ident: key-10.3934/math.2021222-9
  doi: 10.2307/1940005
– ident: key-10.3934/math.2021222-24
  doi: 10.1016/j.cnsns.2012.06.008
– ident: key-10.3934/math.2021222-29
  doi: 10.3390/e17020885
– ident: key-10.3934/math.2021222-23
– ident: key-10.3934/math.2021222-31
  doi: 10.2298/FIL1912795S
– ident: key-10.3934/math.2021222-27
  doi: 10.1016/j.carbpol.2014.07.047
– ident: key-10.3934/math.2021222-33
  doi: 10.4995/agt.2019.11683
– ident: key-10.3934/math.2021222-6
– ident: key-10.3934/math.2021222-26
  doi: 10.1007/s10483-015-1914-6
– ident: key-10.3934/math.2021222-11
– ident: key-10.3934/math.2021222-17
– ident: key-10.3934/math.2021222-35
  doi: 10.3934/jimo.2018139
– ident: key-10.3934/math.2021222-13
– ident: key-10.3934/math.2021222-14
  doi: 10.1007/s10700-018-9296-1
– ident: key-10.3934/math.2021222-32
  doi: 10.1155/2019/4208636
– ident: key-10.3934/math.2021222-21
  doi: 10.1016/j.fss.2019.10.012
– ident: key-10.3934/math.2021222-16
  doi: 10.1016/j.ins.2015.05.002
– ident: key-10.3934/math.2021222-30
  doi: 10.1007/978-1-4419-7646-8
– ident: key-10.3934/math.2021222-28
– ident: key-10.3934/math.2021222-25
  doi: 10.1109/TFUZZ.2017.2659731
– ident: key-10.3934/math.2021222-10
  doi: 10.1016/j.aml.2015.10.004
– ident: key-10.3934/math.2021222-22
– ident: key-10.3934/math.2021222-34
  doi: 10.1007/978-3-642-14003-7_11
SSID ssj0002124274
Score 2.1588902
Snippet In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3741
SubjectTerms existence and uniqueness
fuzzy fractional delay differential equation
fuzzy terms separation method
implicit coupled system
solution algorithm
triangular fuzzy function
Title On implicit coupled systems of fuzzy fractional delay differential equations with triangular fuzzy functions
URI https://doaj.org/article/742c9641cc6146fda3c9b4a653710ce0
Volume 6
WOSCitedRecordID wos000672862500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL3mACUVtbCeuR0CtGGhhANQtsh1bqhSlJUmR2oHfzjlOqzIgFpYMsWNZz5d7d47zDqFrLVJGrDCBFJCuMsNZIIEpAh4p2ROcalkr8L0_8dGoNx6Ll41SX-5MmJcH9sB1IHXTImah1kAksU0l1UIxGUcUuFGbOluHqGcjmXI-GBwyg3zLn3SngrIOxH_u2wM0EPKDgzak-mtOGeyjvSYYxHd-Egdoy-SHaHe4VlItj1D2nONJfep7UmE9nc8yk2Ivv1ziqcV2vlwusC38_wkwmFN9XOBV3RN4fzNsPryed4ndrit2hTpyV4G-WD0N3Fa3H6O3Qf_14TFoKiQEkoWkCiy4iJhby7SJieGUmtASBhGchMCtS0TKSaqt4DqiituUwQIIDkshVVcaCkx-glr5NDenCHMFXjuWRqVdwxR1MmaKUcsMAK5DTtvodoVZohv5cFfFIksgjXAIJw7hpEG4jW7WvWdeNuOXfvcO_nUfJ3Zd3wATSBoTSP4ygbP_GOQc7bg5-d2VC9Sqirm5RNv6s5qUxVVtXXAdfvW_AfmJ2NI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+implicit+coupled+systems+of+fuzzy+fractional+delay+differential+equations+with+triangular+fuzzy+functions&rft.jtitle=AIMS+mathematics&rft.au=Yu-ting+Wu&rft.au=Heng-you+Lan&rft.au=Chang-jiang+Liu&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=3741&rft.epage=3760&rft_id=info:doi/10.3934%2Fmath.2021222&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_742c9641cc6146fda3c9b4a653710ce0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon