Solving intuitionistic fuzzy multiobjective linear programming problem under neutrosophic environment
The existence of neutral /indeterminacy degrees reflects the more practical aspects of decision-making scenarios. Thus, this paper has studied the intuitionistic fuzzy multiobjective linear programming problems (IFMOLPPs) under neutrosophic uncertainty. To highlight the degrees of neutrality in IFMO...
Gespeichert in:
| Veröffentlicht in: | AIMS mathematics Jg. 6; H. 5; S. 4556 - 4580 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
AIMS Press
01.01.2021
|
| Schlagworte: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The existence of neutral /indeterminacy degrees reflects the more practical aspects of decision-making scenarios. Thus, this paper has studied the intuitionistic fuzzy multiobjective linear programming problems (IFMOLPPs) under neutrosophic uncertainty. To highlight the degrees of neutrality in IFMOLPPs, we have investigated the neutrosophic optimization techniques with intuitionistic fuzzy parameters. The marginal evaluation of each objective is determined by three different membership functions, such as truth, indeterminacy, and falsity membership degrees under the neutrosophic environment. The marginal evaluation of each objective function is elicited by various sorts of membership functions such as linear, exponential, and hyperbolic types of membership functions, which signifies an opportunity for decision-makers to select the desired membership functions. The developed neutrosophic optimization technique is implemented on existing numerical problems that reveal the validity and applicability of the proposed methods. A comparative study is also presented with other approaches. At last, conclusions and future research directions are addressed based on the proposed work. |
|---|---|
| AbstractList | The existence of neutral /indeterminacy degrees reflects the more practical aspects of decision-making scenarios. Thus, this paper has studied the intuitionistic fuzzy multiobjective linear programming problems (IFMOLPPs) under neutrosophic uncertainty. To highlight the degrees of neutrality in IFMOLPPs, we have investigated the neutrosophic optimization techniques with intuitionistic fuzzy parameters. The marginal evaluation of each objective is determined by three different membership functions, such as truth, indeterminacy, and falsity membership degrees under the neutrosophic environment. The marginal evaluation of each objective function is elicited by various sorts of membership functions such as linear, exponential, and hyperbolic types of membership functions, which signifies an opportunity for decision-makers to select the desired membership functions. The developed neutrosophic optimization technique is implemented on existing numerical problems that reveal the validity and applicability of the proposed methods. A comparative study is also presented with other approaches. At last, conclusions and future research directions are addressed based on the proposed work. |
| Author | Ahmad, Firoz Ahmadini, Abdullah Ali H. |
| Author_xml | – sequence: 1 givenname: Abdullah Ali H. surname: Ahmadini fullname: Ahmadini, Abdullah Ali H. – sequence: 2 givenname: Firoz surname: Ahmad fullname: Ahmad, Firoz |
| BookMark | eNptUN1KwzAYDTLBOXfnA_QB7EyTNmkuZfgzGHihXoc0_bJltMlI04F7els3QcSr73A45_Cdc40mzjtA6DbDCypoft-quF0QTDLCxAWakpzTlImynPzCV2jedTuMR1VOeD5F8Oabg3WbxLrY22i9s120OjH98fiZtH0zUNUOdLQHSBrrQIVkH_wmqLYdbQOuGmiT3tUQEgd9DL7z--0QAe5gg3ctuHiDLo1qOpif7wx9PD2-L1_S9evzavmwTlWekZgKVVQkz2imjTKiFGXNFCcKAy5YXXDBygxIjbkwvDAChGGCcGyoLqtKFFVNZ2h1yq292sl9sK0Kn9IrK78JHzZShaFeA5JpUggOvMg0zmnOSlUxjDmjAtNKGzxkkVOWHhp1AYzUNqpxoRiUbWSG5bi7HHeX590H090f088T_8q_AFKYiZw |
| CitedBy_id | crossref_primary_10_1007_s10479_023_05250_4 crossref_primary_10_3233_JIFS_220156 crossref_primary_10_1016_j_seps_2021_101126 crossref_primary_10_1016_j_heliyon_2024_e36166 crossref_primary_10_3390_computers11100144 crossref_primary_10_1007_s40819_024_01793_7 crossref_primary_10_1016_j_asoc_2025_113668 crossref_primary_10_1007_s40819_023_01638_9 crossref_primary_10_1016_j_dajour_2021_100005 crossref_primary_10_1108_K_08_2021_0750 crossref_primary_10_1007_s00500_022_06953_9 crossref_primary_10_1016_j_rico_2025_100576 |
| Cites_doi | 10.1080/21681015.2019.1585391 10.1007/s13198-014-0331-5 10.1007/s12597-019-00364-5 10.1007/s40435-017-0355-1 10.1186/s40535-016-0029-7 10.1016/B978-0-12-819670-0.00015-9 10.1007/s10479-017-2551-y 10.1016/S0019-9958(65)90241-X 10.3390/w13020121 10.1080/00207720902974538 10.1007/s10479-019-03362-4 10.1016/j.asoc.2016.07.021 10.1016/0165-0114(78)90031-3 10.1016/S0165-0114(96)00009-7 10.3390/sym11040544 10.1007/s10700-017-9280-1 10.1080/17509653.2018.1545608 10.1016/j.compeleceng.2018.02.024 10.1002/sd.2096 10.1287/mnsc.17.4.B141 10.1186/s40467-015-0036-6 10.1016/j.ejor.2008.07.007 10.1016/j.orp.2018.100093 10.1007/s40815-020-01012-7 10.1016/S0165-0114(86)80034-3 10.3233/JIFS-201588 10.1016/j.eswa.2016.07.034 10.1080/17509653.2020.1783381 10.1016/j.eswa.2018.02.038 10.1080/00207543.2018.1504172 10.1016/j.eswa.2016.08.048 |
| ContentType | Journal Article |
| CorporateAuthor | SQC&OR Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108, INDIA Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh, INDIA Department of Mathematics, Faculty of Sciences, Jazan University, Jazan, SAUDI ARABIA |
| CorporateAuthor_xml | – name: SQC&OR Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108, INDIA – name: Department of Mathematics, Faculty of Sciences, Jazan University, Jazan, SAUDI ARABIA – name: Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh, INDIA |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2021269 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 4580 |
| ExternalDocumentID | oai_doaj_org_article_6c2597e751c043468ab600763903bcf0 10_3934_math_2021269 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a412t-9a5b24131cfaf9898d6a72a0e056d579681e2d079f75f9e9f69270f3c8bb95bd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672546700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:44:01 EDT 2025 Sat Nov 29 06:04:17 EST 2025 Tue Nov 18 22:13:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a412t-9a5b24131cfaf9898d6a72a0e056d579681e2d079f75f9e9f69270f3c8bb95bd3 |
| OpenAccessLink | https://doaj.org/article/6c2597e751c043468ab600763903bcf0 |
| PageCount | 25 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6c2597e751c043468ab600763903bcf0 crossref_citationtrail_10_3934_math_2021269 crossref_primary_10_3934_math_2021269 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2021 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2021269-8 key-10.3934/math.2021269-11 key-10.3934/math.2021269-33 key-10.3934/math.2021269-9 key-10.3934/math.2021269-12 key-10.3934/math.2021269-34 key-10.3934/math.2021269-13 key-10.3934/math.2021269-35 key-10.3934/math.2021269-14 key-10.3934/math.2021269-36 key-10.3934/math.2021269-4 key-10.3934/math.2021269-5 key-10.3934/math.2021269-30 key-10.3934/math.2021269-6 key-10.3934/math.2021269-31 key-10.3934/math.2021269-7 key-10.3934/math.2021269-10 key-10.3934/math.2021269-32 key-10.3934/math.2021269-19 key-10.3934/math.2021269-15 key-10.3934/math.2021269-37 key-10.3934/math.2021269-16 key-10.3934/math.2021269-38 key-10.3934/math.2021269-17 key-10.3934/math.2021269-39 key-10.3934/math.2021269-18 key-10.3934/math.2021269-1 key-10.3934/math.2021269-2 key-10.3934/math.2021269-3 key-10.3934/math.2021269-22 key-10.3934/math.2021269-23 key-10.3934/math.2021269-24 key-10.3934/math.2021269-25 key-10.3934/math.2021269-20 key-10.3934/math.2021269-21 key-10.3934/math.2021269-26 key-10.3934/math.2021269-27 key-10.3934/math.2021269-28 key-10.3934/math.2021269-29 |
| References_xml | – ident: key-10.3934/math.2021269-17 doi: 10.1080/21681015.2019.1585391 – ident: key-10.3934/math.2021269-23 doi: 10.1007/s13198-014-0331-5 – ident: key-10.3934/math.2021269-27 – ident: key-10.3934/math.2021269-3 doi: 10.1007/s12597-019-00364-5 – ident: key-10.3934/math.2021269-13 doi: 10.1007/s40435-017-0355-1 – ident: key-10.3934/math.2021269-33 doi: 10.1186/s40535-016-0029-7 – ident: key-10.3934/math.2021269-6 doi: 10.1016/B978-0-12-819670-0.00015-9 – ident: key-10.3934/math.2021269-30 doi: 10.1007/s10479-017-2551-y – ident: key-10.3934/math.2021269-35 doi: 10.1016/S0019-9958(65)90241-X – ident: key-10.3934/math.2021269-7 doi: 10.3390/w13020121 – ident: key-10.3934/math.2021269-14 doi: 10.1080/00207720902974538 – ident: key-10.3934/math.2021269-15 – ident: key-10.3934/math.2021269-22 doi: 10.1007/s10479-019-03362-4 – ident: key-10.3934/math.2021269-4 – ident: key-10.3934/math.2021269-32 – ident: key-10.3934/math.2021269-19 – ident: key-10.3934/math.2021269-36 – ident: key-10.3934/math.2021269-38 doi: 10.1016/j.asoc.2016.07.021 – ident: key-10.3934/math.2021269-39 doi: 10.1016/0165-0114(78)90031-3 – ident: key-10.3934/math.2021269-10 doi: 10.1016/S0165-0114(96)00009-7 – ident: key-10.3934/math.2021269-5 doi: 10.3390/sym11040544 – ident: key-10.3934/math.2021269-18 doi: 10.1007/s10700-017-9280-1 – ident: key-10.3934/math.2021269-2 doi: 10.1080/17509653.2018.1545608 – ident: key-10.3934/math.2021269-26 doi: 10.1016/j.compeleceng.2018.02.024 – ident: key-10.3934/math.2021269-37 doi: 10.1002/sd.2096 – ident: key-10.3934/math.2021269-12 doi: 10.1287/mnsc.17.4.B141 – ident: key-10.3934/math.2021269-21 doi: 10.1186/s40467-015-0036-6 – ident: key-10.3934/math.2021269-28 – ident: key-10.3934/math.2021269-20 doi: 10.1016/j.ejor.2008.07.007 – ident: key-10.3934/math.2021269-34 doi: 10.1016/j.orp.2018.100093 – ident: key-10.3934/math.2021269-8 doi: 10.1007/s40815-020-01012-7 – ident: key-10.3934/math.2021269-11 doi: 10.1016/S0165-0114(86)80034-3 – ident: key-10.3934/math.2021269-9 doi: 10.3233/JIFS-201588 – ident: key-10.3934/math.2021269-24 doi: 10.1016/j.eswa.2016.07.034 – ident: key-10.3934/math.2021269-1 doi: 10.1080/17509653.2020.1783381 – ident: key-10.3934/math.2021269-31 doi: 10.1016/j.eswa.2018.02.038 – ident: key-10.3934/math.2021269-16 – ident: key-10.3934/math.2021269-29 doi: 10.1080/00207543.2018.1504172 – ident: key-10.3934/math.2021269-25 doi: 10.1016/j.eswa.2016.08.048 |
| SSID | ssj0002124274 |
| Score | 2.2786696 |
| Snippet | The existence of neutral /indeterminacy degrees reflects the more practical aspects of decision-making scenarios. Thus, this paper has studied the... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 4556 |
| SubjectTerms | indeterminacy membership function intuitionistic fuzzy parameters multiobjective linear programming problem neutrosophic optimization technique |
| Title | Solving intuitionistic fuzzy multiobjective linear programming problem under neutrosophic environment |
| URI | https://doaj.org/article/6c2597e751c043468ab600763903bcf0 |
| Volume | 6 |
| WOSCitedRecordID | wos000672546700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8gATiprEThyPgFox0AqJh7pFtmNLRaVFaYpEB347d06osiAWlgzJxbLOke-7-O77CLkoFGeZUC4wjJmAF8wFKuZJYL0srIuZ9qfnL_diOMxGI_nQkvrCmrCaHrh2XDc1ANCFFUlkQs54mimNlOoQWEOmjfPZOqCeVjKFezBsyBzyrbrSnUnGu4D_8OwBHmBtcysGtaj6fUzpb5OtBgzS63oSO2TNTnfJ5mDFpDrfI_ZxNsGcn44hOPjyKs-sTN1iufykvhxwpl_rXYsiZFQlbWqu3vC1RjCGYq9YSad2UZVeuQCGaPW47ZPnfu_p9i5opBECxaO4CqRKNJ6IRcYphxKQRapErEILeKbA9tIssnERCulE4qSVLpWxCB0zmdYy0QU7IJ3pbGoPCXUJtpMzzaUBdGKzrAAbnqYmEjp0CTsiVz_Oyk3DG47yFZMc8gd0bY6uzRvXHpHLlfV7zZfxi90N-n1lgyzX_gasfd6sff7X2h__xyAnZAPnVP9WOSWdqlzYM7JuPqrxvDz3nxVcB1-9b76N1Og |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+intuitionistic+fuzzy+multiobjective+linear+programming+problem+under+neutrosophic+environment&rft.jtitle=AIMS+mathematics&rft.au=Abdullah+Ali+H.+Ahmadini&rft.au=Firoz+Ahmad&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=5&rft.spage=4556&rft.epage=4580&rft_id=info:doi/10.3934%2Fmath.2021269&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6c2597e751c043468ab600763903bcf0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |