Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols

The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Analytical chemistry (Washington) Ročník 94; číslo 17; s. 6417
Hlavní autoři: Stefano, Jéssica Santos, Kalinke, Cristiane, da Rocha, Raquel Gomes, Rocha, Diego Pessoa, da Silva, Vinicius Aparecido Oliani Pedro, Bonacin, Juliano Alves, Angnes, Lúcio, Richter, Eduardo Mathias, Janegitz, Bruno Campos, Muñoz, Rodrigo Alejandro Abarza
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 03.05.2022
Témata:
ISSN:1520-6882, 1520-6882
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.
AbstractList The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.
The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.
Author Janegitz, Bruno Campos
Richter, Eduardo Mathias
Muñoz, Rodrigo Alejandro Abarza
Kalinke, Cristiane
Angnes, Lúcio
da Rocha, Raquel Gomes
Stefano, Jéssica Santos
Rocha, Diego Pessoa
Bonacin, Juliano Alves
da Silva, Vinicius Aparecido Oliani Pedro
Author_xml – sequence: 1
  givenname: Jéssica Santos
  orcidid: 0000-0002-2838-3555
  surname: Stefano
  fullname: Stefano, Jéssica Santos
  organization: Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
– sequence: 2
  givenname: Cristiane
  surname: Kalinke
  fullname: Kalinke, Cristiane
  organization: Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil
– sequence: 3
  givenname: Raquel Gomes
  surname: da Rocha
  fullname: da Rocha, Raquel Gomes
  organization: Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
– sequence: 4
  givenname: Diego Pessoa
  surname: Rocha
  fullname: Rocha, Diego Pessoa
  organization: Department of Chemistry, Federal Institute of Paraná, 85200-000, Pitanga, Paraná, Brazil
– sequence: 5
  givenname: Vinicius Aparecido Oliani Pedro
  surname: da Silva
  fullname: da Silva, Vinicius Aparecido Oliani Pedro
  organization: Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
– sequence: 6
  givenname: Juliano Alves
  orcidid: 0000-0001-9399-1031
  surname: Bonacin
  fullname: Bonacin, Juliano Alves
  organization: Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil
– sequence: 7
  givenname: Lúcio
  surname: Angnes
  fullname: Angnes, Lúcio
  organization: Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, São Paulo, Brazil
– sequence: 8
  givenname: Eduardo Mathias
  orcidid: 0000-0002-3840-8277
  surname: Richter
  fullname: Richter, Eduardo Mathias
  organization: Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
– sequence: 9
  givenname: Bruno Campos
  orcidid: 0000-0001-9707-9795
  surname: Janegitz
  fullname: Janegitz, Bruno Campos
  organization: Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
– sequence: 10
  givenname: Rodrigo Alejandro Abarza
  orcidid: 0000-0001-8230-5825
  surname: Muñoz
  fullname: Muñoz, Rodrigo Alejandro Abarza
  organization: Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35348329$$D View this record in MEDLINE/PubMed
BookMark eNpNkN1OGzEQhS1ERQjwBqjyJUhs8N_uenvHT0grBREJuI5mvRPqymsH23vB-_CgbFSoenWOznxzRpop2ffBIyGnnM04E_wSTJqBB2d-Yz_jhpWlkHvkkJeCFZXWYv8_PyHTlP4wxjnj1QGZyFIqLUVzSN7nDk2OYddiDTh6dm3D-SP6FGKicw-tw462b_RuSKO5xW1INtvg6X3o0Fn_UlzDbiJv6Span8fkB72ii8F2SHOgj7g7MKbjbrIvPl384-gKIvSYMY4h-I6uQsrFU0TIPfo8ciEHE1w6Jt824BKefOoReb6bP938LJYPi183V8sCFGtywWtoKtCbkgupTdWYWplNXRpZQ6tNq7QuO843Ank7ajkyXKJRqgPN0FRMHJGzv73bGF4HTHnd22TQOfAYhrQWlVKNqmWzQ79_okPbY7feRttDfFt_fVZ8ADy_gO4
CitedBy_id crossref_primary_10_1016_j_aca_2023_341379
crossref_primary_10_1016_j_talanta_2024_125814
crossref_primary_10_1007_s10008_024_06079_y
crossref_primary_10_1002_elan_70020
crossref_primary_10_1007_s44174_024_00226_9
crossref_primary_10_1002_celc_202400205
crossref_primary_10_1016_j_foodchem_2024_140548
crossref_primary_10_1002_smll_202306682
crossref_primary_10_1016_j_elecom_2024_107754
crossref_primary_10_1002_advs_202202610
crossref_primary_10_1016_j_talanta_2025_127686
crossref_primary_10_1021_acsaelm_5c00862
crossref_primary_10_1016_j_electacta_2025_147339
crossref_primary_10_3390_bios15010057
crossref_primary_10_1016_j_apmt_2024_102491
crossref_primary_10_1016_j_electacta_2024_145374
crossref_primary_10_1177_09544089251346883
crossref_primary_10_1016_j_electacta_2024_144041
crossref_primary_10_1016_j_electacta_2023_141874
crossref_primary_10_1016_j_electacta_2025_147055
crossref_primary_10_1016_j_mtsust_2023_100419
crossref_primary_10_1002_elan_12008
crossref_primary_10_1016_j_electacta_2023_142166
crossref_primary_10_1007_s40964_023_00514_8
crossref_primary_10_1016_j_microc_2024_111886
crossref_primary_10_1002_elan_202400247
crossref_primary_10_1007_s00216_024_05308_7
crossref_primary_10_1016_j_teac_2023_e00208
crossref_primary_10_1088_2058_8585_ae04fa
crossref_primary_10_1016_j_talo_2025_100441
crossref_primary_10_1016_j_talo_2025_100443
crossref_primary_10_1002_gch2_202300408
crossref_primary_10_1016_j_electacta_2022_141002
crossref_primary_10_1016_j_electacta_2025_146175
crossref_primary_10_1021_acs_analchem_4c04099
crossref_primary_10_1016_j_jmrt_2024_08_009
crossref_primary_10_1016_j_snb_2024_135694
crossref_primary_10_1016_j_talanta_2022_124211
crossref_primary_10_1016_j_trac_2022_116749
crossref_primary_10_1021_acselectrochem_4c00093
crossref_primary_10_3390_s24092844
crossref_primary_10_1016_j_electacta_2024_145635
crossref_primary_10_1016_j_jece_2022_108049
crossref_primary_10_1016_j_trac_2023_117226
crossref_primary_10_1016_j_coelec_2025_101730
crossref_primary_10_1016_j_microc_2024_110210
crossref_primary_10_1002_elan_202400307
crossref_primary_10_1016_j_microc_2023_108634
crossref_primary_10_1002_adem_202301067
crossref_primary_10_1016_j_talo_2025_100469
crossref_primary_10_3390_ma16165681
crossref_primary_10_1016_j_cossms_2023_101121
crossref_primary_10_1002_slct_202402463
crossref_primary_10_1016_j_foodchem_2022_135038
crossref_primary_10_1016_j_aca_2022_340362
crossref_primary_10_1021_acsomega_5c05879
crossref_primary_10_1007_s00604_023_05892_y
crossref_primary_10_1016_j_microc_2022_107565
crossref_primary_10_3390_bios15040211
crossref_primary_10_1039_D4AY02271H
crossref_primary_10_1016_j_electacta_2025_146677
crossref_primary_10_1016_j_flowmeasinst_2024_102549
crossref_primary_10_1016_j_foodchem_2025_143331
crossref_primary_10_3390_polym14173512
crossref_primary_10_1007_s10008_024_05919_1
crossref_primary_10_1016_j_snb_2023_133353
crossref_primary_10_1016_j_talanta_2023_124536
crossref_primary_10_1007_s00604_022_05511_2
crossref_primary_10_1016_j_electacta_2024_144480
crossref_primary_10_1007_s40684_024_00629_5
crossref_primary_10_1007_s00604_023_05872_2
crossref_primary_10_1016_j_microc_2023_108810
crossref_primary_10_1002_pc_28890
crossref_primary_10_1016_j_talanta_2025_128467
crossref_primary_10_1016_j_trac_2024_117868
crossref_primary_10_3390_bios13060666
crossref_primary_10_3390_bios12080622
crossref_primary_10_1016_j_electacta_2025_145722
crossref_primary_10_1002_celc_202500234
crossref_primary_10_1016_j_tibtech_2025_04_015
crossref_primary_10_1016_j_microc_2022_108083
crossref_primary_10_1016_j_electacta_2024_144995
crossref_primary_10_1016_j_electacta_2024_145566
crossref_primary_10_3390_analytica5040037
crossref_primary_10_1016_j_microc_2024_109894
crossref_primary_10_1016_j_coesh_2024_100540
crossref_primary_10_1021_acsmeasuresciau_5c00109
crossref_primary_10_1016_j_rineng_2025_106372
crossref_primary_10_1016_j_rineng_2024_101867
crossref_primary_10_3390_mi16030343
crossref_primary_10_1002_elan_202300013
crossref_primary_10_1016_j_matchemphys_2024_129025
crossref_primary_10_1016_j_talanta_2024_126237
crossref_primary_10_1007_s00604_025_07274_y
crossref_primary_10_1016_j_aca_2023_341169
crossref_primary_10_1016_j_bios_2022_114994
crossref_primary_10_1016_j_ces_2025_122120
crossref_primary_10_1016_j_talanta_2022_123727
crossref_primary_10_1016_j_electacta_2024_144868
crossref_primary_10_1016_j_mseb_2025_118685
crossref_primary_10_1016_j_aca_2024_343243
crossref_primary_10_1039_D3RA01281F
crossref_primary_10_1016_j_jpba_2023_115385
crossref_primary_10_1016_j_mattod_2023_11_002
crossref_primary_10_1007_s00604_025_07122_z
crossref_primary_10_1016_j_chemosphere_2022_137517
crossref_primary_10_1007_s00604_024_06720_7
crossref_primary_10_1016_j_microc_2024_109948
crossref_primary_10_1016_j_snb_2023_134667
crossref_primary_10_1002_elan_70051
crossref_primary_10_1016_j_aca_2025_344518
crossref_primary_10_1016_j_jelechem_2022_116910
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.analchem.1c05523
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
ExternalDocumentID 35348329
Genre Research Support, Non-U.S. Gov't
News
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
NPM
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
7X8
ID FETCH-LOGICAL-a409t-17a96a8f51238c69c74cf75c37ab8cb4885d11f2e1bd11538c13ec44da80ec602
IEDL.DBID 7X8
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795715700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6882
IngestDate Fri Jul 11 12:40:54 EDT 2025
Tue Sep 30 00:37:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a409t-17a96a8f51238c69c74cf75c37ab8cb4885d11f2e1bd11538c13ec44da80ec602
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-News-1
content type line 23
ORCID 0000-0002-2838-3555
0000-0001-8230-5825
0000-0001-9707-9795
0000-0001-9399-1031
0000-0002-3840-8277
PMID 35348329
PQID 2644947390
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2644947390
pubmed_primary_35348329
PublicationCentury 2000
PublicationDate 2022-05-03
PublicationDateYYYYMMDD 2022-05-03
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal Chem
PublicationYear 2022
SSID ssj0011016
Score 2.6675177
Snippet The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6417
SubjectTerms Clinical Protocols
Electrodes
Printing, Three-Dimensional
Title Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols
URI https://www.ncbi.nlm.nih.gov/pubmed/35348329
https://www.proquest.com/docview/2644947390
Volume 94
WOSCitedRecordID wos000795715700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-QD34qO8XETwoGG26SbPxIlVbPWgptEJvJZtkoQd31W0F_48_1JntrnoRBC-7y24SlswwmUm-mY-Qo1jXjZORZE7XNRMRBCghxGBMeBlpLR2sSHmi8L1qt8N-X3eKDbesgFWWNjE31C61uEd-jgu3FgpC9MvnF4asUXi6WlBoTJPZAFwZhHSp_vcpAkameb1UDJHAlSxT52r83NjszICoYGaezritSomERb85mfli01r-72-ukKXCzaSNiV6skimfVMj8dcnuViGLPwoRrpGP5oQNxxblA-jx1TA96UKIm75mtJnnVzkavdPWOIOHG19ivShyqWFGO7sy-CW4oR0YErHUF7RBb8dD5-kopd2cbgfeQl-EjGSnX-1oxyBADKt8nlKTOIr8waxXAuChXTpKQV2zdfLYavau71jB38AMRI0jxpUBTQhj8CmC0Na1VcLGStpAmSi0EZgO6TiPa55HcAfLa3ngrRDOhFVv69XaBplJ0sRvEeq8ciDGmMOYgltwS6UXsTboPkVGxdvksBTHACYSDz1M4tNxNvgWyDbZnMh08Dwp5DEIZCDAoumdP_TeJQs1zHxArGOwR2ZjsA5-n8zZt9Ewez3IFQ-u7c7DJxJy5PU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+%28Bio%29Sensors+Enabled+by+Fused+Deposition+Modeling-Based+3D+Printing%3A+A+Guide+to+Selecting+Designs%2C+Printing+Parameters%2C+and+Post-Treatment+Protocols&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Stefano%2C+J%C3%A9ssica+Santos&rft.au=Kalinke%2C+Cristiane&rft.au=da+Rocha%2C+Raquel+Gomes&rft.au=Rocha%2C+Diego+Pessoa&rft.date=2022-05-03&rft.eissn=1520-6882&rft.volume=94&rft.issue=17&rft.spage=6417&rft_id=info:doi/10.1021%2Facs.analchem.1c05523&rft_id=info%3Apmid%2F35348329&rft_id=info%3Apmid%2F35348329&rft.externalDocID=35348329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6882&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6882&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6882&client=summon