Optimization of a Spark Ignition Engine Knock and Performance Using the Epsilon-Constrained Differential Evolution Algorithm and Multi-Objective Differential Evolution Algorithm

Since the advent of the internal combustion engine, knock has been a vital issue limiting the thermal efficiency of spark ignition engines under heavy load conditions. The occurrence of knock is also directly influenced by several operating parameters simultaneously. In order to investigate the effe...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega Vol. 7; no. 36; pp. 31638 - 31650
Main Authors: Kou, Yalin, Gao, Ying, You, Yuelin, Wang, Yurang
Format: Journal Article
Language:English
Published: American Chemical Society 13.09.2022
ISSN:2470-1343, 2470-1343
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since the advent of the internal combustion engine, knock has been a vital issue limiting the thermal efficiency of spark ignition engines under heavy load conditions. The occurrence of knock is also directly influenced by several operating parameters simultaneously. In order to investigate the effects of multiple variables on economic performance and power performance under knock limits, this study adopts single-objective optimization and multi-objective optimization methods to optimize the engine operating parameters, including exhaust gas recirculation rate, exhaust valve timing, spark timing, and intake valve timing. The optimization aims to obtain maximum volumetric efficiency, brake mean effective pressure, and minimum brake specific fuel consumption on the knock limit. First, based on the bench test data at the operation point 2800 rpm and 11.42 bar, a one-dimensional simulation engine model is established in GT-power software and verified. Second, four engine operating parameters are input into the GT-power model as controlled parameters. The epsilon-constrained differential evolution algorithm and the multi-objective differential evolution algorithm are employed to optimize the above four parameters to minimize the knock index and the damage to engine performance due to knock suppression, respectively. Finally, the results show that the two optimization algorithms optimize four parameters. The results of the epsilon-constrained differential evolution algorithm indicate that the decreasing extent of the knock index is 73.3%. In addition, the decreasing extent of brake mean effective pressure is 10.2%. What is more, the increased brake specific fuel consumption is only 0.07%. The multi-objective differential evolution algorithm gives a set of nondominated Pareto optimal solution sets. The optimal solution has a 64.4% decrease in the knock index, a 5.78% decrease in brake mean effective pressure, and a 1.45% decrease in brake specific fuel consumption.
AbstractList Since the advent of the internal combustion engine, knock has been a vital issue limiting the thermal efficiency of spark ignition engines under heavy load conditions. The occurrence of knock is also directly influenced by several operating parameters simultaneously. In order to investigate the effects of multiple variables on economic performance and power performance under knock limits, this study adopts single-objective optimization and multi-objective optimization methods to optimize the engine operating parameters, including exhaust gas recirculation rate, exhaust valve timing, spark timing, and intake valve timing. The optimization aims to obtain maximum volumetric efficiency, brake mean effective pressure, and minimum brake specific fuel consumption on the knock limit. First, based on the bench test data at the operation point 2800 rpm and 11.42 bar, a one-dimensional simulation engine model is established in GT-power software and verified. Second, four engine operating parameters are input into the GT-power model as controlled parameters. The epsilon-constrained differential evolution algorithm and the multi-objective differential evolution algorithm are employed to optimize the above four parameters to minimize the knock index and the damage to engine performance due to knock suppression, respectively. Finally, the results show that the two optimization algorithms optimize four parameters. The results of the epsilon-constrained differential evolution algorithm indicate that the decreasing extent of the knock index is 73.3%. In addition, the decreasing extent of brake mean effective pressure is 10.2%. What is more, the increased brake specific fuel consumption is only 0.07%. The multi-objective differential evolution algorithm gives a set of nondominated Pareto optimal solution sets. The optimal solution has a 64.4% decrease in the knock index, a 5.78% decrease in brake mean effective pressure, and a 1.45% decrease in brake specific fuel consumption.
