Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols
The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibil...
Uloženo v:
| Vydáno v: | Analytical chemistry (Washington) Ročník 94; číslo 17; s. 6417 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
03.05.2022
|
| Témata: | |
| ISSN: | 1520-6882, 1520-6882 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field. |
|---|---|
| AbstractList | The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field. The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field. |
| Author | Janegitz, Bruno Campos Richter, Eduardo Mathias Muñoz, Rodrigo Alejandro Abarza Kalinke, Cristiane Angnes, Lúcio da Rocha, Raquel Gomes Stefano, Jéssica Santos Rocha, Diego Pessoa Bonacin, Juliano Alves da Silva, Vinicius Aparecido Oliani Pedro |
| Author_xml | – sequence: 1 givenname: Jéssica Santos orcidid: 0000-0002-2838-3555 surname: Stefano fullname: Stefano, Jéssica Santos organization: Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil – sequence: 2 givenname: Cristiane surname: Kalinke fullname: Kalinke, Cristiane organization: Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil – sequence: 3 givenname: Raquel Gomes surname: da Rocha fullname: da Rocha, Raquel Gomes organization: Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil – sequence: 4 givenname: Diego Pessoa surname: Rocha fullname: Rocha, Diego Pessoa organization: Department of Chemistry, Federal Institute of Paraná, 85200-000, Pitanga, Paraná, Brazil – sequence: 5 givenname: Vinicius Aparecido Oliani Pedro surname: da Silva fullname: da Silva, Vinicius Aparecido Oliani Pedro organization: Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil – sequence: 6 givenname: Juliano Alves orcidid: 0000-0001-9399-1031 surname: Bonacin fullname: Bonacin, Juliano Alves organization: Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil – sequence: 7 givenname: Lúcio surname: Angnes fullname: Angnes, Lúcio organization: Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, São Paulo, Brazil – sequence: 8 givenname: Eduardo Mathias orcidid: 0000-0002-3840-8277 surname: Richter fullname: Richter, Eduardo Mathias organization: Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil – sequence: 9 givenname: Bruno Campos orcidid: 0000-0001-9707-9795 surname: Janegitz fullname: Janegitz, Bruno Campos organization: Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil – sequence: 10 givenname: Rodrigo Alejandro Abarza orcidid: 0000-0001-8230-5825 surname: Muñoz fullname: Muñoz, Rodrigo Alejandro Abarza organization: Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35348329$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkN1OGzEQhS1ERQjwBqjyJUhs8N_uenvHT0grBREJuI5mvRPqymsH23vB-_CgbFSoenWOznxzRpop2ffBIyGnnM04E_wSTJqBB2d-Yz_jhpWlkHvkkJeCFZXWYv8_PyHTlP4wxjnj1QGZyFIqLUVzSN7nDk2OYddiDTh6dm3D-SP6FGKicw-tw462b_RuSKO5xW1INtvg6X3o0Fn_UlzDbiJv6Span8fkB72ii8F2SHOgj7g7MKbjbrIvPl384-gKIvSYMY4h-I6uQsrFU0TIPfo8ciEHE1w6Jt824BKefOoReb6bP938LJYPi183V8sCFGtywWtoKtCbkgupTdWYWplNXRpZQ6tNq7QuO843Ank7ajkyXKJRqgPN0FRMHJGzv73bGF4HTHnd22TQOfAYhrQWlVKNqmWzQ79_okPbY7feRttDfFt_fVZ8ADy_gO4 |
| CitedBy_id | crossref_primary_10_1016_j_aca_2023_341379 crossref_primary_10_1016_j_talanta_2024_125814 crossref_primary_10_1007_s10008_024_06079_y crossref_primary_10_1002_elan_70020 crossref_primary_10_1007_s44174_024_00226_9 crossref_primary_10_1002_celc_202400205 crossref_primary_10_1016_j_foodchem_2024_140548 crossref_primary_10_1002_smll_202306682 crossref_primary_10_1016_j_elecom_2024_107754 crossref_primary_10_1002_advs_202202610 crossref_primary_10_1016_j_talanta_2025_127686 crossref_primary_10_1021_acsaelm_5c00862 crossref_primary_10_1016_j_electacta_2025_147339 crossref_primary_10_3390_bios15010057 crossref_primary_10_1016_j_apmt_2024_102491 crossref_primary_10_1016_j_electacta_2024_145374 crossref_primary_10_1177_09544089251346883 crossref_primary_10_1016_j_electacta_2024_144041 crossref_primary_10_1016_j_electacta_2023_141874 crossref_primary_10_1016_j_electacta_2025_147055 crossref_primary_10_1016_j_mtsust_2023_100419 crossref_primary_10_1002_elan_12008 crossref_primary_10_1016_j_electacta_2023_142166 crossref_primary_10_1007_s40964_023_00514_8 crossref_primary_10_1016_j_microc_2024_111886 crossref_primary_10_1002_elan_202400247 crossref_primary_10_1007_s00216_024_05308_7 crossref_primary_10_1016_j_teac_2023_e00208 crossref_primary_10_1088_2058_8585_ae04fa crossref_primary_10_1016_j_talo_2025_100441 crossref_primary_10_1016_j_talo_2025_100443 crossref_primary_10_1002_gch2_202300408 crossref_primary_10_1016_j_electacta_2022_141002 crossref_primary_10_1016_j_electacta_2025_146175 crossref_primary_10_1021_acs_analchem_4c04099 crossref_primary_10_1016_j_jmrt_2024_08_009 crossref_primary_10_1016_j_snb_2024_135694 crossref_primary_10_1016_j_talanta_2022_124211 crossref_primary_10_1016_j_trac_2022_116749 crossref_primary_10_1021_acselectrochem_4c00093 crossref_primary_10_3390_s24092844 crossref_primary_10_1016_j_electacta_2024_145635 crossref_primary_10_1016_j_jece_2022_108049 crossref_primary_10_1016_j_trac_2023_117226 crossref_primary_10_1016_j_coelec_2025_101730 crossref_primary_10_1016_j_microc_2024_110210 crossref_primary_10_1002_elan_202400307 crossref_primary_10_1016_j_microc_2023_108634 crossref_primary_10_1002_adem_202301067 crossref_primary_10_1016_j_talo_2025_100469 crossref_primary_10_3390_ma16165681 crossref_primary_10_1016_j_cossms_2023_101121 crossref_primary_10_1002_slct_202402463 crossref_primary_10_1016_j_foodchem_2022_135038 crossref_primary_10_1016_j_aca_2022_340362 crossref_primary_10_1021_acsomega_5c05879 crossref_primary_10_1007_s00604_023_05892_y crossref_primary_10_1016_j_microc_2022_107565 crossref_primary_10_3390_bios15040211 crossref_primary_10_1039_D4AY02271H crossref_primary_10_1016_j_electacta_2025_146677 crossref_primary_10_1016_j_flowmeasinst_2024_102549 crossref_primary_10_1016_j_foodchem_2025_143331 crossref_primary_10_3390_polym14173512 crossref_primary_10_1007_s10008_024_05919_1 crossref_primary_10_1016_j_snb_2023_133353 crossref_primary_10_1016_j_talanta_2023_124536 crossref_primary_10_1007_s00604_022_05511_2 crossref_primary_10_1016_j_electacta_2024_144480 crossref_primary_10_1007_s40684_024_00629_5 crossref_primary_10_1007_s00604_023_05872_2 crossref_primary_10_1016_j_microc_2023_108810 crossref_primary_10_1002_pc_28890 crossref_primary_10_1016_j_talanta_2025_128467 crossref_primary_10_1016_j_trac_2024_117868 crossref_primary_10_3390_bios13060666 crossref_primary_10_3390_bios12080622 crossref_primary_10_1016_j_electacta_2025_145722 crossref_primary_10_1002_celc_202500234 crossref_primary_10_1016_j_tibtech_2025_04_015 crossref_primary_10_1016_j_microc_2022_108083 crossref_primary_10_1016_j_electacta_2024_144995 crossref_primary_10_1016_j_electacta_2024_145566 crossref_primary_10_3390_analytica5040037 crossref_primary_10_1016_j_microc_2024_109894 crossref_primary_10_1016_j_coesh_2024_100540 crossref_primary_10_1021_acsmeasuresciau_5c00109 crossref_primary_10_1016_j_rineng_2025_106372 crossref_primary_10_1016_j_rineng_2024_101867 crossref_primary_10_3390_mi16030343 crossref_primary_10_1002_elan_202300013 crossref_primary_10_1016_j_matchemphys_2024_129025 crossref_primary_10_1016_j_talanta_2024_126237 crossref_primary_10_1007_s00604_025_07274_y crossref_primary_10_1016_j_aca_2023_341169 crossref_primary_10_1016_j_bios_2022_114994 crossref_primary_10_1016_j_ces_2025_122120 crossref_primary_10_1016_j_talanta_2022_123727 crossref_primary_10_1016_j_electacta_2024_144868 crossref_primary_10_1016_j_mseb_2025_118685 crossref_primary_10_1016_j_aca_2024_343243 crossref_primary_10_1039_D3RA01281F crossref_primary_10_1016_j_jpba_2023_115385 crossref_primary_10_1016_j_mattod_2023_11_002 crossref_primary_10_1007_s00604_025_07122_z crossref_primary_10_1016_j_chemosphere_2022_137517 crossref_primary_10_1007_s00604_024_06720_7 crossref_primary_10_1016_j_microc_2024_109948 crossref_primary_10_1016_j_snb_2023_134667 crossref_primary_10_1002_elan_70051 crossref_primary_10_1016_j_aca_2025_344518 crossref_primary_10_1016_j_jelechem_2022_116910 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.analchem.1c05523 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1520-6882 |
| ExternalDocumentID | 35348329 |
| Genre | Research Support, Non-U.S. Gov't News |
| GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 53G 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI AAHBH ABBLG ABHFT ABHMW ABJNI ABLBI ABMVS ABOCM ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CGR CS3 CUPRZ CUY CVF D0L EBS ECM ED~ EIF F5P GGK GNL IH9 IHE JG~ KZ1 LMP NPM P2P PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 W1F WH7 X6Y XSW YZZ ZCA ~02 7X8 |
| ID | FETCH-LOGICAL-a409t-17a96a8f51238c69c74cf75c37ab8cb4885d11f2e1bd11538c13ec44da80ec602 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795715700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-6882 |
| IngestDate | Fri Jul 11 12:40:54 EDT 2025 Tue Sep 30 00:37:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a409t-17a96a8f51238c69c74cf75c37ab8cb4885d11f2e1bd11538c13ec44da80ec602 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-News-1 content type line 23 |
| ORCID | 0000-0002-2838-3555 0000-0001-8230-5825 0000-0001-9707-9795 0000-0001-9399-1031 0000-0002-3840-8277 |
| PMID | 35348329 |
| PQID | 2644947390 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2644947390 pubmed_primary_35348329 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-03 |
| PublicationDateYYYYMMDD | 2022-05-03 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Analytical chemistry (Washington) |
| PublicationTitleAlternate | Anal Chem |
| PublicationYear | 2022 |
| SSID | ssj0011016 |
| Score | 2.6675177 |
| Snippet | The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 6417 |
| SubjectTerms | Clinical Protocols Electrodes Printing, Three-Dimensional |
| Title | Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35348329 https://www.proquest.com/docview/2644947390 |
| Volume | 94 |
| WOSCitedRecordID | wos000795715700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-QD34qO8XETwoGG26SbPxIlVbPWgptEJvJZtkoQd31W0F_48_1JntrnoRBC-7y24SlswwmUm-mY-Qo1jXjZORZE7XNRMRBCghxGBMeBlpLR2sSHmi8L1qt8N-X3eKDbesgFWWNjE31C61uEd-jgu3FgpC9MvnF4asUXi6WlBoTJPZAFwZhHSp_vcpAkameb1UDJHAlSxT52r83NjszICoYGaezritSomERb85mfli01r-72-ukKXCzaSNiV6skimfVMj8dcnuViGLPwoRrpGP5oQNxxblA-jx1TA96UKIm75mtJnnVzkavdPWOIOHG19ivShyqWFGO7sy-CW4oR0YErHUF7RBb8dD5-kopd2cbgfeQl-EjGSnX-1oxyBADKt8nlKTOIr8waxXAuChXTpKQV2zdfLYavau71jB38AMRI0jxpUBTQhj8CmC0Na1VcLGStpAmSi0EZgO6TiPa55HcAfLa3ngrRDOhFVv69XaBplJ0sRvEeq8ciDGmMOYgltwS6UXsTboPkVGxdvksBTHACYSDz1M4tNxNvgWyDbZnMh08Dwp5DEIZCDAoumdP_TeJQs1zHxArGOwR2ZjsA5-n8zZt9Ewez3IFQ-u7c7DJxJy5PU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+%28Bio%29Sensors+Enabled+by+Fused+Deposition+Modeling-Based+3D+Printing%3A+A+Guide+to+Selecting+Designs%2C+Printing+Parameters%2C+and+Post-Treatment+Protocols&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Stefano%2C+J%C3%A9ssica+Santos&rft.au=Kalinke%2C+Cristiane&rft.au=da+Rocha%2C+Raquel+Gomes&rft.au=Rocha%2C+Diego+Pessoa&rft.date=2022-05-03&rft.eissn=1520-6882&rft.volume=94&rft.issue=17&rft.spage=6417&rft_id=info:doi/10.1021%2Facs.analchem.1c05523&rft_id=info%3Apmid%2F35348329&rft_id=info%3Apmid%2F35348329&rft.externalDocID=35348329 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6882&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6882&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6882&client=summon |