Differential evolution particle swarm optimization algorithm based on good point set for computing Nash equilibrium of finite noncooperative game

In this paper, a hybrid differential evolution particle swarm optimization (PSO) method based on a good point set (GPDEPSO) is proposed to compute a finite noncooperative game among N people. Stochastic functional analysis is used to prove the convergence of this algorithm. First, an ergodic initial...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 6; číslo 2; s. 1309 - 1323
Hlavní autoři: Li, Huimin, Xiang, Shuwen, Yang, Yanlong, Liu, Chenwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2021
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a hybrid differential evolution particle swarm optimization (PSO) method based on a good point set (GPDEPSO) is proposed to compute a finite noncooperative game among N people. Stochastic functional analysis is used to prove the convergence of this algorithm. First, an ergodic initial population is generated by using a good point set. Second, PSO is proposed and utilized as the variation operator to perform variation crossover selection with differential evolution (DE). Finally, the experimental results show that the proposed algorithm has a better convergence speed, accuracy, and global optimization ability than other existing algorithms in computing the Nash equilibrium of noncooperative games among N people. In particular, the efficiency of the algorithm is higher for determining the Nash equilibrium of a high-dimensional payoff matrix game.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021081