Anthropogenic basin closure and groundwater salinization (ABCSAL)
•Groundwater pumping may close a basin, leading to TDS accumulation in the aquifer.•We describe “Anthropogenic Basin Closure and groundwater SALinization” (ABCSAL).•We develop a model to estimate ongoing ABCSAL in California’s Tulare Basin.•Fundamentally, ABCSAL can only be reversed by opening the b...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 593; s. 125787 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2021
|
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Groundwater pumping may close a basin, leading to TDS accumulation in the aquifer.•We describe “Anthropogenic Basin Closure and groundwater SALinization” (ABCSAL).•We develop a model to estimate ongoing ABCSAL in California’s Tulare Basin.•Fundamentally, ABCSAL can only be reversed by opening the basin.•Salinization timescales are similar to those of aquifer depletion in the study site.
Global food systems rely on irrigated agriculture, and most of these systems in turn depend on fresh sources of groundwater. In this study, we demonstrate that groundwater development, even without overdraft, can transform a fresh, open basin into an evaporation dominated, closed-basin system, such that most of the groundwater, rather than exiting via stream baseflow and lateral subsurface flow, exits predominantly by evapotranspiration from irrigated lands. In these newly closed hydrologic basins, just as in other closed basins, groundwater salinization is inevitable because dissolved solids cannot escape, and the basin is effectively converted into a salt sink. We first provide a conceptual model of this process, called “Anthropogenic Basin Closure and groundwater SALinization” (ABCSAL). We examine the temporal dynamics of ABCSAL using the Tulare Lake Basin, California, as a case study for a large irrigated agricultural region with Mediterranean climate, overlying an unconsolidated sedimentary aquifer system. Even with modern water management practices that arrest historic overdraft, results indicate that shallow aquifers (36 m deep) exceed maximum contaminant levels for total dissolved solids on decadal timescales. Intermediate (132 m) and deep aquifers (187 m), essential for drinking water and irrigated crops, are impacted within two to three centuries. Hence, ABCSAL resulting from groundwater development constitutes a largely unrecognized constraint on groundwater sustainable yield on similar timescales to aquifer depletion in the Tulare Lake Basin, and poses a serious challenge to groundwater quality sustainability, even when water levels are stable. Results suggest that agriculturally intensive groundwater basins worldwide may be susceptible to ABCSAL. |
|---|---|
| AbstractList | Global food systems rely on irrigated agriculture, and most of these systems in turn depend on fresh sources of groundwater. In this study, we demonstrate that groundwater development, even without overdraft, can transform a fresh, open basin into an evaporation dominated, closed-basin system, such that most of the groundwater, rather than exiting via stream baseflow and lateral subsurface flow, exits predominantly by evapotranspiration from irrigated lands. In these newly closed hydrologic basins, just as in other closed basins, groundwater salinization is inevitable because dissolved solids cannot escape, and the basin is effectively converted into a salt sink. We first provide a conceptual model of this process, called “Anthropogenic Basin Closure and groundwater SALinization” (ABCSAL). We examine the temporal dynamics of ABCSAL using the Tulare Lake Basin, California, as a case study for a large irrigated agricultural region with Mediterranean climate, overlying an unconsolidated sedimentary aquifer system. Even with modern water management practices that arrest historic overdraft, results indicate that shallow aquifers (36 m deep) exceed maximum contaminant levels for total dissolved solids on decadal timescales. Intermediate (132 m) and deep aquifers (187 m), essential for drinking water and irrigated crops, are impacted within two to three centuries. Hence, ABCSAL resulting from groundwater development constitutes a largely unrecognized constraint on groundwater sustainable yield on similar timescales to aquifer depletion in the Tulare Lake Basin, and poses a serious challenge to groundwater quality sustainability, even when water levels are stable. Results suggest that agriculturally intensive groundwater basins worldwide may be susceptible to ABCSAL. •Groundwater pumping may close a basin, leading to TDS accumulation in the aquifer.•We describe “Anthropogenic Basin Closure and groundwater SALinization” (ABCSAL).•We develop a model to estimate ongoing ABCSAL in California’s Tulare Basin.•Fundamentally, ABCSAL can only be reversed by opening the basin.•Salinization timescales are similar to those of aquifer depletion in the study site. Global food systems rely on irrigated agriculture, and most of these systems in turn depend on fresh sources of groundwater. In this study, we demonstrate that groundwater development, even without overdraft, can transform a fresh, open basin into an evaporation dominated, closed-basin system, such that most of the groundwater, rather than exiting via stream baseflow and lateral subsurface flow, exits predominantly by evapotranspiration from irrigated lands. In these newly closed hydrologic basins, just as in other closed basins, groundwater salinization is inevitable because dissolved solids cannot escape, and the basin is effectively converted into a salt sink. We first provide a conceptual model of this process, called “Anthropogenic Basin Closure and groundwater SALinization” (ABCSAL). We examine the temporal dynamics of ABCSAL using the Tulare Lake Basin, California, as a case study for a large irrigated agricultural region with Mediterranean climate, overlying an unconsolidated sedimentary aquifer system. Even with modern water management practices that arrest historic overdraft, results indicate that shallow aquifers (36 m deep) exceed maximum contaminant levels for total dissolved solids on decadal timescales. Intermediate (132 m) and deep aquifers (187 m), essential for drinking water and irrigated crops, are impacted within two to three centuries. Hence, ABCSAL resulting from groundwater development constitutes a largely unrecognized constraint on groundwater sustainable yield on similar timescales to aquifer depletion in the Tulare Lake Basin, and poses a serious challenge to groundwater quality sustainability, even when water levels are stable. Results suggest that agriculturally intensive groundwater basins worldwide may be susceptible to ABCSAL. |
| ArticleNumber | 125787 |
| Author | Fogg, Graham E. Pauloo, Richard A. Harter, Thomas Guo, Zhilin |
| Author_xml | – sequence: 1 givenname: Richard A. orcidid: 0000-0002-6231-9530 surname: Pauloo fullname: Pauloo, Richard A. organization: Hydrologic Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA – sequence: 2 givenname: Graham E. surname: Fogg fullname: Fogg, Graham E. organization: Hydrologic Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA – sequence: 3 givenname: Zhilin orcidid: 0000-0002-3731-8739 surname: Guo fullname: Guo, Zhilin organization: Environmental Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Ave, Nanshan Qu, Shenzhen Shi, Guangdong Sheng 518055, China – sequence: 4 givenname: Thomas surname: Harter fullname: Harter, Thomas organization: Hydrologic Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA |
| BookMark | eNqFkM9LwzAUx4NMcE7_BKHHeehM0jbp8CB1-AsGHtRzSJPXLaVLZtIq86-3szt52bs8eHw_Xx6fczSyzgJCVwTPCCbspp7V6532rplRTPsbzXjOT9CY5HweU475CI0xpjQmbJ6eofMQatxPkqRjVBS2XXu3dSuwRkWlDMZGqnGh8xBJq6OVd53V37IFHwXZGGt-ZGucjabF_eKtWF5foNNKNgEuD3uCPh4f3hfP8fL16WVRLGOZEtrGHDBRJVcVnquKcZXzTOJKMq0xZYxUNAHFWJ7LnCWEkTJXWlWJroCVJTCikwmaDr1b7z47CK3YmKCgaaQF1wVBM5pSRjHJ-ujtEFXeheChEsq0f1-3XppGECz24kQtDuLEXpwYxPV09o_eerORfneUuxs46C18GfAiKANWgTYeVCu0M0cafgFyko2s |
| CitedBy_id | crossref_primary_10_1029_2021WR031459 crossref_primary_10_3390_su16156328 crossref_primary_10_1038_s43017_022_00378_6 crossref_primary_10_1007_s11356_022_22134_5 crossref_primary_10_1002_vzj2_20307 crossref_primary_10_1029_2022WR032295 crossref_primary_10_3389_frwa_2025_1620626 crossref_primary_10_1146_annurev_environ_112621_094745 crossref_primary_10_1002_hyp_15131 crossref_primary_10_1016_j_jhydrol_2025_133093 crossref_primary_10_1016_j_scitotenv_2024_174508 crossref_primary_10_1080_10643389_2022_2050160 crossref_primary_10_3390_w16091223 crossref_primary_10_1038_s43016_025_01188_x crossref_primary_10_1007_s12665_022_10362_4 crossref_primary_10_1016_j_jhydrol_2023_130035 crossref_primary_10_1029_2022WR032831 crossref_primary_10_1088_1748_9326_aca344 crossref_primary_10_1007_s00271_024_00977_9 crossref_primary_10_1016_j_scib_2023_11_012 crossref_primary_10_1029_2022WR032219 crossref_primary_10_1029_2023WR035446 crossref_primary_10_1016_j_agwat_2024_109007 crossref_primary_10_1038_s41598_024_66273_w crossref_primary_10_1016_j_scitotenv_2025_179406 crossref_primary_10_1029_2021WR031058 crossref_primary_10_3390_hydrology10120224 crossref_primary_10_1007_s40333_024_0060_9 |
| Cites_doi | 10.1029/2001WR000907 10.1029/TR022i001p00020 10.1046/j.0016-8025.2001.00808.x 10.1073/pnas.1600400113 10.1007/978-1-4757-1152-3_8 10.2136/sssaj1973.03615995003700060038x 10.1029/2019WR026000 10.3133/pp497A 10.1016/j.tplants.2005.10.002 10.1016/0022-1694(70)90186-1 10.1002/essoar.10502733.1 10.3733/ca.2018a0001 10.1029/2018WR024069 10.1007/s10040-004-0332-6 10.1007/s10533-014-0014-y 10.1016/0022-1694(90)90051-X 10.3133/sir20085156 10.1016/j.jhydrol.2014.03.033 10.1146/annurev.environ.030308.100251 10.1016/S0378-3774(98)00120-6 10.1111/j.1745-6584.2004.tb02719.x 10.1111/j.1745-6584.1987.tb02115.x 10.1029/2019WR024953 10.1038/s41467-018-04475-3 10.1038/ngeo2883 10.1007/s100400050176 10.1111/j.1745-6584.1986.tb01689.x 10.1038/nature21403 10.1029/2018WR024230 10.1016/j.envsoft.2013.10.029 10.1073/pnas.0507723102 10.1029/97RG01172 10.1126/science.289.5477.284 10.1007/s10040-019-01936-x 10.1007/s10040-019-02033-9 10.1088/1748-9326/aa7b1b 10.1029/95WR01328 10.1021/jf802994p 10.1016/j.jhydrol.2008.02.015 10.3133/pp1766 10.1023/A:1024574622669 10.1016/S0378-3774(02)00058-6 10.1007/s00254-004-1164-3 10.1111/j.1745-6584.2009.00635.x 10.1088/1748-9326/ab6f10 10.1016/j.scitotenv.2018.05.333 10.1029/2004WR003808 10.1038/nclimate2425 10.2134/jeq2007.0061 10.1029/96WR03533 10.1073/pnas.1200311109 10.1016/0022-1694(84)90190-2 10.1002/2016WR019861 10.1016/0022-1694(95)02906-0 10.1073/pnas.1011915108 10.1016/0022-1694(84)90045-3 10.3133/wsp17 10.1111/j.1745-6584.1999.tb00962.x 10.1126/science.1126011 10.1029/2005WR004372 10.3390/w12041066 10.1029/2010GL044571 10.1016/j.jhydrol.2008.08.005 10.1016/j.jog.2011.05.001 10.5194/esd-5-15-2014 10.1021/es00171a013 10.1061/(ASCE)0733-9437(1997)123:6(423) 10.1038/nature11295 10.1016/j.advwatres.2012.03.004 10.5194/hess-14-1863-2010 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors |
| Copyright_xml | – notice: 2020 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2020.125787 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2020_125787 S0022169420312488 |
| GeographicLocations | California |
| GeographicLocations_xml | – name: California |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a412t-7e01cb7cf09cf67c875a0fa6dd02661f23ec6688a863161b8cdcf3dfe6bbe61d3 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639853400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Thu Oct 02 12:15:20 EDT 2025 Tue Nov 18 20:19:52 EST 2025 Sat Nov 29 07:26:17 EST 2025 Fri Feb 23 02:45:21 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Basin closure Hydrogeology Groundwater salinization |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a412t-7e01cb7cf09cf67c875a0fa6dd02661f23ec6688a863161b8cdcf3dfe6bbe61d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6231-9530 0000-0002-3731-8739 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jhydrol.2020.125787 |
| PQID | 2524262015 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2524262015 crossref_citationtrail_10_1016_j_jhydrol_2020_125787 crossref_primary_10_1016_j_jhydrol_2020_125787 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_125787 |
| PublicationCentury | 2000 |
| PublicationDate | February 2021 2021-02-00 20210201 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Weissmann, G.S., Zhang, Y., LaBolle, E.M., Fogg, G.E., 2002. Dispersion of groundwater age in an alluvial aquifer system, Water Resour. Res. 38, 16–1. Wright, L., 2018. 2017 Fresno County Annual Crop & Livestock Report. URL: https://www.co.fresno.ca.us/Home/ShowDocument?id=30066. Davis, G.H., Green, J.H., Olmsted, F.H., Brown, D., 1959. Ground water conditions and storage capacity in the San Joaquin Valley, California. USGS Water-Supply Paper 1469, USGS, Reston, Virginia. DeSimone, L.A., MacMahon, P.B., Rosen, M.R., 2010. Water Quality in Principal Aquifers of the United States, 1991 - 2010 Circular 1360, Technical Report, USGS. Vörösmarty, Green, Salisbury, Lammers (b0540) 2000; 289 Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water, volume 2254, USGS. Datta, De Jong (b0135) 2002; 57 Lopez-Berenguer, C., Martinez-Ballesta, M.d.C., Moreno, D.A., Carvajal, M., Garcia-Viguera, C., 2009. Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J. Agric. Food Chem. 57, 572–578. Dalin, Wada, Kastner, Puma (b0130) 2017; 543 Foster, Chilton, Moencg, Cardy, Schiffler (b0205) 2000 Wada, Van Beek, Van Kempen, Reckman, Vasak, Bierkens (b0545) 2010; 37 Burow, K.R., Shelton, J.L., Dubrovsky, N.M., 2008. Regional nitrate and pesticide trends in ground water in the eastern san joaquin valley, california. J. Environ. Qual. 37, S–249. Nativ (b0415) 2004; 42 Zektser, Loáiciga, Wolf (b0595) 2005; 47 Kocis, Dahlke (b0370) 2017; 12 Siebert, Burke, Faures, Frenken, Hoogeveen, Döll, Portmann (b0485) 2010; 14 Fujii, R., Swain, W.C., 1995. Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, southern San Joaquin Valley, California. Water-Resour. Investig. Rep. 95–4048, Technical Report, USGS. ECORP, 2007. Tulare Lake basin hydrology and hydrography: a summary of the movement of water and aquatic species. Technical Report, ECORP Consulting Inc. Hansen, Jurgens, Fram (b0265) 2018; 642 Scanlon, Tyler, Wierenga (b0465) 1997; 35 Preston (b0445) 1990 Eugster, H.P., Hardie, L.A., 1978. Saline lakes. In: Lakes, Springer, pp. 237–293. Tóth (b0525) 1999; 7 Grunsky, C.E., 1898. Irrigation Near Bakersfield, California, Technical Report, USGS. doi: 10.3133/wsp17. Mendenhall, Dole, Stabler (b0405) 1916; 398 Werner, Bakker, Post, Vandenbohede, Lu, Ataie-Ashtiani, Simmons, Barry (b0560) 2013; 51 Pauloo, Escriva-Bou, Dahlke, Fencl, Guillon, Fogg (b0435) 2020; 15 Yamaguchi, Blumwald (b0590) 2005; 10 Kharaka, Thordsen (b0360) 1992 Hillel (b0305) 2000 Campana, Simpson (b0080) 1984; 72 Hunt (b0320) 1999; 37 Ayers, R.S., Westcot, D.W., 1985. Water Quality for Agriculture, vol. 29, Food and Agriculture Organization of the United Nations Rome. Guo, Henri, Fogg, Zhang, Zheng (b0250) 2020 Kourakos, Harter (b0375) 2014; 52 Greene, Timms, Rengasamy, Arshad, Cresswell (b0235) 2016 Calderwood, Pauloo, Yoder, Fogg (b0065) 2020; 12 Jurgens, B.C., Burow, K.R., Dalgish, B.A., Shelton, J.L., 2008. Hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California, Technical Report, USGS. Cloutier, Lefebvre, Therrien, Savard (b0100) 2008; 353 Scanlon, Faunt, Longuevergne, Reedy, Alley, McGuire, McMahon (b0470) 2012; 109 Famiglietti (b0180) 2014; 4 Munns (b0410) 2002; 25 Palmer, Cherry (b0425) 1984; 75 USGS, 2016. National water information system data available on the world wide web (usgs water data for the nation)URL: http://waterdata.usgs.gov/nwis/. doi: 10.5066/F7P55KJN. Faunt, C., Hanson, R.T., Belitz, K., Schmid, W., Predmore, S.P., Rewis, D.L., McPherson, K., 2009. Groundwater availability of the Central Valley Aquifer, California, US Geological Survey Professional Paper, Technical Report, USGS. Wooding, Tyler, White (b0575) 1997; 33 Howell (b0315) 2003 Gailey, Fogg, Lund, Medellín-Azuara (b0215) 2019; 27 Richter, Kreitler (b0450) 1986; 24 Smith, Knight, Fendorf (b0495) 2018; 9 Johnson, A., Moston, R., Morris, D., 1968. Physical and hydrologic properties of water-bearing deposits in subsiding areas in central California, USGS Professional Paper 497-A, 71, Technical Report, 1968. Kreitler (b0380) 1993 Pessarakli (b0440) 2016 Lindsey, B., Johnson, T., 2018. Data from decadal change in groundwater quality web site, 1988-2014, version 2.0: U.s. geological survey. URL: https://nawqatrends.wim.usgs.gov/Decadal/. doi: 10.5066/F7N878ZS. Kang, Jackson (b0350) 2016; 113 Maples, Fogg, Maxwell (b0400) 2019; 27 Harter, T., Lund, J.R., Darby, J., Fogg, G.E., Howitt, R., Jessoe, K.K., Pettygrove, G.S., Quinn, J.F., Viers, J.H., 2012. Addressing Nitrate in California’s Drinking Water with a focus on Tulare Lake Basin and Salinas Valley Groundwater, Report for the State Water Resources Control Board report to the Legislature, 1–78. Wada, Wisser, Bierkens (b0550) 2014; 5 Cismowski, Cooley, Grober, Martin, McCarthy, Schnagl, Toto (b0095) 2006 Hillel (b0300) 1992 Sustainable Groundwater Management Act, 2014. California Water Code Section 10720-10737.8. Bernstein, Francois (b0040) 1973; 37 Smith, Knight, Chen, Reeves, Zebker, Farr, Liu (b0490) 2017; 53 Sandoval-Solis, Orang, Snyder, Orloff, Williams, Rodríguez (b0460) 2013 CSWRCB, 2019. A Compilation of Water Quality Goals. URL: https://www.waterboards.ca.gov/water_issues/programs/water_quality_goals/. Campana, M.E., 1975. Finite-state models of transport phenomena in hydrologic systems. Ph.D. thesis, The University of Arizona, Tucson, Arizona, USA. Oetting, Banner, Sharp (b0420) 1996; 181 Schmidt, K.D., 1975. Salt balance in groundwater of the tulare lake basin, California. In: Proceedings of the 1975 Meetings of the Arizona Section, Arizona-Nevada Academy of Science, Arizona-Nevada Academy of Science, pp. 177–184. Belitz, K.R., Heimes, F.J., 1990. Character and evolution of the ground-water flow system in the central part of the western San Joaquin Valley, California., No. 2348, United States Geological Survey, 1990. Jurgens, B.C., Fram, M.S., Belitz, K., Burow, K.R., Landon, M.K., 2010. Effects of groundwater development on uranium: Central Valley, California, USA, Groundwater 48, 913–928. Williamson, Prudic, Swain (b0565) 1989 Döll, Hoffmann-Dobrev, Portmann, Siebert, Eicker, Rodell, Strassberg, Scanlon (b0160) 2012; 59 Hook, J., 2018. 2017 Kings County Agricultural Crop Report. URL: https://www.countyofkings.com/home/showdocument?id=20426. Winkel, Trang, Lan, Stengel, Amini, Ha, Viet, Berg (b0570) 2011; 108 Hanson, B., Bowers, W., Davidoff, B., Kasapligil, D., Carvajal, A., Bendixen, W., 1995. Field performance of microirrigation systems, in: Microirrigation for a Changing World, Proceedings of Fifth International Microirrigation Congress, April 2–6, American Society of Agricultural Engineers, pp. 769–774. Tóth (b0520) 1970; 10 Zhang, Harter, Sivakumar (b0600) 2006; 42 Belitz, Phillips (b0030) 1995; 31 Tal (b0505) 2006; 313 Burt, Clemmens, Strelkoff, Solomon, Bliesner, Hardy, Howell, Eisenhauer (b0060) 1997; 123 Dahlke, Brown, Orloff, Putnam, O’Geen (b0125) 2018; 72 Hanson, Grattan, Fulton (b0275) 1999 Beltrán (b0035) 1999; 40 Hardie, Eugster (b0280) 1970; 3 CSWRCB, 2019. GAMA Groundwater Information System. URL: http://geotracker.waterboards.ca.gov/gama/gamamap/public/. Mahlknecht, Schneider, Merkel, De León, Bernasconi (b0395) 2004; 12 Barrett-Lennard (b0015) 2003; 253 Ghasemizade, Asante, Petersen, Kocis, Dahlke, Harter (b0220) 2019; 55 Kirk, Campana (b0365) 1990; 119 Hanak, Escriva-Bou, Gray, Green, Harter, Jezdimirovic, Lund, Medellín-Azuara, Moyle, Seavy (b0260) 2019 Jones, Deocampo (b0335) 2003; 5 Hanak, Lund, Dinar, Gray, Howitt (b0255) 2011 TC (b0510) 1982 Chaudhuri, Ale (b0090) 2014; 513 Deverel, Millard (b0150) 1988; 22 Giordano (b0225) 2009; 34 Pauloo, R., 2020. First release of ABCSAL mixing cell model accompanying the publication, Anthropogenic Basin Closure and groundwater SALinization (ABCSAL). Github repository, URL: https://doi.org/10.5281/zenodo.3745508. Russo, Lall (b0455) 2017; 10 Guo, Fogg, Henri (b0245) 2019; 55 CSWRCB, 2019. California Regulations Related to Drinking Water, Title 22. URL:https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Lawbook.html. Fankhauser, G., 2018. 2017 Kern County Agricultural Crop Report. URL: http://www.kernag.com/caap/crop-reports/crop10_19/crop2017.pdf. Fogg, LaBolle (b0200) 2006; 42 TNC (b0515) 2014 Campana (b0075) 1987; 25 Burow, K.R., Stork, S.V., Dubrovsky, N.M., 1998. Nitrate and pesticides in ground water of the eastern San Joaquin Valley, California: occurrence and trends, USGS. USBR, 1970. A Summary of Hydrologic Data for the Test Case on Acreage Limitation in Tulare Lake, Hydrology Branch, Division of Project Development, Bureau of Reclamation. Carroll, Pohll, Earman, Hershey (b0085) 2008; 361 Schoups, Hopmans, Young, Vrugt, Wallender, Tanji, Panday (b0480) 2005; 102 Domenico, Schwartz (b0165) 1998; vol. 506 Bear, Cheng, Sorek, Ouazar, Herrera (b0020) 1999; vol. 14 Kaushal, McDowell, Wollheim (b0355) 2014; 121 Barlow, Leake (b0010) 2015 Fetter (b0195) 2001 Brush, C.F., Dogrul, E.C., Kadir, T.N., 2013. Development and calibration of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim), version 3.02-CG, Bay-Delta Office, California Department of Water Resources, 2013. Dogrul, Nadir, Brush (b0155) 2018 Gleeson, Wada, Bierkens, van Beek (b0230) 2012; 488 Henri, Harter (b0295) 2019; 55 Wright, M., 2018. Tulare County Crop and Livestock Report 2017. URL: https://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/crop-reports-2011-2020/2017-crop-report/. CRWQCB (b0105) 2018 Ingerson (b0325) 1941; 22 10.1016/j.jhydrol.2020.125787_b0115 Henri (10.1016/j.jhydrol.2020.125787_b0295) 2019; 55 Barrett-Lennard (10.1016/j.jhydrol.2020.125787_b0015) 2003; 253 Mendenhall (10.1016/j.jhydrol.2020.125787_b0405) 1916; 398 Gailey (10.1016/j.jhydrol.2020.125787_b0215) 2019; 27 Hansen (10.1016/j.jhydrol.2020.125787_b0265) 2018; 642 10.1016/j.jhydrol.2020.125787_b0475 Datta (10.1016/j.jhydrol.2020.125787_b0135) 2002; 57 Fogg (10.1016/j.jhydrol.2020.125787_b0200) 2006; 42 Carroll (10.1016/j.jhydrol.2020.125787_b0085) 2008; 361 Pauloo (10.1016/j.jhydrol.2020.125787_b0435) 2020; 15 10.1016/j.jhydrol.2020.125787_b0190 Ghasemizade (10.1016/j.jhydrol.2020.125787_b0220) 2019; 55 Campana (10.1016/j.jhydrol.2020.125787_b0080) 1984; 72 Beltrán (10.1016/j.jhydrol.2020.125787_b0035) 1999; 40 10.1016/j.jhydrol.2020.125787_b0110 10.1016/j.jhydrol.2020.125787_b0070 Dahlke (10.1016/j.jhydrol.2020.125787_b0125) 2018; 72 10.1016/j.jhydrol.2020.125787_b0005 Kharaka (10.1016/j.jhydrol.2020.125787_b0360) 1992 Hardie (10.1016/j.jhydrol.2020.125787_b0280) 1970; 3 Hanak (10.1016/j.jhydrol.2020.125787_b0255) 2011 Nativ (10.1016/j.jhydrol.2020.125787_b0415) 2004; 42 Greene (10.1016/j.jhydrol.2020.125787_b0235) 2016 Wooding (10.1016/j.jhydrol.2020.125787_b0575) 1997; 33 Belitz (10.1016/j.jhydrol.2020.125787_b0030) 1995; 31 Vörösmarty (10.1016/j.jhydrol.2020.125787_b0540) 2000; 289 Kocis (10.1016/j.jhydrol.2020.125787_b0370) 2017; 12 Chaudhuri (10.1016/j.jhydrol.2020.125787_b0090) 2014; 513 Scanlon (10.1016/j.jhydrol.2020.125787_b0470) 2012; 109 10.1016/j.jhydrol.2020.125787_b0240 Hillel (10.1016/j.jhydrol.2020.125787_b0305) 2000 10.1016/j.jhydrol.2020.125787_b0120 10.1016/j.jhydrol.2020.125787_b0535 10.1016/j.jhydrol.2020.125787_b0530 Munns (10.1016/j.jhydrol.2020.125787_b0410) 2002; 25 Zhang (10.1016/j.jhydrol.2020.125787_b0600) 2006; 42 Gleeson (10.1016/j.jhydrol.2020.125787_b0230) 2012; 488 Cismowski (10.1016/j.jhydrol.2020.125787_b0095) 2006 Wada (10.1016/j.jhydrol.2020.125787_b0550) 2014; 5 Smith (10.1016/j.jhydrol.2020.125787_b0490) 2017; 53 Kirk (10.1016/j.jhydrol.2020.125787_b0365) 1990; 119 Guo (10.1016/j.jhydrol.2020.125787_b0250) 2020 CRWQCB (10.1016/j.jhydrol.2020.125787_b0105) 2018 Howell (10.1016/j.jhydrol.2020.125787_b0315) 2003 Campana (10.1016/j.jhydrol.2020.125787_b0075) 1987; 25 Cloutier (10.1016/j.jhydrol.2020.125787_b0100) 2008; 353 Calderwood (10.1016/j.jhydrol.2020.125787_b0065) 2020; 12 Burt (10.1016/j.jhydrol.2020.125787_b0060) 1997; 123 Hanson (10.1016/j.jhydrol.2020.125787_b0275) 1999 10.1016/j.jhydrol.2020.125787_b0145 Maples (10.1016/j.jhydrol.2020.125787_b0400) 2019; 27 10.1016/j.jhydrol.2020.125787_b0025 Foster (10.1016/j.jhydrol.2020.125787_b0205) 2000 Kourakos (10.1016/j.jhydrol.2020.125787_b0375) 2014; 52 Preston (10.1016/j.jhydrol.2020.125787_b0445) 1990 Tal (10.1016/j.jhydrol.2020.125787_b0505) 2006; 313 Guo (10.1016/j.jhydrol.2020.125787_b0245) 2019; 55 Smith (10.1016/j.jhydrol.2020.125787_b0495) 2018; 9 10.1016/j.jhydrol.2020.125787_b0140 Kang (10.1016/j.jhydrol.2020.125787_b0350) 2016; 113 Oetting (10.1016/j.jhydrol.2020.125787_b0420) 1996; 181 10.1016/j.jhydrol.2020.125787_b0385 Scanlon (10.1016/j.jhydrol.2020.125787_b0465) 1997; 35 10.1016/j.jhydrol.2020.125787_b0555 10.1016/j.jhydrol.2020.125787_b0430 Dogrul (10.1016/j.jhydrol.2020.125787_b0155) 2018 10.1016/j.jhydrol.2020.125787_b0310 Bernstein (10.1016/j.jhydrol.2020.125787_b0040) 1973; 37 Hunt (10.1016/j.jhydrol.2020.125787_b0320) 1999; 37 Fetter (10.1016/j.jhydrol.2020.125787_b0195) 2001 Werner (10.1016/j.jhydrol.2020.125787_b0560) 2013; 51 Wada (10.1016/j.jhydrol.2020.125787_b0545) 2010; 37 Sandoval-Solis (10.1016/j.jhydrol.2020.125787_b0460) 2013 Williamson (10.1016/j.jhydrol.2020.125787_b0565) 1989 Hanak (10.1016/j.jhydrol.2020.125787_b0260) 2019 Zektser (10.1016/j.jhydrol.2020.125787_b0595) 2005; 47 Deverel (10.1016/j.jhydrol.2020.125787_b0150) 1988; 22 10.1016/j.jhydrol.2020.125787_b0390 10.1016/j.jhydrol.2020.125787_b0270 Tóth (10.1016/j.jhydrol.2020.125787_b0520) 1970; 10 Winkel (10.1016/j.jhydrol.2020.125787_b0570) 2011; 108 10.1016/j.jhydrol.2020.125787_b0045 Yamaguchi (10.1016/j.jhydrol.2020.125787_b0590) 2005; 10 Giordano (10.1016/j.jhydrol.2020.125787_b0225) 2009; 34 TC (10.1016/j.jhydrol.2020.125787_b0510) 1982 Bear (10.1016/j.jhydrol.2020.125787_b0020) 1999; vol. 14 10.1016/j.jhydrol.2020.125787_b0285 Palmer (10.1016/j.jhydrol.2020.125787_b0425) 1984; 75 Pessarakli (10.1016/j.jhydrol.2020.125787_b0440) 2016 10.1016/j.jhydrol.2020.125787_b0210 Barlow (10.1016/j.jhydrol.2020.125787_b0010) 2015 Jones (10.1016/j.jhydrol.2020.125787_b0335) 2003; 5 Kaushal (10.1016/j.jhydrol.2020.125787_b0355) 2014; 121 TNC (10.1016/j.jhydrol.2020.125787_b0515) 2014 Ingerson (10.1016/j.jhydrol.2020.125787_b0325) 1941; 22 Mahlknecht (10.1016/j.jhydrol.2020.125787_b0395) 2004; 12 10.1016/j.jhydrol.2020.125787_b0175 10.1016/j.jhydrol.2020.125787_b0055 10.1016/j.jhydrol.2020.125787_b0330 10.1016/j.jhydrol.2020.125787_b0290 Domenico (10.1016/j.jhydrol.2020.125787_b0165) 1998; vol. 506 10.1016/j.jhydrol.2020.125787_b0170 10.1016/j.jhydrol.2020.125787_b0050 10.1016/j.jhydrol.2020.125787_b0500 Kreitler (10.1016/j.jhydrol.2020.125787_b0380) 1993 10.1016/j.jhydrol.2020.125787_b0585 10.1016/j.jhydrol.2020.125787_b0345 Siebert (10.1016/j.jhydrol.2020.125787_b0485) 2010; 14 Famiglietti (10.1016/j.jhydrol.2020.125787_b0180) 2014; 4 Tóth (10.1016/j.jhydrol.2020.125787_b0525) 1999; 7 Schoups (10.1016/j.jhydrol.2020.125787_b0480) 2005; 102 Döll (10.1016/j.jhydrol.2020.125787_b0160) 2012; 59 10.1016/j.jhydrol.2020.125787_b0580 Dalin (10.1016/j.jhydrol.2020.125787_b0130) 2017; 543 10.1016/j.jhydrol.2020.125787_b0185 Richter (10.1016/j.jhydrol.2020.125787_b0450) 1986; 24 10.1016/j.jhydrol.2020.125787_b0340 Hillel (10.1016/j.jhydrol.2020.125787_b0300) 1992 Russo (10.1016/j.jhydrol.2020.125787_b0455) 2017; 10 |
| References_xml | – year: 1990 ident: b0445 article-title: The Tulare Lake Basin: An Aboriginal Cornucopia publication-title: California Geographical Society – reference: Hanson, B., Bowers, W., Davidoff, B., Kasapligil, D., Carvajal, A., Bendixen, W., 1995. Field performance of microirrigation systems, in: Microirrigation for a Changing World, Proceedings of Fifth International Microirrigation Congress, April 2–6, American Society of Agricultural Engineers, pp. 769–774. – reference: Lopez-Berenguer, C., Martinez-Ballesta, M.d.C., Moreno, D.A., Carvajal, M., Garcia-Viguera, C., 2009. Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J. Agric. Food Chem. 57, 572–578. – reference: Sustainable Groundwater Management Act, 2014. California Water Code Section 10720-10737.8. – reference: Lindsey, B., Johnson, T., 2018. Data from decadal change in groundwater quality web site, 1988-2014, version 2.0: U.s. geological survey. URL: https://nawqatrends.wim.usgs.gov/Decadal/. doi: 10.5066/F7N878ZS. – reference: Belitz, K.R., Heimes, F.J., 1990. Character and evolution of the ground-water flow system in the central part of the western San Joaquin Valley, California., No. 2348, United States Geological Survey, 1990. – year: 2011 ident: b0255 article-title: Managing California’s Water: From Conflict to Reconciliation publication-title: Public Policy Institute of California – reference: DeSimone, L.A., MacMahon, P.B., Rosen, M.R., 2010. Water Quality in Principal Aquifers of the United States, 1991 - 2010 Circular 1360, Technical Report, USGS. – reference: Brush, C.F., Dogrul, E.C., Kadir, T.N., 2013. Development and calibration of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim), version 3.02-CG, Bay-Delta Office, California Department of Water Resources, 2013. – volume: 59 start-page: 143 year: 2012 end-page: 156 ident: b0160 article-title: Impact of water withdrawals from groundwater and surface water on continental water storage variations publication-title: J. Geodyn. – reference: Pauloo, R., 2020. First release of ABCSAL mixing cell model accompanying the publication, Anthropogenic Basin Closure and groundwater SALinization (ABCSAL). Github repository, URL: https://doi.org/10.5281/zenodo.3745508. – year: 1992 ident: b0300 article-title: Out of the Earth: Civilization and the Life of the Soil publication-title: University of California Press – volume: 37 year: 2010 ident: b0545 article-title: Global depletion of groundwater resources publication-title: Geophys. Res. Lett. – volume: 5 start-page: 605 year: 2003 ident: b0335 article-title: Geochemistry of saline lakes publication-title: Treat. Geochem. – volume: 12 start-page: 1066 year: 2020 ident: b0065 article-title: Low-cost, open source wireless sensor network for real-time, scalable groundwater monitoring publication-title: Water – volume: 361 start-page: 371 year: 2008 end-page: 385 ident: b0085 article-title: A comparison of groundwater fluxes computed with modflow and a mixing model using deuterium: Application to the eastern nevada test site and vicinity publication-title: J. Hydrol. – volume: 4 start-page: 945 year: 2014 end-page: 948 ident: b0180 article-title: The global groundwater crisis publication-title: Nat. Clim. Change – volume: 12 year: 2017 ident: b0370 article-title: Availability of high-magnitude streamflow for groundwater banking in the central valley, california publication-title: Environ. Res. Lett. – reference: Faunt, C., Hanson, R.T., Belitz, K., Schmid, W., Predmore, S.P., Rewis, D.L., McPherson, K., 2009. Groundwater availability of the Central Valley Aquifer, California, US Geological Survey Professional Paper, Technical Report, USGS. – volume: 34 start-page: 153 year: 2009 end-page: 178 ident: b0225 article-title: Global groundwater? Issues and solutions publication-title: Annu. Rev. Environ. Resour. – volume: 55 start-page: 5301 year: 2019 end-page: 5320 ident: b0245 article-title: Upscaling of regional scale transport under transient conditions: Evaluation of the multirate mass transfer model publication-title: Water Resour. Res. – year: 2018 ident: b0155 article-title: Integrated Water Flow Model IWFM-2015 Revision 706 – volume: 119 start-page: 357 year: 1990 end-page: 388 ident: b0365 article-title: A deuterium-calibrated groundwater flow model of a regional carbonate-alluvial system publication-title: J. Hydrol. – volume: vol. 506 year: 1998 ident: b0165 publication-title: Physical and Chemical Hydrogeology – volume: 15 year: 2020 ident: b0435 article-title: Domestic well vulnerability to drought duration and unsustainable groundwater management in california’s central valley publication-title: Environ. Res. Lett. – year: 2000 ident: b0205 article-title: Groundwater in rural development: facing the challenges of supply and resource sustainability publication-title: World Bank – volume: 55 start-page: 6773 year: 2019 end-page: 6794 ident: b0295 article-title: Stochastic assessment of nonpoint source contamination: Joint impact of aquifer heterogeneity and well characteristics on management metrics publication-title: Water Resour. Res. – reference: Davis, G.H., Green, J.H., Olmsted, F.H., Brown, D., 1959. Ground water conditions and storage capacity in the San Joaquin Valley, California. USGS Water-Supply Paper 1469, USGS, Reston, Virginia. – volume: 121 start-page: 1 year: 2014 end-page: 21 ident: b0355 article-title: Tracking evolution of urban biogeochemical cycles: past, present, and future publication-title: Biogeochemistry – reference: Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water, volume 2254, USGS. – reference: Wright, M., 2018. Tulare County Crop and Livestock Report 2017. URL: https://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/crop-reports-2011-2020/2017-crop-report/. – reference: Ayers, R.S., Westcot, D.W., 1985. Water Quality for Agriculture, vol. 29, Food and Agriculture Organization of the United Nations Rome. – volume: 12 start-page: 511 year: 2004 end-page: 530 ident: b0395 article-title: Groundwater recharge in a sedimentary basin in semi-arid mexico publication-title: Hydrogeol. J. – volume: 3 start-page: 273 year: 1970 end-page: 290 ident: b0280 article-title: the Evolution of Closed-Basin Brines publication-title: Mineral. Soc. Amer. Spec. Pap. – reference: Jurgens, B.C., Fram, M.S., Belitz, K., Burow, K.R., Landon, M.K., 2010. Effects of groundwater development on uranium: Central Valley, California, USA, Groundwater 48, 913–928. – volume: 108 start-page: 1246 year: 2011 end-page: 1251 ident: b0570 article-title: Arsenic pollution of groundwater in vietnam exacerbated by deep aquifer exploitation for more than a century publication-title: Proc. Nat. Acad. Sci. – reference: Fankhauser, G., 2018. 2017 Kern County Agricultural Crop Report. URL: http://www.kernag.com/caap/crop-reports/crop10_19/crop2017.pdf. – reference: Jurgens, B.C., Burow, K.R., Dalgish, B.A., Shelton, J.L., 2008. Hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California, Technical Report, USGS. – reference: USBR, 1970. A Summary of Hydrologic Data for the Test Case on Acreage Limitation in Tulare Lake, Hydrology Branch, Division of Project Development, Bureau of Reclamation. – volume: 57 start-page: 223 year: 2002 end-page: 238 ident: b0135 article-title: Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India publication-title: Agricultural Water Management – volume: 75 start-page: 27 year: 1984 end-page: 65 ident: b0425 article-title: Geochemical evolution of groundwater in sequences of sedimentary rocks publication-title: J. Hydrol. – year: 2006 ident: b0095 article-title: Salinity in the Central Valley: An Overview. Report of the Regional Water Quality Control Board, Central Valley Region publication-title: California Environmental Protection Agency, Technical Report, Central Valley Regional Water Quality Control Board, Rancho Cordova, California – volume: 72 start-page: 171 year: 1984 end-page: 185 ident: b0080 article-title: Groundwater residence times and recharge rates using a discrete-state compartment model and 14c data publication-title: J. Hydrol. – volume: 42 start-page: 651 year: 2004 end-page: 657 ident: b0415 article-title: Can the desert bloom? Lessons learned from the Israeli case publication-title: Groundwater – reference: USGS, 2016. National water information system data available on the world wide web (usgs water data for the nation)URL: http://waterdata.usgs.gov/nwis/. doi: 10.5066/F7P55KJN. – volume: 25 start-page: 239 year: 2002 end-page: 250 ident: b0410 article-title: Comparative physiology of salt and water stress publication-title: Plant Cell Environ. – volume: 42 year: 2006 ident: b0200 article-title: Motivation of synthesis, with an example on groundwater quality sustainability publication-title: Water Resour. Res. – volume: 25 start-page: 51 year: 1987 end-page: 58 ident: b0075 article-title: Generation of ground-water age distributions publication-title: Groundwater – volume: 10 start-page: 164 year: 1970 end-page: 176 ident: b0520 article-title: A conceptual model of the groundwater regime and the hydrogeologic environment publication-title: J. Hydrol. – year: 1989 ident: b0565 article-title: Ground-water flow in the Central Valley, California, USGS Professional Paper 1401-D – volume: 14 start-page: 1863 year: 2010 end-page: 1880 ident: b0485 article-title: Groundwater use for irrigation–a global inventory publication-title: Hydrol. Earth Syst. Sci. – reference: ECORP, 2007. Tulare Lake basin hydrology and hydrography: a summary of the movement of water and aquatic species. Technical Report, ECORP Consulting Inc. – reference: Wright, L., 2018. 2017 Fresno County Annual Crop & Livestock Report. URL: https://www.co.fresno.ca.us/Home/ShowDocument?id=30066. – volume: 55 start-page: 2742 year: 2019 end-page: 2759 ident: b0220 article-title: An integrated approach toward sustainability via groundwater banking in the southern central valley, california publication-title: Water Resour. Res. – volume: 53 start-page: 2133 year: 2017 end-page: 2148 ident: b0490 article-title: Estimating the permanent loss of groundwater storage in the southern san joaquin valley, california publication-title: Water Resour. Res. – reference: CSWRCB, 2019. California Regulations Related to Drinking Water, Title 22. URL:https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Lawbook.html. – volume: 398 start-page: 1 year: 1916 end-page: 310 ident: b0405 article-title: Ground water in San Joaquin Valley, California publication-title: US Geol. Surv. Water-Supply Paper – volume: 42 year: 2006 ident: b0600 article-title: Nonpoint source solute transport normal to aquifer bedding in heterogeneous, markov chain random fields publication-title: Water Resour. Res. – volume: 24 start-page: 735 year: 1986 end-page: 742 ident: b0450 article-title: Geochemistry of salt water beneath the rolling plains, North-Central Texas publication-title: Groundwater – volume: 10 start-page: 615 year: 2005 end-page: 620 ident: b0590 article-title: Developing salt-tolerant crop plants: challenges and opportunities publication-title: Trends Plant Sci. – year: 2016 ident: b0440 article-title: Handbook of Plant and Crop Stress publication-title: CRC Press – volume: 7 start-page: 1 year: 1999 end-page: 14 ident: b0525 article-title: Groundwater as a geologic agent: an overview of the causes, processes, and manifestations publication-title: Hydrogeol. J. – reference: Harter, T., Lund, J.R., Darby, J., Fogg, G.E., Howitt, R., Jessoe, K.K., Pettygrove, G.S., Quinn, J.F., Viers, J.H., 2012. Addressing Nitrate in California’s Drinking Water with a focus on Tulare Lake Basin and Salinas Valley Groundwater, Report for the State Water Resources Control Board report to the Legislature, 1–78. – volume: 181 start-page: 251 year: 1996 end-page: 283 ident: b0420 article-title: Regional controls on the geochemical evolution of saline groundwaters in the edwards aquifer, central texas publication-title: J. Hydrol. (Amsterdam) – volume: 313 start-page: 1081 year: 2006 end-page: 1085 ident: b0505 article-title: Seeking Sustainability: Israel’s Evolving Water Management Strategy publication-title: Science – reference: Eugster, H.P., Hardie, L.A., 1978. Saline lakes. In: Lakes, Springer, pp. 237–293. – volume: 40 start-page: 183 year: 1999 end-page: 194 ident: b0035 article-title: Irrigation with saline water: benefits and environmental impact publication-title: Agric. Water Manage. – volume: 27 start-page: 2869 year: 2019 end-page: 2888 ident: b0400 article-title: Modeling managed aquifer recharge processes in a highly heterogeneous, semi-confined aquifer system publication-title: Hydrogeol. J. – volume: 22 start-page: 20 year: 1941 end-page: 45 ident: b0325 article-title: The hydrology of the Southern San Joaquin Valley, California, and its relation to imported water-supplies publication-title: Eos, Trans. Am. Geophys. Union – reference: Hook, J., 2018. 2017 Kings County Agricultural Crop Report. URL: https://www.countyofkings.com/home/showdocument?id=20426. – year: 2018 ident: b0105 article-title: Amendments to the Water Quality Control Plans for the Sacramento River and San Joaquin River Basins and Tulare Lake Basin To Incorporate a Central Valley-wide Salt and Nitrate Control Program publication-title: Technical Report, California Environmental Protection Agency – volume: 9 start-page: 2089 year: 2018 ident: b0495 article-title: Overpumping leads to california groundwater arsenic threat publication-title: Nat. Commun. – reference: Weissmann, G.S., Zhang, Y., LaBolle, E.M., Fogg, G.E., 2002. Dispersion of groundwater age in an alluvial aquifer system, Water Resour. Res. 38, 16–1. – volume: 47 start-page: 396 year: 2005 end-page: 404 ident: b0595 article-title: Environmental impacts of groundwater overdraft: selected case studies in the southwestern united states publication-title: Environ. Geol. – reference: Grunsky, C.E., 1898. Irrigation Near Bakersfield, California, Technical Report, USGS. doi: 10.3133/wsp17. – year: 2020 ident: b0250 article-title: Adaptive multi-rate mass transfer (ammt) model: a new approach to upscale regional-scale transport under transient flow conditions publication-title: Water Resour. Res. – start-page: 411 year: 1992 end-page: 466 ident: b0360 article-title: Stable isotope geochemistry and origin of waters in sedimentary basins publication-title: Isotopic Signatures and Sedimentary Records – volume: 642 start-page: 125 year: 2018 end-page: 136 ident: b0265 article-title: Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA publication-title: Science of the total environment – volume: 253 start-page: 35 year: 2003 end-page: 54 ident: b0015 article-title: The interaction between waterlogging and salinity in higher plants: causes, consequences and implications publication-title: Plant Soil – year: 2016 ident: b0235 article-title: Soil and Aquifer Salinization: Toward an Integrated Approach for Salinity Management of Groundwater – volume: 37 start-page: 931 year: 1973 end-page: 943 ident: b0040 article-title: Leaching requirement studies: sensitivity of alfalfa to salinity of irrigation and drainage waters 1 publication-title: Soil Science Society of America Journal – year: 2001 ident: b0195 article-title: Applied Hydrogeology – year: 2019 ident: b0260 article-title: Water and the Future of the San Joaquin Valley publication-title: Technical Report, Public Policy Institute of California – year: 2013 ident: b0460 article-title: Spatial and Temporal Analysis of Application Efficiencies in Irrigation Systems for the State of California, Technical Report – volume: 289 start-page: 284 year: 2000 end-page: 288 ident: b0540 article-title: Global water resources: vulnerability from climate change and population growth publication-title: Science – volume: 109 start-page: 9320 year: 2012 end-page: 9325 ident: b0470 article-title: Groundwater depletion and sustainability of irrigation in the us high plains and central valley publication-title: Proc. Natl. Acad. Sci. – volume: 31 start-page: 1845 year: 1995 end-page: 1862 ident: b0030 article-title: Alternative to agricultural drains in california’s san joaquin valley: Results of a regional-scale hydrogeologic approach publication-title: Water Resour. Res. – year: 2015 ident: b0010 article-title: Streamflow Depletion by Wells-Understanding and Managing the Effects of Groundwater Pumping on Streamflow – volume: 22 start-page: 697 year: 1988 end-page: 702 ident: b0150 article-title: Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California publication-title: Environ. Sci. Technol. – volume: 10 start-page: 105 year: 2017 end-page: 108 ident: b0455 article-title: Depletion and response of deep groundwater to climate-induced pumping variability publication-title: Nat. Geosci. – reference: CSWRCB, 2019. GAMA Groundwater Information System. URL: http://geotracker.waterboards.ca.gov/gama/gamamap/public/. – volume: 37 start-page: 98 year: 1999 end-page: 102 ident: b0320 article-title: Unsteady stream depletion from ground water pumping publication-title: Groundwater – reference: Burow, K.R., Stork, S.V., Dubrovsky, N.M., 1998. Nitrate and pesticides in ground water of the eastern San Joaquin Valley, California: occurrence and trends, USGS. – volume: 353 start-page: 294 year: 2008 end-page: 313 ident: b0100 article-title: Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system publication-title: J. Hydrol. – reference: CSWRCB, 2019. A Compilation of Water Quality Goals. URL: https://www.waterboards.ca.gov/water_issues/programs/water_quality_goals/. – reference: Fujii, R., Swain, W.C., 1995. Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, southern San Joaquin Valley, California. Water-Resour. Investig. Rep. 95–4048, Technical Report, USGS. – volume: 5 start-page: 15 year: 2014 end-page: 40 ident: b0550 article-title: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources publication-title: Earth Syst. Dyn. Discuss. – volume: 33 start-page: 1199 year: 1997 end-page: 1217 ident: b0575 article-title: Convection in groundwater below an evaporating salt lake: 1. Onset of instability publication-title: Water Resour. Res. – volume: 27 start-page: 1183 year: 2019 end-page: 1206 ident: b0215 article-title: Maximizing on-farm groundwater recharge with surface reservoir releases: a planning approach and case study in california, usa publication-title: Hydrogeol. J. – volume: 488 start-page: 197 year: 2012 end-page: 200 ident: b0230 article-title: Water balance of global aquifers revealed by groundwater footprint publication-title: Nature – year: 2000 ident: b0305 article-title: Salinity management for sustainable irrigation: integrating science, environment, and economics publication-title: The World Bank – volume: 113 start-page: 7768 year: 2016 end-page: 7773 ident: b0350 article-title: Salinity of deep groundwater in california: Water quantity, quality, and protection publication-title: Proc. Natl. Acad. Sci. – year: 1999 ident: b0275 article-title: Agricultural Salinity and Drainage – volume: 35 start-page: 461 year: 1997 end-page: 490 ident: b0465 article-title: Hydrologic issues in arid, unsaturated systems and implications for contaminant transport publication-title: Rev. Geophys. – volume: 51 start-page: 3 year: 2013 end-page: 26 ident: b0560 article-title: Seawater intrusion processes, investigation and management: recent advances and future challenges publication-title: Adv. Water Resour. – year: 1993 ident: b0380 article-title: Geochemical Techniques for Identifying Sources of Ground-water Salinization – year: 2014 ident: b0515 article-title: Groundwater and Stream Interaction in California’s Central Valley: Insights for Sustainable Groundwater Management publication-title: Technical Report February, The Nature Conservancy – volume: vol. 14 year: 1999 ident: b0020 publication-title: Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices – start-page: 467 year: 2003 end-page: 472 ident: b0315 article-title: Irrigation efficiency publication-title: Encyclopedia Water Sci. – volume: 513 start-page: 376 year: 2014 end-page: 390 ident: b0090 article-title: Long term (1960–2010) trends in groundwater contamination and salinization in the ogallala aquifer in texas publication-title: J. Hydrol. – volume: 52 start-page: 207 year: 2014 end-page: 221 ident: b0375 article-title: Vectorized simulation of groundwater flow and streamline transport publication-title: Environ. Model. Softw. – reference: Schmidt, K.D., 1975. Salt balance in groundwater of the tulare lake basin, California. In: Proceedings of the 1975 Meetings of the Arizona Section, Arizona-Nevada Academy of Science, Arizona-Nevada Academy of Science, pp. 177–184. – year: 1982 ident: b0510 article-title: Solute transport in saturated, fractured media, Unpublished MS thesis, Master’s thesis – reference: Campana, M.E., 1975. Finite-state models of transport phenomena in hydrologic systems. Ph.D. thesis, The University of Arizona, Tucson, Arizona, USA. – volume: 72 start-page: 65 year: 2018 end-page: 75 ident: b0125 article-title: Managed winter flooding of alfalfa recharges groundwater with minimal crop damage publication-title: California Agricult. – volume: 123 start-page: 423 year: 1997 end-page: 442 ident: b0060 article-title: Irrigation performance measures: efficiency and uniformity publication-title: J. Irrigat. Drainage Eng. – reference: Burow, K.R., Shelton, J.L., Dubrovsky, N.M., 2008. Regional nitrate and pesticide trends in ground water in the eastern san joaquin valley, california. J. Environ. Qual. 37, S–249. – volume: 543 start-page: 700 year: 2017 end-page: 704 ident: b0130 article-title: Groundwater depletion embedded in international food trade publication-title: Nature – reference: Johnson, A., Moston, R., Morris, D., 1968. Physical and hydrologic properties of water-bearing deposits in subsiding areas in central California, USGS Professional Paper 497-A, 71, Technical Report, 1968. – volume: 102 start-page: 15352 year: 2005 end-page: 15356 ident: b0480 article-title: Sustainability of irrigated agriculture in the San Joaquin Valley, California publication-title: Proceedings of the National Academy of Sciences – ident: 10.1016/j.jhydrol.2020.125787_b0285 – ident: 10.1016/j.jhydrol.2020.125787_b0555 doi: 10.1029/2001WR000907 – ident: 10.1016/j.jhydrol.2020.125787_b0050 – ident: 10.1016/j.jhydrol.2020.125787_b0115 – year: 2018 ident: 10.1016/j.jhydrol.2020.125787_b0155 – volume: vol. 14 year: 1999 ident: 10.1016/j.jhydrol.2020.125787_b0020 – volume: 22 start-page: 20 year: 1941 ident: 10.1016/j.jhydrol.2020.125787_b0325 article-title: The hydrology of the Southern San Joaquin Valley, California, and its relation to imported water-supplies publication-title: Eos, Trans. Am. Geophys. Union doi: 10.1029/TR022i001p00020 – ident: 10.1016/j.jhydrol.2020.125787_b0385 – volume: 25 start-page: 239 year: 2002 ident: 10.1016/j.jhydrol.2020.125787_b0410 article-title: Comparative physiology of salt and water stress publication-title: Plant Cell Environ. doi: 10.1046/j.0016-8025.2001.00808.x – volume: 113 start-page: 7768 year: 2016 ident: 10.1016/j.jhydrol.2020.125787_b0350 article-title: Salinity of deep groundwater in california: Water quantity, quality, and protection publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1600400113 – ident: 10.1016/j.jhydrol.2020.125787_b0310 – ident: 10.1016/j.jhydrol.2020.125787_b0580 – volume: vol. 506 year: 1998 ident: 10.1016/j.jhydrol.2020.125787_b0165 – ident: 10.1016/j.jhydrol.2020.125787_b0175 doi: 10.1007/978-1-4757-1152-3_8 – ident: 10.1016/j.jhydrol.2020.125787_b0185 – volume: 3 start-page: 273 year: 1970 ident: 10.1016/j.jhydrol.2020.125787_b0280 article-title: the Evolution of Closed-Basin Brines publication-title: Mineral. Soc. Amer. Spec. Pap. – year: 1993 ident: 10.1016/j.jhydrol.2020.125787_b0380 – ident: 10.1016/j.jhydrol.2020.125787_b0170 – volume: 37 start-page: 931 year: 1973 ident: 10.1016/j.jhydrol.2020.125787_b0040 article-title: Leaching requirement studies: sensitivity of alfalfa to salinity of irrigation and drainage waters 1 publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1973.03615995003700060038x – year: 2020 ident: 10.1016/j.jhydrol.2020.125787_b0250 article-title: Adaptive multi-rate mass transfer (ammt) model: a new approach to upscale regional-scale transport under transient flow conditions publication-title: Water Resour. Res. doi: 10.1029/2019WR026000 – ident: 10.1016/j.jhydrol.2020.125787_b0210 – ident: 10.1016/j.jhydrol.2020.125787_b0330 doi: 10.3133/pp497A – volume: 10 start-page: 615 year: 2005 ident: 10.1016/j.jhydrol.2020.125787_b0590 article-title: Developing salt-tolerant crop plants: challenges and opportunities publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2005.10.002 – volume: 10 start-page: 164 year: 1970 ident: 10.1016/j.jhydrol.2020.125787_b0520 article-title: A conceptual model of the groundwater regime and the hydrogeologic environment publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90186-1 – ident: 10.1016/j.jhydrol.2020.125787_b0430 doi: 10.1002/essoar.10502733.1 – volume: 72 start-page: 65 year: 2018 ident: 10.1016/j.jhydrol.2020.125787_b0125 article-title: Managed winter flooding of alfalfa recharges groundwater with minimal crop damage publication-title: California Agricult. doi: 10.3733/ca.2018a0001 – year: 2006 ident: 10.1016/j.jhydrol.2020.125787_b0095 article-title: Salinity in the Central Valley: An Overview. Report of the Regional Water Quality Control Board, Central Valley Region publication-title: California Environmental Protection Agency, Technical Report, Central Valley Regional Water Quality Control Board, Rancho Cordova, California – volume: 55 start-page: 2742 year: 2019 ident: 10.1016/j.jhydrol.2020.125787_b0220 article-title: An integrated approach toward sustainability via groundwater banking in the southern central valley, california publication-title: Water Resour. Res. doi: 10.1029/2018WR024069 – year: 2001 ident: 10.1016/j.jhydrol.2020.125787_b0195 – volume: 12 start-page: 511 year: 2004 ident: 10.1016/j.jhydrol.2020.125787_b0395 article-title: Groundwater recharge in a sedimentary basin in semi-arid mexico publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0332-6 – volume: 121 start-page: 1 year: 2014 ident: 10.1016/j.jhydrol.2020.125787_b0355 article-title: Tracking evolution of urban biogeochemical cycles: past, present, and future publication-title: Biogeochemistry doi: 10.1007/s10533-014-0014-y – year: 1999 ident: 10.1016/j.jhydrol.2020.125787_b0275 – volume: 119 start-page: 357 year: 1990 ident: 10.1016/j.jhydrol.2020.125787_b0365 article-title: A deuterium-calibrated groundwater flow model of a regional carbonate-alluvial system publication-title: J. Hydrol. doi: 10.1016/0022-1694(90)90051-X – ident: 10.1016/j.jhydrol.2020.125787_b0340 doi: 10.3133/sir20085156 – year: 2015 ident: 10.1016/j.jhydrol.2020.125787_b0010 – volume: 513 start-page: 376 year: 2014 ident: 10.1016/j.jhydrol.2020.125787_b0090 article-title: Long term (1960–2010) trends in groundwater contamination and salinization in the ogallala aquifer in texas publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.033 – volume: 34 start-page: 153 year: 2009 ident: 10.1016/j.jhydrol.2020.125787_b0225 article-title: Global groundwater? Issues and solutions publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev.environ.030308.100251 – year: 2014 ident: 10.1016/j.jhydrol.2020.125787_b0515 article-title: Groundwater and Stream Interaction in California’s Central Valley: Insights for Sustainable Groundwater Management publication-title: Technical Report February, The Nature Conservancy – volume: 5 start-page: 605 year: 2003 ident: 10.1016/j.jhydrol.2020.125787_b0335 article-title: Geochemistry of saline lakes publication-title: Treat. Geochem. – ident: 10.1016/j.jhydrol.2020.125787_b0270 – year: 1989 ident: 10.1016/j.jhydrol.2020.125787_b0565 – ident: 10.1016/j.jhydrol.2020.125787_b0530 – volume: 40 start-page: 183 year: 1999 ident: 10.1016/j.jhydrol.2020.125787_b0035 article-title: Irrigation with saline water: benefits and environmental impact publication-title: Agric. Water Manage. doi: 10.1016/S0378-3774(98)00120-6 – volume: 42 start-page: 651 year: 2004 ident: 10.1016/j.jhydrol.2020.125787_b0415 article-title: Can the desert bloom? Lessons learned from the Israeli case publication-title: Groundwater doi: 10.1111/j.1745-6584.2004.tb02719.x – volume: 25 start-page: 51 year: 1987 ident: 10.1016/j.jhydrol.2020.125787_b0075 article-title: Generation of ground-water age distributions publication-title: Groundwater doi: 10.1111/j.1745-6584.1987.tb02115.x – year: 2000 ident: 10.1016/j.jhydrol.2020.125787_b0205 article-title: Groundwater in rural development: facing the challenges of supply and resource sustainability publication-title: World Bank – volume: 55 start-page: 5301 year: 2019 ident: 10.1016/j.jhydrol.2020.125787_b0245 article-title: Upscaling of regional scale transport under transient conditions: Evaluation of the multirate mass transfer model publication-title: Water Resour. Res. doi: 10.1029/2019WR024953 – volume: 9 start-page: 2089 year: 2018 ident: 10.1016/j.jhydrol.2020.125787_b0495 article-title: Overpumping leads to california groundwater arsenic threat publication-title: Nat. Commun. doi: 10.1038/s41467-018-04475-3 – volume: 10 start-page: 105 year: 2017 ident: 10.1016/j.jhydrol.2020.125787_b0455 article-title: Depletion and response of deep groundwater to climate-induced pumping variability publication-title: Nat. Geosci. doi: 10.1038/ngeo2883 – volume: 7 start-page: 1 year: 1999 ident: 10.1016/j.jhydrol.2020.125787_b0525 article-title: Groundwater as a geologic agent: an overview of the causes, processes, and manifestations publication-title: Hydrogeol. J. doi: 10.1007/s100400050176 – volume: 24 start-page: 735 year: 1986 ident: 10.1016/j.jhydrol.2020.125787_b0450 article-title: Geochemistry of salt water beneath the rolling plains, North-Central Texas publication-title: Groundwater doi: 10.1111/j.1745-6584.1986.tb01689.x – volume: 543 start-page: 700 year: 2017 ident: 10.1016/j.jhydrol.2020.125787_b0130 article-title: Groundwater depletion embedded in international food trade publication-title: Nature doi: 10.1038/nature21403 – year: 2018 ident: 10.1016/j.jhydrol.2020.125787_b0105 article-title: Amendments to the Water Quality Control Plans for the Sacramento River and San Joaquin River Basins and Tulare Lake Basin To Incorporate a Central Valley-wide Salt and Nitrate Control Program publication-title: Technical Report, California Environmental Protection Agency – ident: 10.1016/j.jhydrol.2020.125787_b0120 – ident: 10.1016/j.jhydrol.2020.125787_b0145 – volume: 55 start-page: 6773 year: 2019 ident: 10.1016/j.jhydrol.2020.125787_b0295 article-title: Stochastic assessment of nonpoint source contamination: Joint impact of aquifer heterogeneity and well characteristics on management metrics publication-title: Water Resour. Res. doi: 10.1029/2018WR024230 – volume: 52 start-page: 207 year: 2014 ident: 10.1016/j.jhydrol.2020.125787_b0375 article-title: Vectorized simulation of groundwater flow and streamline transport publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2013.10.029 – year: 2013 ident: 10.1016/j.jhydrol.2020.125787_b0460 – volume: 102 start-page: 15352 year: 2005 ident: 10.1016/j.jhydrol.2020.125787_b0480 article-title: Sustainability of irrigated agriculture in the San Joaquin Valley, California publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0507723102 – ident: 10.1016/j.jhydrol.2020.125787_b0535 – ident: 10.1016/j.jhydrol.2020.125787_b0025 – volume: 35 start-page: 461 year: 1997 ident: 10.1016/j.jhydrol.2020.125787_b0465 article-title: Hydrologic issues in arid, unsaturated systems and implications for contaminant transport publication-title: Rev. Geophys. doi: 10.1029/97RG01172 – volume: 289 start-page: 284 year: 2000 ident: 10.1016/j.jhydrol.2020.125787_b0540 article-title: Global water resources: vulnerability from climate change and population growth publication-title: Science doi: 10.1126/science.289.5477.284 – year: 2016 ident: 10.1016/j.jhydrol.2020.125787_b0235 – start-page: 411 year: 1992 ident: 10.1016/j.jhydrol.2020.125787_b0360 article-title: Stable isotope geochemistry and origin of waters in sedimentary basins – year: 2000 ident: 10.1016/j.jhydrol.2020.125787_b0305 article-title: Salinity management for sustainable irrigation: integrating science, environment, and economics publication-title: The World Bank – year: 2011 ident: 10.1016/j.jhydrol.2020.125787_b0255 article-title: Managing California’s Water: From Conflict to Reconciliation publication-title: Public Policy Institute of California – year: 2016 ident: 10.1016/j.jhydrol.2020.125787_b0440 article-title: Handbook of Plant and Crop Stress publication-title: CRC Press – volume: 27 start-page: 1183 year: 2019 ident: 10.1016/j.jhydrol.2020.125787_b0215 article-title: Maximizing on-farm groundwater recharge with surface reservoir releases: a planning approach and case study in california, usa publication-title: Hydrogeol. J. doi: 10.1007/s10040-019-01936-x – ident: 10.1016/j.jhydrol.2020.125787_b0140 – ident: 10.1016/j.jhydrol.2020.125787_b0475 – volume: 27 start-page: 2869 year: 2019 ident: 10.1016/j.jhydrol.2020.125787_b0400 article-title: Modeling managed aquifer recharge processes in a highly heterogeneous, semi-confined aquifer system publication-title: Hydrogeol. J. doi: 10.1007/s10040-019-02033-9 – volume: 12 year: 2017 ident: 10.1016/j.jhydrol.2020.125787_b0370 article-title: Availability of high-magnitude streamflow for groundwater banking in the central valley, california publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa7b1b – volume: 31 start-page: 1845 year: 1995 ident: 10.1016/j.jhydrol.2020.125787_b0030 article-title: Alternative to agricultural drains in california’s san joaquin valley: Results of a regional-scale hydrogeologic approach publication-title: Water Resour. Res. doi: 10.1029/95WR01328 – ident: 10.1016/j.jhydrol.2020.125787_b0290 – ident: 10.1016/j.jhydrol.2020.125787_b0390 doi: 10.1021/jf802994p – volume: 353 start-page: 294 year: 2008 ident: 10.1016/j.jhydrol.2020.125787_b0100 article-title: Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.02.015 – ident: 10.1016/j.jhydrol.2020.125787_b0045 – ident: 10.1016/j.jhydrol.2020.125787_b0190 doi: 10.3133/pp1766 – ident: 10.1016/j.jhydrol.2020.125787_b0500 – year: 1990 ident: 10.1016/j.jhydrol.2020.125787_b0445 article-title: The Tulare Lake Basin: An Aboriginal Cornucopia publication-title: California Geographical Society – volume: 253 start-page: 35 year: 2003 ident: 10.1016/j.jhydrol.2020.125787_b0015 article-title: The interaction between waterlogging and salinity in higher plants: causes, consequences and implications publication-title: Plant Soil doi: 10.1023/A:1024574622669 – volume: 57 start-page: 223 year: 2002 ident: 10.1016/j.jhydrol.2020.125787_b0135 article-title: Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India publication-title: Agricultural Water Management doi: 10.1016/S0378-3774(02)00058-6 – year: 1982 ident: 10.1016/j.jhydrol.2020.125787_b0510 – volume: 47 start-page: 396 year: 2005 ident: 10.1016/j.jhydrol.2020.125787_b0595 article-title: Environmental impacts of groundwater overdraft: selected case studies in the southwestern united states publication-title: Environ. Geol. doi: 10.1007/s00254-004-1164-3 – year: 2019 ident: 10.1016/j.jhydrol.2020.125787_b0260 article-title: Water and the Future of the San Joaquin Valley publication-title: Technical Report, Public Policy Institute of California – ident: 10.1016/j.jhydrol.2020.125787_b0345 doi: 10.1111/j.1745-6584.2009.00635.x – volume: 398 start-page: 1 year: 1916 ident: 10.1016/j.jhydrol.2020.125787_b0405 article-title: Ground water in San Joaquin Valley, California publication-title: US Geol. Surv. Water-Supply Paper – volume: 15 year: 2020 ident: 10.1016/j.jhydrol.2020.125787_b0435 article-title: Domestic well vulnerability to drought duration and unsustainable groundwater management in california’s central valley publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab6f10 – volume: 642 start-page: 125 year: 2018 ident: 10.1016/j.jhydrol.2020.125787_b0265 article-title: Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA publication-title: Science of the total environment doi: 10.1016/j.scitotenv.2018.05.333 – volume: 42 year: 2006 ident: 10.1016/j.jhydrol.2020.125787_b0600 article-title: Nonpoint source solute transport normal to aquifer bedding in heterogeneous, markov chain random fields publication-title: Water Resour. Res. doi: 10.1029/2004WR003808 – ident: 10.1016/j.jhydrol.2020.125787_b0585 – volume: 4 start-page: 945 year: 2014 ident: 10.1016/j.jhydrol.2020.125787_b0180 article-title: The global groundwater crisis publication-title: Nat. Clim. Change doi: 10.1038/nclimate2425 – ident: 10.1016/j.jhydrol.2020.125787_b0055 doi: 10.2134/jeq2007.0061 – volume: 33 start-page: 1199 year: 1997 ident: 10.1016/j.jhydrol.2020.125787_b0575 article-title: Convection in groundwater below an evaporating salt lake: 1. Onset of instability publication-title: Water Resour. Res. doi: 10.1029/96WR03533 – volume: 109 start-page: 9320 year: 2012 ident: 10.1016/j.jhydrol.2020.125787_b0470 article-title: Groundwater depletion and sustainability of irrigation in the us high plains and central valley publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1200311109 – volume: 72 start-page: 171 year: 1984 ident: 10.1016/j.jhydrol.2020.125787_b0080 article-title: Groundwater residence times and recharge rates using a discrete-state compartment model and 14c data publication-title: J. Hydrol. doi: 10.1016/0022-1694(84)90190-2 – volume: 53 start-page: 2133 year: 2017 ident: 10.1016/j.jhydrol.2020.125787_b0490 article-title: Estimating the permanent loss of groundwater storage in the southern san joaquin valley, california publication-title: Water Resour. Res. doi: 10.1002/2016WR019861 – start-page: 467 year: 2003 ident: 10.1016/j.jhydrol.2020.125787_b0315 article-title: Irrigation efficiency publication-title: Encyclopedia Water Sci. – volume: 181 start-page: 251 year: 1996 ident: 10.1016/j.jhydrol.2020.125787_b0420 article-title: Regional controls on the geochemical evolution of saline groundwaters in the edwards aquifer, central texas publication-title: J. Hydrol. (Amsterdam) doi: 10.1016/0022-1694(95)02906-0 – volume: 108 start-page: 1246 year: 2011 ident: 10.1016/j.jhydrol.2020.125787_b0570 article-title: Arsenic pollution of groundwater in vietnam exacerbated by deep aquifer exploitation for more than a century publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1011915108 – year: 1992 ident: 10.1016/j.jhydrol.2020.125787_b0300 article-title: Out of the Earth: Civilization and the Life of the Soil publication-title: University of California Press – volume: 75 start-page: 27 year: 1984 ident: 10.1016/j.jhydrol.2020.125787_b0425 article-title: Geochemical evolution of groundwater in sequences of sedimentary rocks publication-title: J. Hydrol. doi: 10.1016/0022-1694(84)90045-3 – ident: 10.1016/j.jhydrol.2020.125787_b0240 doi: 10.3133/wsp17 – volume: 37 start-page: 98 year: 1999 ident: 10.1016/j.jhydrol.2020.125787_b0320 article-title: Unsteady stream depletion from ground water pumping publication-title: Groundwater doi: 10.1111/j.1745-6584.1999.tb00962.x – volume: 313 start-page: 1081 year: 2006 ident: 10.1016/j.jhydrol.2020.125787_b0505 article-title: Seeking Sustainability: Israel’s Evolving Water Management Strategy publication-title: Science doi: 10.1126/science.1126011 – volume: 42 year: 2006 ident: 10.1016/j.jhydrol.2020.125787_b0200 article-title: Motivation of synthesis, with an example on groundwater quality sustainability publication-title: Water Resour. Res. doi: 10.1029/2005WR004372 – volume: 12 start-page: 1066 year: 2020 ident: 10.1016/j.jhydrol.2020.125787_b0065 article-title: Low-cost, open source wireless sensor network for real-time, scalable groundwater monitoring publication-title: Water doi: 10.3390/w12041066 – ident: 10.1016/j.jhydrol.2020.125787_b0070 – volume: 37 year: 2010 ident: 10.1016/j.jhydrol.2020.125787_b0545 article-title: Global depletion of groundwater resources publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL044571 – volume: 361 start-page: 371 year: 2008 ident: 10.1016/j.jhydrol.2020.125787_b0085 article-title: A comparison of groundwater fluxes computed with modflow and a mixing model using deuterium: Application to the eastern nevada test site and vicinity publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.08.005 – volume: 59 start-page: 143 year: 2012 ident: 10.1016/j.jhydrol.2020.125787_b0160 article-title: Impact of water withdrawals from groundwater and surface water on continental water storage variations publication-title: J. Geodyn. doi: 10.1016/j.jog.2011.05.001 – ident: 10.1016/j.jhydrol.2020.125787_b0005 – volume: 5 start-page: 15 year: 2014 ident: 10.1016/j.jhydrol.2020.125787_b0550 article-title: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources publication-title: Earth Syst. Dyn. Discuss. doi: 10.5194/esd-5-15-2014 – ident: 10.1016/j.jhydrol.2020.125787_b0110 – volume: 22 start-page: 697 year: 1988 ident: 10.1016/j.jhydrol.2020.125787_b0150 article-title: Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California publication-title: Environ. Sci. Technol. doi: 10.1021/es00171a013 – volume: 123 start-page: 423 year: 1997 ident: 10.1016/j.jhydrol.2020.125787_b0060 article-title: Irrigation performance measures: efficiency and uniformity publication-title: J. Irrigat. Drainage Eng. doi: 10.1061/(ASCE)0733-9437(1997)123:6(423) – volume: 488 start-page: 197 year: 2012 ident: 10.1016/j.jhydrol.2020.125787_b0230 article-title: Water balance of global aquifers revealed by groundwater footprint publication-title: Nature doi: 10.1038/nature11295 – volume: 51 start-page: 3 year: 2013 ident: 10.1016/j.jhydrol.2020.125787_b0560 article-title: Seawater intrusion processes, investigation and management: recent advances and future challenges publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.03.004 – volume: 14 start-page: 1863 year: 2010 ident: 10.1016/j.jhydrol.2020.125787_b0485 article-title: Groundwater use for irrigation–a global inventory publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-14-1863-2010 |
| SSID | ssj0000334 |
| Score | 2.5091128 |
| Snippet | •Groundwater pumping may close a basin, leading to TDS accumulation in the aquifer.•We describe “Anthropogenic Basin Closure and groundwater SALinization”... Global food systems rely on irrigated agriculture, and most of these systems in turn depend on fresh sources of groundwater. In this study, we demonstrate that... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125787 |
| SubjectTerms | aquifers base flow Basin closure basins California case studies evaporation evapotranspiration groundwater Groundwater salinization Hydrogeology irrigated farming irrigation Mediterranean climate streams subsurface flow temporal variation water management water quality water salinization watersheds |
| Title | Anthropogenic basin closure and groundwater salinization (ABCSAL) |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2020.125787 https://www.proquest.com/docview/2524262015 |
| Volume | 593 |
| WOSCitedRecordID | wos000639853400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFoleEE_RFlCQOIBWWZI4cexjWi0FhCokirTiEjm2U7raJtU-Ssuv7zi2k7QUSg9coiixLcfzeWY8mQdCryVNGOUJ92nMIz-mofApU8wngkoeShanRdAUm0j39-lkwr4MBucuFuZ0llYVPTtjJ_-V1PAMiK1DZ29B7nZQeAD3QHS4Atnh-k-Ed6UPoMGRGIKU0p7ms3rh_hToOI5K_uQ6O-KC68DIXw4ENNvZ_Zp9dtaB33XWH-dybpI26cbHOsmC1IhqrQna0bCuexH7w2zUCbrDQxMWo4Ozh-P2xd6q6fFd23aqjiXObc2Qng-TNU9EofNoLvvhAiExlYwdy00Y7jHNsGEb1_JzY1qYjqbm--A8H-mEGK795fzZV-Ra623oHNmmuR0m18PkZpg7aD1KEwYMcT37OJ586sQ4xrFLNa_n34V_vbt2Pn9SbK6I-EZvOXiA7lvieZkBykM0UNUjdG9P2VTlj1F2CTBeAxjPAsYDwHg9wHh9wHhvDFzePkHf3o8Pdj_4trCGz-MwWvqpCkJRpKIMmChJKuDMyoOSEykDra-VEVaCEEo5JRhOBAUVUpRYlooUhSKhxE_RWlVX6hnyRFTIsuRJkcBBnlBQHmGDBxwXMuUijvEmit2q5MJmndfFT2b5X6myiUZttxOTduWmDtQteW51R6MT5gClm7q-ciTKgbfqH2a8UvVqkUdJ1BRsCJOt285nG210u-E5WlvOV-oFuitOl0eL-UuLtQtaRJ1v |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anthropogenic+basin+closure+and+groundwater+salinization+%28ABCSAL%29&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Pauloo%2C+Richard+A.&rft.au=Fogg%2C+Graham+E.&rft.au=Guo%2C+Zhilin&rft.au=Harter%2C+Thomas&rft.date=2021-02-01&rft.issn=0022-1694&rft.volume=593&rft.spage=125787&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.125787&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2020_125787 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |