A modified proximal point algorithm in geodesic metric space
Proximal point algorithm is one of the most popular technique to find either zero of monotone operator or minimizer of a lower semi-continuous function. In this paper, we propose a new modified proximal point algorithm for solving minimization problems and common fixed point problems in CAT(0) space...
Saved in:
| Published in: | AIMS mathematics Vol. 8; no. 2; pp. 4304 - 4320 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2023
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Proximal point algorithm is one of the most popular technique to find either zero of monotone operator or minimizer of a lower semi-continuous function. In this paper, we propose a new modified proximal point algorithm for solving minimization problems and common fixed point problems in CAT(0) spaces. We prove $ \Delta $ and strong convergence of the proposed algorithm. Our results extend and improve the corresponding recent results in the literature. |
|---|---|
| AbstractList | Proximal point algorithm is one of the most popular technique to find either zero of monotone operator or minimizer of a lower semi-continuous function. In this paper, we propose a new modified proximal point algorithm for solving minimization problems and common fixed point problems in CAT(0) spaces. We prove Δ and strong convergence of the proposed algorithm. Our results extend and improve the corresponding recent results in the literature. Proximal point algorithm is one of the most popular technique to find either zero of monotone operator or minimizer of a lower semi-continuous function. In this paper, we propose a new modified proximal point algorithm for solving minimization problems and common fixed point problems in CAT(0) spaces. We prove $ \Delta $ and strong convergence of the proposed algorithm. Our results extend and improve the corresponding recent results in the literature. |
| Author | Garodia, Chanchal Uddin, Izhar Abdalla, Bahaaeldin Abdeljawad, Thabet |
| Author_xml | – sequence: 1 givenname: Chanchal surname: Garodia fullname: Garodia, Chanchal organization: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India – sequence: 2 givenname: Izhar surname: Uddin fullname: Uddin, Izhar organization: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India – sequence: 3 givenname: Bahaaeldin surname: Abdalla fullname: Abdalla, Bahaaeldin organization: Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia – sequence: 4 givenname: Thabet surname: Abdeljawad fullname: Abdeljawad, Thabet organization: Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia, Department of Medical Research, China Medical University, Taichung 40402, Taiwan |
| BookMark | eNptUMtKw0AUHaSCtXbnB-QDTJ1XJxlwU4qPQsGNroebmZt2SpIJk1no35vaCiLezblc7nlwrsmkCx0ScsvoQmgh71tI-wWnXHAmL8iUy0LkSpfl5Nd-RebDcKCUcsYlL-SUPKyyNjhfe3RZH8OHb6HJ-uC7lEGzC9GnfZv5LtthcDh4m7WY4ghDDxZvyGUNzYDzM87I-9Pj2_ol374-b9arbQ6S8ZRXqJmzXEhglUWtitpSVhdKOlqVTqMbB5QQVnIlKMBSUO20EzU6zlBLMSObk64LcDB9HEPGTxPAm-9DiDsDMXnboNFqqXWNFXIFEritSqqK0YQtNQpNy1GLn7RsDMMQsTbWJ0g-dCmCbwyj5linOdZpznWOpLs_pJ8Q_75_ATJ-eSA |
| CitedBy_id | crossref_primary_10_3390_sym15040922 |
| Cites_doi | 10.1007/s00009-017-0876-z 10.1080/02331934.2010.505962 10.1080/02331930290019413 10.1090/fic/003/09 10.1186/s13660-021-02618-7 10.1007/BF02566027 10.1016/j.na.2007.04.011 10.4310/CAG.1998.v6.n2.a1 10.1007/s40314-021-01646-9 10.1515/auom-2016-0052 10.1093/imanum/22.3.359 10.1007/s11075-019-00768-w 10.1007/s11856-012-0091-3 10.15807/jorsj.43.87 10.1051/m2an/197004R301541 10.1112/jlms/jdn087 10.1016/B978-0-12-080550-1.50034-2 10.11650/twjm/1500405357 10.1137/0329022 10.1007/s00009-015-0531-5 10.1090/S0002-9947-04-03515-9 10.1007/s13398-020-00872-w 10.1007/s10107-011-0472-0 10.1090/S0002-9904-1967-11864-0 10.1137/0314056 10.1006/jath.2000.3493 10.1007/s11587-021-00631-y 10.1016/j.na.2005.09.044 10.1155/2021/6951062 10.1186/s13660-018-1713-z 10.1016/j.camwa.2008.05.036 10.1090/S0002-9947-2014-05968-0 10.1186/s13663-015-0465-4 10.1007/s11590-014-0841-8 10.1007/BF02761171 10.1002/mma.5552 10.1016/j.na.2011.08.046 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2023214 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 4320 |
| ExternalDocumentID | oai_doaj_org_article_96599febe26a4a2cb80678d9159e3908 10_3934_math_2023214 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a412t-be91dc234a1bce967fc01f764d0b8d9edddda633c42630aa5309d9d3fed21e943 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000916223600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:52:03 EDT 2025 Sat Nov 29 06:04:27 EST 2025 Tue Nov 18 21:45:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a412t-be91dc234a1bce967fc01f764d0b8d9edddda633c42630aa5309d9d3fed21e943 |
| OpenAccessLink | https://doaj.org/article/96599febe26a4a2cb80678d9159e3908 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_96599febe26a4a2cb80678d9159e3908 crossref_citationtrail_10_3934_math_2023214 crossref_primary_10_3934_math_2023214 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2023214-24 key-10.3934/math.2023214-46 key-10.3934/math.2023214-25 key-10.3934/math.2023214-26 key-10.3934/math.2023214-27 key-10.3934/math.2023214-28 key-10.3934/math.2023214-29 key-10.3934/math.2023214-40 key-10.3934/math.2023214-41 key-10.3934/math.2023214-6 key-10.3934/math.2023214-20 key-10.3934/math.2023214-42 key-10.3934/math.2023214-7 key-10.3934/math.2023214-21 key-10.3934/math.2023214-43 key-10.3934/math.2023214-8 key-10.3934/math.2023214-22 key-10.3934/math.2023214-44 key-10.3934/math.2023214-9 key-10.3934/math.2023214-23 key-10.3934/math.2023214-45 key-10.3934/math.2023214-2 key-10.3934/math.2023214-3 key-10.3934/math.2023214-4 key-10.3934/math.2023214-5 key-10.3934/math.2023214-1 key-10.3934/math.2023214-13 key-10.3934/math.2023214-35 key-10.3934/math.2023214-14 key-10.3934/math.2023214-36 key-10.3934/math.2023214-15 key-10.3934/math.2023214-37 key-10.3934/math.2023214-16 key-10.3934/math.2023214-38 key-10.3934/math.2023214-17 key-10.3934/math.2023214-39 key-10.3934/math.2023214-18 key-10.3934/math.2023214-19 key-10.3934/math.2023214-30 key-10.3934/math.2023214-31 key-10.3934/math.2023214-10 key-10.3934/math.2023214-32 key-10.3934/math.2023214-11 key-10.3934/math.2023214-33 key-10.3934/math.2023214-12 key-10.3934/math.2023214-34 |
| References_xml | – ident: key-10.3934/math.2023214-43 doi: 10.1007/s00009-017-0876-z – ident: key-10.3934/math.2023214-10 doi: 10.1080/02331934.2010.505962 – ident: key-10.3934/math.2023214-7 doi: 10.1080/02331930290019413 – ident: key-10.3934/math.2023214-12 doi: 10.1090/fic/003/09 – ident: key-10.3934/math.2023214-20 doi: 10.1186/s13660-021-02618-7 – ident: key-10.3934/math.2023214-39 doi: 10.1007/BF02566027 – ident: key-10.3934/math.2023214-35 doi: 10.1016/j.na.2007.04.011 – ident: key-10.3934/math.2023214-41 doi: 10.4310/CAG.1998.v6.n2.a1 – ident: key-10.3934/math.2023214-21 doi: 10.1007/s40314-021-01646-9 – ident: key-10.3934/math.2023214-19 doi: 10.1515/auom-2016-0052 – ident: key-10.3934/math.2023214-11 doi: 10.1093/imanum/22.3.359 – ident: key-10.3934/math.2023214-13 – ident: key-10.3934/math.2023214-25 doi: 10.1007/s11075-019-00768-w – ident: key-10.3934/math.2023214-15 doi: 10.1007/s11856-012-0091-3 – ident: key-10.3934/math.2023214-36 – ident: key-10.3934/math.2023214-22 doi: 10.15807/jorsj.43.87 – ident: key-10.3934/math.2023214-1 doi: 10.1051/m2an/197004R301541 – ident: key-10.3934/math.2023214-8 doi: 10.1112/jlms/jdn087 – ident: key-10.3934/math.2023214-32 doi: 10.1016/B978-0-12-080550-1.50034-2 – ident: key-10.3934/math.2023214-9 – ident: key-10.3934/math.2023214-14 doi: 10.11650/twjm/1500405357 – ident: key-10.3934/math.2023214-28 doi: 10.1137/0329022 – ident: key-10.3934/math.2023214-23 doi: 10.1007/s00009-015-0531-5 – ident: key-10.3934/math.2023214-31 doi: 10.1090/S0002-9947-04-03515-9 – ident: key-10.3934/math.2023214-45 – ident: key-10.3934/math.2023214-24 doi: 10.1007/s13398-020-00872-w – ident: key-10.3934/math.2023214-16 doi: 10.1007/s10107-011-0472-0 – ident: key-10.3934/math.2023214-6 doi: 10.1090/S0002-9904-1967-11864-0 – ident: key-10.3934/math.2023214-2 doi: 10.1137/0314056 – ident: key-10.3934/math.2023214-5 doi: 10.1006/jath.2000.3493 – ident: key-10.3934/math.2023214-30 – ident: key-10.3934/math.2023214-26 doi: 10.1007/s11587-021-00631-y – ident: key-10.3934/math.2023214-34 doi: 10.1016/j.na.2005.09.044 – ident: key-10.3934/math.2023214-46 doi: 10.1155/2021/6951062 – ident: key-10.3934/math.2023214-27 doi: 10.1186/s13660-018-1713-z – ident: key-10.3934/math.2023214-33 doi: 10.1016/j.camwa.2008.05.036 – ident: key-10.3934/math.2023214-38 doi: 10.1090/S0002-9947-2014-05968-0 – ident: key-10.3934/math.2023214-40 – ident: key-10.3934/math.2023214-17 doi: 10.1186/s13663-015-0465-4 – ident: key-10.3934/math.2023214-29 – ident: key-10.3934/math.2023214-42 – ident: key-10.3934/math.2023214-4 doi: 10.1137/0329022 – ident: key-10.3934/math.2023214-18 doi: 10.1007/s11590-014-0841-8 – ident: key-10.3934/math.2023214-3 doi: 10.1007/BF02761171 – ident: key-10.3934/math.2023214-44 doi: 10.1002/mma.5552 – ident: key-10.3934/math.2023214-37 doi: 10.1016/j.na.2011.08.046 |
| SSID | ssj0002124274 |
| Score | 2.2340243 |
| Snippet | Proximal point algorithm is one of the most popular technique to find either zero of monotone operator or minimizer of a lower semi-continuous function. In... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 4304 |
| SubjectTerms | cat space minimization problem nonexpansive mappings proximal point algorithm resolvent operator |
| Title | A modified proximal point algorithm in geodesic metric space |
| URI | https://doaj.org/article/96599febe26a4a2cb80678d9159e3908 |
| Volume | 8 |
| WOSCitedRecordID | wos000916223600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gQhGJ7bqxxFJQKwZaMYDEFvlxLpHapGoLI7-dcxKqMiAWMmSILonzXXSP5O47Qi5jGdvUCht5aSES4EykHJMRuE7KvDA24VWj8GN3NEpfX9XT2qivUBNW0wPXwN0Ewjvl8VZMaqGZNWmwr06hGwbM16s237ir1pKpYIPRIAvMt-pKd664uMH4L_x7YGEwzw8ftEbVX_mUwS7ZaYJB2qsXsUc2oNgn28MVk-rigNz26LR0ucdIkYaSk3yKJ8zKvFhSPRmXmNq_TWle0DGUDhBxOg0jsixFQ2HhkLwM-s_3D1Ez8SDSImHLyIBKnGVc6MRYULLrbZz4rhQuNvjM4HDTknMbaNZjrTs8Vk457sGxBJTgR6RVlAUcEwrSpUaDTBJgworYgLNeewx4dOiXNm1y_Y1BZhs68DCVYpJhWhAQywJiWYNYm1ytpGc1DcYvcncBzpVMIK-uDqBKs0al2V8qPfmPi5ySrbCm-mvJGWkt5-9wTjbtxzJfzC-qtwX3w8_-F7Mtx0w |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+proximal+point+algorithm+in+geodesic+metric+space&rft.jtitle=AIMS+mathematics&rft.au=Chanchal+Garodia&rft.au=Izhar+Uddin&rft.au=Bahaaeldin+Abdalla&rft.au=Thabet+Abdeljawad&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=4304&rft.epage=4320&rft_id=info:doi/10.3934%2Fmath.2023214&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_96599febe26a4a2cb80678d9159e3908 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |