A hybrid method for geological and geophysical data with multi-peak distributions using the PSO-GRG algorithm

To allow peak searching and parameter estimation for geological and geophysical data with multi-peak distributions, we explore a hybrid method based on a combination of the particle swarm optimization (PSO) and generalized reduced gradient (GRG) algorithms. After characterizing peaks using the addit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of geophysics and engineering Ročník 12; číslo 3; s. 283 - 291
Hlavní autori: Ge, Xinmin, Fan, Yiren, Cao, Yingchang, Wang, Yang, Cong, Yunhai, Liu, Lailei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London IOP Publishing 01.06.2015
Oxford University Press
Predmet:
ISSN:1742-2132, 1742-2140
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To allow peak searching and parameter estimation for geological and geophysical data with multi-peak distributions, we explore a hybrid method based on a combination of the particle swarm optimization (PSO) and generalized reduced gradient (GRG) algorithms. After characterizing peaks using the additive Gaussian function, a nonlinear objective function is established, which transforms our task into a search for optimal solutions. In this process, PSO is used to obtain the initial values, aiming for global convergence, while GRG is subsequently implemented for higher stability. Iterations are stopped when the convergence criteria are satisfied. Finally, grayscale histograms of backscattering electron images of sandstone show that the proposed algorithm performs much better than other methods such as PSO, GRG, simulated annealing and differential evolution, achieving a faster convergence speed and minimal variances.
Bibliografia:JGE-100313.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1742-2132
1742-2140
DOI:10.1088/1742-2132/12/3/283