Since the advent of the internal combustion engine, knock has been a vital issue limiting the thermal efficiency of spark ignition engines under heavy load conditions. The occurrence of knock is also directly influenced by several operating parameters simultaneously. In order to investigate the effects of multiple variables on economic performance and power performance under knock limits, this study adopts single-objective optimization and multi-objective optimization methods to optimize the engine operating parameters, including exhaust gas recirculation rate, exhaust valve timing, spark timing, and intake valve timing. The optimization aims to obtain maximum volumetric efficiency, brake mean effective pressure, and minimum brake specific fuel consumption on the knock limit. First, based on the bench test data at the operation point 2800 rpm and 11.42 bar, a one-dimensional simulation engine model is established in GT-power software and verified. Second, four engine operating parameters are input into the GT-power model as controlled parameters. The epsilon-constrained differential evolution algorithm and the multi-objective differential evolution algorithm are employed to optimize the above four parameters to minimize the knock index and the damage to engine performance due to knock suppression, respectively. Finally, the results show that the two optimization algorithms optimize four parameters. The results of the epsilon-constrained differential evolution algorithm indicate that the decreasing extent of the knock index is 73.3%. In addition, the decreasing extent of brake mean effective pressure is 10.2%. What is more, the increased brake specific fuel consumption is only 0.07%. The multi-objective differential evolution algorithm gives a set of nondominated Pareto optimal solution sets. The optimal solution has a 64.4% decrease in the knock index, a 5.78% decrease in brake mean effective pressure, and a 1.45% decrease in brake specific fuel consumption.
Since the advent of the internal combustion engine, knock has been a vital issue limiting the thermal efficiency of spark ignition engines under heavy load conditions. The occurrence of knock is also directly influenced by several operating parameters simultaneously. In order to investigate the effects of multiple variables on economic performance and power performance under knock limits, this study adopts single-objective optimization and multi-objective optimization methods to optimize the engine operating parameters, including exhaust gas recirculation rate, exhaust valve timing, spark timing, and intake valve timing. The optimization aims to obtain maximum volumetric efficiency, brake mean effective pressure, and minimum brake specific fuel consumption on the knock limit. First, based on the bench test data at the operation point 2800 rpm and 11.42 bar, a one-dimensional simulation engine model is established in GT-power software and verified. Second, four engine operating parameters are input into the GT-power model as controlled parameters. The epsilon-constrained differential evolution algorithm and the multi-objective differential evolution algorithm are employed to optimize the above four parameters to minimize the knock index and the damage to engine performance due to knock suppression, respectively. Finally, the results show that the two optimization algorithms optimize four parameters. The results of the epsilon-constrained differential evolution algorithm indicate that the decreasing extent of the knock index is 73.3%. In addition, the decreasing extent of brake mean effective pressure is 10.2%. What is more, the increased brake specific fuel consumption is only 0.07%. The multi-objective differential evolution algorithm gives a set of nondominated Pareto optimal solution sets. The optimal solution has a 64.4% decrease in the knock index, a 5.78% decrease in brake mean effective pressure, and a 1.45% decrease in brake specific fuel consumption.Since the advent of the internal combustion engine, knock has been a vital issue limiting the thermal efficiency of spark ignition engines under heavy load conditions. The occurrence of knock is also directly influenced by several operating parameters simultaneously. In order to investigate the effects of multiple variables on economic performance and power performance under knock limits, this study adopts single-objective optimization and multi-objective optimization methods to optimize the engine operating parameters, including exhaust gas recirculation rate, exhaust valve timing, spark timing, and intake valve timing. The optimization aims to obtain maximum volumetric efficiency, brake mean effective pressure, and minimum brake specific fuel consumption on the knock limit. First, based on the bench test data at the operation point 2800 rpm and 11.42 bar, a one-dimensional simulation engine model is established in GT-power software and verified. Second, four engine operating parameters are input into the GT-power model as controlled parameters. The epsilon-constrained differential evolution algorithm and the multi-objective differential evolution algorithm are employed to optimize the above four parameters to minimize the knock index and the damage to engine performance due to knock suppression, respectively. Finally, the results show that the two optimization algorithms optimize four parameters. The results of the epsilon-constrained differential evolution algorithm indicate that the decreasing extent of the knock index is 73.3%. In addition, the decreasing extent of brake mean effective pressure is 10.2%. What is more, the increased brake specific fuel consumption is only 0.07%. The multi-objective differential evolution algorithm gives a set of nondominated Pareto optimal solution sets. The optimal solution has a 64.4% decrease in the knock index, a 5.78% decrease in brake mean effective pressure, and a 1.45% decrease in brake specific fuel consumption.
Author Gao, Ying
You, Yuelin
Wang, Yurang
Kou, Yalin
AuthorAffiliation College of Automotive Engineering
State Key Laboratory of Automotive Simulation and Control
Jilin University
AuthorAffiliation_xml – name: College of Automotive Engineering
– name: Jilin University
– name: State Key Laboratory of Automotive Simulation and Control
Author_xml – sequence: 1
  givenname: Yalin
  surname: Kou
  fullname: Kou, Yalin
  organization: Jilin University
– sequence: 2
  givenname: Ying
  orcidid: 0000-0002-6462-1565
  surname: Gao
  fullname: Gao, Ying
  email: gaoying@jlu.edu.cn
  organization: Jilin University
– sequence: 3
  givenname: Yuelin
  surname: You
  fullname: You, Yuelin
  organization: Jilin University
– sequence: 4
  givenname: Yurang
  surname: Wang
  fullname: Wang, Yurang
  organization: Jilin University
BookMark eNqFkUFv1DAQhS1UREvpnaOPHEixnazjXJCqZYGKokWCnq2JY2e9dexgOyvBv-Ifku5uJUACTh553vc0eu8pOvHBa4SeU3JJCaOvQKUw6B4uqSKc1-IROmNVTQpaVuXJL_MpukhpSwihXDDB-BN0WnLKCKnJGfqxHrMd7HfINngcDAb8eYR4h697b_d_K99br_EHH9QdBt_hTzqaEAfwSuPbZH2P80bj1ZisC75YBp9yhBnp8BtrjI7aZwsOr3bBTXvHK9eHaPNm2Nt9nFy2xbrdapXtTv8XeoYeG3BJXxzfc3T7dvVl-b64Wb-7Xl7dFFBRkosFEzW0XU2hU4wYIxatgqZU3KhSaMMF7aAxplVlU7WNAVKqxRyRILytNXBWnqPXB99xagfdqfmiCE6O0Q4Qv8kAVv6-8XYj-7CTTVVzRvhs8OJoEMPXSacsB5uUdg68DlOSrKaLWghR0lnKD1IVQ0pRG6ls3ldyH6WTlMj7yuVD5fJY-QySP8CH-_6BvDwg80ZuwxT9nOLf5T8BgSbHIg
CitedBy_id crossref_primary_10_1016_j_arcontrol_2025_100990
crossref_primary_10_1088_1755_1315_1381_1_012020
crossref_primary_10_1016_j_fuel_2023_130521
Cites_doi 10.4271/930613
10.1080/00102200500536316
10.1016/j.fuel.2021.122046
10.1162/evco.2008.16.3.355
10.1016/j.enconman.2008.09.018
10.1016/j.ijhydene.2016.08.016
10.1016/j.enconman.2020.112930
10.1016/j.fuel.2021.120278
10.1016/j.fuel.2020.117010
10.1177/0954407020932690
10.4271/2016-01-0565
10.1016/j.asoc.2007.05.003
10.1007/s10462-009-9137-2
10.1007/s10845-016-1199-9
10.1016/j.energy.2021.120331
10.1016/j.apenergy.2020.114560
10.1016/j.energy.2019.02.031
10.1007/s00500-012-0816-6
10.4271/2017-24-0061
10.1016/j.apenergy.2012.12.061
10.1016/j.treng.2020.100005
10.4271/2019-01-1409
10.1016/j.agsy.2004.05.002
10.1016/j.enconman.2021.113871
10.1007/s10845-020-01565-2
10.4271/2017-01-0791
10.1016/j.swevo.2018.10.016
10.3390/en13061500
10.1063/1.4945573
10.1109/TEVC.2005.850256
10.1177/1468087416666728
10.3390/app8101945
10.4271/2018-01-0854
10.1016/j.enconman.2021.114052
10.22059/JCAMECH.2020.290187.435
10.1016/j.apenergy.2015.11.097
10.1016/j.energy.2021.120737
10.1016/S0082-0784(55)80047-1
10.1016/S1474-0346(02)00011-3
10.1016/j.combustflame.2010.07.019
10.3390/su8010072
10.1016/j.energy.2021.121144
10.1007/s00500-020-05469-4
10.1016/j.engappai.2020.103479
10.1016/j.energy.2017.11.020
10.1016/j.rser.2020.110196
10.1016/j.asoc.2019.02.041
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society.
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society.
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID N~.
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsomega.1c06678
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 31650
ExternalDocumentID PMC9476206
10_1021_acsomega_1c06678
a637571178
GrantInformation_xml – fundername: ;
  grantid: 2019YFE0101900
GroupedDBID 53G
ABFRP
ABUCX
ACS
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
N~.
OK1
RPM
VF5
AAFWJ
AAHBH
AAYXX
ABBLG
ADUCK
AFPKN
CITATION
M~E
7X8
5PM
ID FETCH-LOGICAL-a410t-5287abd71adc20ff85bca93c6fc38ef681da9ffbc394b9fa03c5001806b7ea623
IEDL.DBID N~.
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-1343
IngestDate Tue Sep 30 16:40:42 EDT 2025
Fri Jul 11 12:43:57 EDT 2025
Sat Nov 29 02:38:49 EST 2025
Tue Nov 18 21:32:42 EST 2025
Thu Sep 15 03:44:34 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a410t-5287abd71adc20ff85bca93c6fc38ef681da9ffbc394b9fa03c5001806b7ea623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6462-1565
OpenAccessLink http://dx.doi.org/10.1021/acsomega.1c06678
PMID 36120070
PQID 2715788831
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9476206
proquest_miscellaneous_2715788831
crossref_citationtrail_10_1021_acsomega_1c06678
crossref_primary_10_1021_acsomega_1c06678
acs_journals_10_1021_acsomega_1c06678
PublicationCentury 2000
PublicationDate 2022-09-13
PublicationDateYYYYMMDD 2022-09-13
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-13
  day: 13
PublicationDecade 2020
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
Zhang C. (ref38/cit38) 2020; 99
ref8/cit8
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Kakee A. H. (ref15/cit15) 2015; 77
ref49/cit49
ref13/cit13
ref24/cit24
Sabaruddin A. A. (ref7/cit7) 2015; 10
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
References_xml – ident: ref28/cit28
  doi: 10.4271/930613
– ident: ref49/cit49
  doi: 10.1080/00102200500536316
– ident: ref1/cit1
  doi: 10.1016/j.fuel.2021.122046
– ident: ref41/cit41
  doi: 10.1162/evco.2008.16.3.355
– ident: ref11/cit11
  doi: 10.1016/j.enconman.2008.09.018
– volume: 77
  start-page: 61
  year: 2015
  ident: ref15/cit15
  publication-title: UPB Sci. Bull. Ser. D Mech. Eng.
– ident: ref22/cit22
  doi: 10.1016/j.ijhydene.2016.08.016
– ident: ref23/cit23
  doi: 10.1016/j.enconman.2020.112930
– ident: ref4/cit4
  doi: 10.1016/j.fuel.2021.120278
– ident: ref10/cit10
  doi: 10.1016/j.fuel.2020.117010
– ident: ref47/cit47
  doi: 10.1177/0954407020932690
– ident: ref30/cit30
  doi: 10.4271/2016-01-0565
– ident: ref33/cit33
  doi: 10.1016/j.asoc.2007.05.003
– ident: ref39/cit39
  doi: 10.1007/s10462-009-9137-2
– ident: ref37/cit37
  doi: 10.1007/s10845-016-1199-9
– ident: ref9/cit9
  doi: 10.1016/j.energy.2021.120331
– ident: ref48/cit48
  doi: 10.1016/j.apenergy.2020.114560
– ident: ref13/cit13
  doi: 10.1016/j.energy.2019.02.031
– ident: ref34/cit34
  doi: 10.1007/s00500-012-0816-6
– ident: ref6/cit6
  doi: 10.4271/2017-24-0061
– ident: ref27/cit27
  doi: 10.1016/j.apenergy.2012.12.061
– ident: ref2/cit2
  doi: 10.1016/j.treng.2020.100005
– ident: ref29/cit29
  doi: 10.4271/2019-01-1409
– volume: 10
  year: 2015
  ident: ref7/cit7
  publication-title: J. Eng. Appl. Sci.
– ident: ref32/cit32
  doi: 10.1016/j.agsy.2004.05.002
– ident: ref52/cit52
  doi: 10.1016/j.enconman.2021.113871
– ident: ref18/cit18
  doi: 10.1007/s10845-020-01565-2
– ident: ref44/cit44
  doi: 10.4271/2017-01-0791
– ident: ref26/cit26
– ident: ref43/cit43
  doi: 10.1016/j.swevo.2018.10.016
– ident: ref51/cit51
  doi: 10.3390/en13061500
– ident: ref20/cit20
  doi: 10.1063/1.4945573
– ident: ref36/cit36
  doi: 10.1109/TEVC.2005.850256
– volume: 99
  start-page: 1
  year: 2020
  ident: ref38/cit38
  publication-title: IEEE Trans. Syst., Man. Cybern: Syst.
– ident: ref50/cit50
  doi: 10.1177/1468087416666728
– ident: ref35/cit35
  doi: 10.3390/app8101945
– ident: ref14/cit14
  doi: 10.4271/2018-01-0854
– ident: ref24/cit24
  doi: 10.1016/j.enconman.2021.114052
– ident: ref42/cit42
  doi: 10.22059/JCAMECH.2020.290187.435
– ident: ref12/cit12
  doi: 10.1016/j.apenergy.2015.11.097
– ident: ref25/cit25
  doi: 10.1016/j.energy.2021.120737
– ident: ref45/cit45
  doi: 10.1016/S0082-0784(55)80047-1
– ident: ref40/cit40
  doi: 10.1016/S1474-0346(02)00011-3
– ident: ref46/cit46
  doi: 10.1016/j.combustflame.2010.07.019
– ident: ref19/cit19
  doi: 10.3390/su8010072
– ident: ref3/cit3
  doi: 10.1016/j.energy.2021.121144
– ident: ref21/cit21
  doi: 10.1007/s00500-020-05469-4
– ident: ref16/cit16
  doi: 10.1016/j.engappai.2020.103479
– ident: ref8/cit8
  doi: 10.1016/j.energy.2017.11.020
– ident: ref5/cit5
  doi: 10.1016/j.rser.2020.110196
– ident: ref17/cit17
  doi: 10.1016/j.asoc.2019.02.041
SSID ssj0001682826
Score 2.2363853
Snippet Since the advent of the internal combustion engine, knock has been a vital issue limiting the thermal efficiency of spark ignition engines under heavy load...
Since the advent of the internal combustion engine, knock has been a vital issue limiting the thermal efficiency of spark ignition engines under heavy load...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31638
Title Optimization of a Spark Ignition Engine Knock and Performance Using the Epsilon-Constrained Differential Evolution Algorithm and Multi-Objective Differential Evolution Algorithm
URI http://dx.doi.org/10.1021/acsomega.1c06678
https://www.proquest.com/docview/2715788831
https://pubmed.ncbi.nlm.nih.gov/PMC9476206
Volume 7
WOSCitedRecordID wos000852214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20160731
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4aMGl7GbCL1gGVkdjDHgJx7NjxI4KiTUMFaRf1LbIdG7q1SdUUHvef9g9nuy6l08S21yS2Ep_jc774XD6AA-YgeIW120iE84QybBIlKE1yGfBrZXXoxPT1nPf7xWAgLpdtcn6P4Gf4SOq2GZsreYi1T8gs1mAjY5x5mob-j8PleQpz_w6BXS2jPE0woSRGJf80ifdFul31RUuAuZoeec_fnG3-z5tuwbOIKtHxXA224ZGpn8OTkwWZ2wv4eeFMwzjWXKLGIok-TeT0O_oQsofctXljQvSxdgYSybpCl8uSAhQSC5DDiqg3aYejpk480WeglzAVOo0kK85YjFDvNiozOh5dNdPh7HocpguVvsmF-ja3sH8d9BK-nPU-n7xPIltDIilOZ-6PtuBSVRzLSmeptUWutBREM6tJYSxzwFgKa5UmgiphZUp07ikBU6a4kQ6FvYL1uqnNa0DMSiNyh5QsMVTlTElaEcEqm9uM2bzowFu31mXcbW0ZAukZLhcCKKMAOnC0kG-pY8tzvzSjB0a8uxsxmbf7eODZ_YXKlE6aPtAia9PctGXGce6PFgjuAF_RpbtJfVfv1Tv18Dp09xbU-aeUvfnHb9yBp5mvyPCsFmQX1mfTG7MHj_XtbNhOu7DGB0U3HDR0w375BcSGF8g
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQSoXylMsUDASHDikjeNH4mPVbtWqy7YSBfUW2Y7dLuwmq822R_4T_5Cx1-l2JVQQ1yQeOZ7xzNjz-BD6IMAFr4iBjUTzPGGC2ERLxhKugv9aORM6MX0b5MNhcX4uT9cQ6WphYBItUGpDEH_ZXYDswLNmYi_UNjE-L7O4h-5zwYg_bw1_bi-vVQQcIQLIWsbyNCGU0Ric_BMRb5JMu2qSln7mapbkLbNzsPkfE36MHkUfE-8uhOIJWrP1U7Sx10G7PUO_TkBRTGIFJm4cVvjLVM1-4KOQSwTPFm0K8XEN6hKrusKnywIDHNIMMHiOuD9tR-OmTjzsZwCbsBXej5AroDrGuH8dRRvvji-a2Wh-OQnkQt1vcqK_L_TtXwc9R18P-md7h0nEbkgUI-kczrdFrnSVE1WZLHWu4NooSY1whhbWCXCTlXROGyqZlk6l1HAPEJgKnVsFPtkLtF43tX2JsHDKSg5-k6OWaS60YhWVonLcZcLxooc-wlqXce-1ZQirZ6TsGFBGBvTQTsfm0sQG6H5pxneM-HQzYrpo_nHHt-87ySmBmz7somrbXLVllhPuLxoo6aF8RaRuiPoe36tv6tFl6PUtGVirVLz6x398hzYOzz4PysHR8Pg1epj5Wg2Pd0HfoPX57MpuoQfmej5qZ2_DtvkNrDweUw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGQMDLuIuyAUaCBx6yxfEtfpy2VkybukpctLfIceyt0CZV0-2R_8Q_3LHrrFRCA_GaxEeOz8XHPpcPofcCXPCKGFAkKmXCBLFJqRhLuA7-a-VM6MT07UQOh_nZmRptIN7VwsAkWqDUhiC-1-pZ5WKHAbIHz5upPde7xPjczPwOussFaLrHu_y5u7paEXCMCEBrGZNpQiijMUD5JyJ-WzLt-ra08jXXMyV_23oGj_5z0o_RVvQ18f5SOJ6gDVs_RQ8OOoi3Z-jXKRiMaazExI3DGn-e6fkPfBRyiuDZsl0hPq7BbGJdV3i0KjTAId0AgweJ-7N2PGnqxMN_BtAJW-HDCL0CJmSC-1dRxPH-5LyZjxcX00Au1P8mp-X3pd3966Dn6Oug_-XgUxIxHBLNSLqAc24udVlJoiuTpc7lvDRaUSOcobl1AtxlrZwrDVWsVE6n1HAPFJiKUloNvtkLtFk3tX2JsHDaKg7-k6OWlVyUmlVUicpxlwnH8x76AGtdRB1sixBez0jRMaCIDOihvY7VhYmN0P3STG4Z8fFmxGzZBOSWb9910lMAN334Rde2uWyLTBLuLxwo6SG5JlY3RH2v7_U39fgi9PxWDHatVLz6x398i-6PDgfFydHweBs9zHzJhoe9oDtoczG_tK_RPXO1GLfzN0FzrgGaGyDW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+a+Spark+Ignition+Engine+Knock+and+Performance+Using+the+Epsilon-Constrained+Differential+Evolution+Algorithm+and+Multi-Objective+Differential+Evolution+Algorithm&rft.jtitle=ACS+omega&rft.au=Kou%2C+Yalin&rft.au=Gao%2C+Ying&rft.au=You%2C+Yuelin&rft.au=Wang%2C+Yurang&rft.date=2022-09-13&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=7&rft.issue=36&rft.spage=31638&rft_id=info:doi/10.1021%2Facsomega.1c06678&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon