Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods
We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extende...
Uloženo v:
| Vydáno v: | Journal of chemical theory and computation Ročník 17; číslo 7; s. 4250 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
13.07.2021
|
| ISSN: | 1549-9626, 1549-9626 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications.We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications. |
|---|---|
| AbstractList | We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications.We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications. |
| Author | Ehlert, Sebastian Spicher, Sebastian Stahn, Marcel Grimme, Stefan |
| Author_xml | – sequence: 1 givenname: Sebastian surname: Ehlert fullname: Ehlert, Sebastian – sequence: 2 givenname: Marcel surname: Stahn fullname: Stahn, Marcel – sequence: 3 givenname: Sebastian surname: Spicher fullname: Spicher, Sebastian – sequence: 4 givenname: Stefan surname: Grimme fullname: Grimme, Stefan |
| BookMark | eNpNjE1LwzAAQINMcJvePebopTXfaY4yNh10CE7PI80HZqRNbVJ_vwM9eHrv8HgrsBjS4AC4x6jGiOBHbXJ9NsXU2CDEJL4CS8yZqpQgYvHPb8Aq5zNClDJCl6B9S92cC9SDhVvvgwluKHDfj_GiBR5T_NYlpAEeknUR-jTBnb70R9cH149hCkZHeHDlM9l8C669jtnd_XENPnbb981L1b4-7zdPbaUZkqXyBouOqgZRpQzGhnVWIiwsQ44KJjjV0nfcCW-ENkoR5HljG9kI2xFliSJr8PD7Haf0NbtcTn3IxsWoB5fmfCKcCSU554r8ABSeVGI |
| CitedBy_id | crossref_primary_10_1016_j_molliq_2023_122666 crossref_primary_10_1016_j_mtchem_2023_101771 crossref_primary_10_1002_chir_23576 crossref_primary_10_1016_j_jinorgbio_2024_112738 crossref_primary_10_1016_j_ast_2023_108665 crossref_primary_10_1038_s41467_024_48832_x crossref_primary_10_1021_acs_joc_4c02546 crossref_primary_10_3390_catal14070447 crossref_primary_10_3390_polym15051166 crossref_primary_10_1021_jacs_5c02483 crossref_primary_10_1002_jcc_70099 crossref_primary_10_1002_jcc_27227 crossref_primary_10_1007_s10895_023_03358_1 crossref_primary_10_1002_anie_202106596 crossref_primary_10_1002_chem_202402637 crossref_primary_10_1016_j_ijbiomac_2025_142444 crossref_primary_10_1016_j_ejmech_2024_117128 crossref_primary_10_1016_j_fluid_2022_113472 crossref_primary_10_1016_j_saa_2023_123832 crossref_primary_10_1021_jacs_4c14826 crossref_primary_10_3390_molecules28062841 crossref_primary_10_1002_anie_202414172 crossref_primary_10_1016_j_chemosphere_2022_137201 crossref_primary_10_1107_S2052252525004543 crossref_primary_10_3390_molecules26195881 crossref_primary_10_3390_nano15050397 crossref_primary_10_1002_slct_202300523 crossref_primary_10_1016_j_molliq_2022_118673 crossref_primary_10_1016_j_molstruc_2023_136726 crossref_primary_10_1039_D5EN00455A crossref_primary_10_1007_s11356_023_31546_w crossref_primary_10_1021_acs_jmedchem_4c01616 crossref_primary_10_3390_catal15090810 crossref_primary_10_1002_ajoc_202500481 crossref_primary_10_1016_j_jpowsour_2024_236035 crossref_primary_10_1002_ange_202205735 crossref_primary_10_1021_acs_inorgchem_4c05030 crossref_primary_10_1002_anie_202318015 crossref_primary_10_1016_j_ijbiomac_2024_131392 crossref_primary_10_1016_j_colsurfb_2024_114046 crossref_primary_10_1055_a_2065_3962 crossref_primary_10_1016_j_comptc_2025_115484 crossref_primary_10_1021_jacs_4c02042 crossref_primary_10_1002_jcc_26927 crossref_primary_10_1021_acsomega_5c00562 crossref_primary_10_1134_S1070363225603527 crossref_primary_10_1016_j_corsci_2023_111733 crossref_primary_10_1002_chem_202400320 crossref_primary_10_1016_j_poly_2024_117134 crossref_primary_10_3390_catal15020174 crossref_primary_10_1016_j_ijbiomac_2025_144293 crossref_primary_10_1038_s42004_024_01116_3 crossref_primary_10_1039_D3SC02032K crossref_primary_10_1021_acscatal_5c04889 crossref_primary_10_1080_08927022_2024_2329736 crossref_primary_10_3389_fenvs_2023_1119944 crossref_primary_10_1002_ange_202318210 crossref_primary_10_1021_acs_jctc_4c01665 crossref_primary_10_3390_molecules28073077 crossref_primary_10_1002_cphc_202400761 crossref_primary_10_1016_j_molstruc_2024_137686 crossref_primary_10_1021_acs_jctc_4c01788 crossref_primary_10_1002_anie_202510744 crossref_primary_10_1016_j_ejmech_2024_117109 crossref_primary_10_1021_acs_jpca_4c08065 crossref_primary_10_1007_s43630_022_00340_x crossref_primary_10_1039_D3SC03769J crossref_primary_10_1002_jcc_27472 crossref_primary_10_1016_j_ijpharm_2025_125994 crossref_primary_10_1016_j_molliq_2024_124231 crossref_primary_10_1016_j_saa_2025_126442 crossref_primary_10_1002_adfm_202309742 crossref_primary_10_1021_acs_jpca_5c01146 crossref_primary_10_1016_j_rechem_2025_102621 crossref_primary_10_1002_anie_202113905 crossref_primary_10_1002_jcc_70064 crossref_primary_10_1016_j_molliq_2024_124482 crossref_primary_10_1039_D1SC06728A crossref_primary_10_1002_cphc_202400992 crossref_primary_10_1002_ange_202510744 crossref_primary_10_15212_bioi_2025_0071 crossref_primary_10_1002_anie_202416101 crossref_primary_10_1002_chem_202501991 crossref_primary_10_3762_bjoc_21_94 crossref_primary_10_1038_s41597_024_03698_y crossref_primary_10_1039_D4PY00025K crossref_primary_10_1016_j_ces_2025_121425 crossref_primary_10_1016_j_scitotenv_2025_179133 crossref_primary_10_1016_j_saa_2021_120647 crossref_primary_10_3390_ijms242316826 crossref_primary_10_1002_cmdc_202300395 crossref_primary_10_1016_j_apcatb_2024_124804 crossref_primary_10_1021_acs_inorgchem_5c00820 crossref_primary_10_1016_j_saa_2023_123634 crossref_primary_10_1021_acscentsci_3c01403 crossref_primary_10_1107_S2052252524002641 crossref_primary_10_1002_chem_202502604 crossref_primary_10_1002_chem_202200248 crossref_primary_10_1016_j_comptc_2022_113916 crossref_primary_10_3390_molecules29071680 crossref_primary_10_18359_rfcb_7200 crossref_primary_10_1134_S1061933X25600083 crossref_primary_10_3390_computation13090216 crossref_primary_10_1002_anie_202316667 crossref_primary_10_1002_chem_202501188 crossref_primary_10_1007_s10847_024_01249_x crossref_primary_10_1016_j_molstruc_2024_140350 crossref_primary_10_1063_5_0235189 crossref_primary_10_1039_D2NR06521E crossref_primary_10_1016_j_electacta_2024_144093 crossref_primary_10_1002_chem_202404687 crossref_primary_10_1021_acs_jpcb_4c04194 crossref_primary_10_1039_D3SC04960D crossref_primary_10_1002_cssc_202401760 crossref_primary_10_1038_s42004_024_01247_7 crossref_primary_10_1038_s41467_022_28912_6 crossref_primary_10_1038_s41467_024_47997_9 crossref_primary_10_1016_j_poly_2025_117651 crossref_primary_10_1021_jacs_3c05278 crossref_primary_10_1038_s41597_022_01288_4 crossref_primary_10_1002_ange_202314848 crossref_primary_10_1007_s10847_024_01252_2 crossref_primary_10_1021_jacs_3c04986 crossref_primary_10_3390_molecules27217185 crossref_primary_10_1002_ange_202500856 crossref_primary_10_1002_chem_202302979 crossref_primary_10_3390_molecules27103247 crossref_primary_10_1007_s10895_024_03595_y crossref_primary_10_1021_jacs_2c11265 crossref_primary_10_1134_S0023158424601839 crossref_primary_10_1016_j_molstruc_2024_140027 crossref_primary_10_1039_D3RA08650J crossref_primary_10_1002_ejoc_202300704 crossref_primary_10_1002_ange_202510533 crossref_primary_10_1016_j_ejmech_2025_117304 crossref_primary_10_1021_acs_jctc_5c00262 crossref_primary_10_1021_acs_jctc_5c00022 crossref_primary_10_1016_j_inoche_2025_115331 crossref_primary_10_1021_acs_jcim_5c00522 crossref_primary_10_1002_cctc_202401275 crossref_primary_10_1007_s00894_023_05444_4 crossref_primary_10_1021_jacs_1c05286 crossref_primary_10_1002_anie_202500856 crossref_primary_10_1002_ange_202106596 crossref_primary_10_1021_acs_jctc_5c00930 crossref_primary_10_1002_aesr_202300288 crossref_primary_10_1002_anie_202510533 crossref_primary_10_1002_chem_202404348 crossref_primary_10_3390_catal14110746 crossref_primary_10_1002_jsfa_12561 crossref_primary_10_1039_D4FD00161C crossref_primary_10_1021_jacs_3c10401 crossref_primary_10_1002_cmdc_202400087 crossref_primary_10_1007_s10847_024_01219_3 crossref_primary_10_3390_molecules27123838 crossref_primary_10_1016_j_chempr_2025_102442 crossref_primary_10_1021_acs_jmedchem_5c01421 crossref_primary_10_1016_j_electacta_2024_144334 crossref_primary_10_1038_s42004_025_01445_x crossref_primary_10_1038_s41597_024_03521_8 crossref_primary_10_1080_00268976_2025_2456108 crossref_primary_10_1021_acs_jctc_5c00602 crossref_primary_10_1063_5_0197592 crossref_primary_10_3390_biophysica3020017 crossref_primary_10_1016_j_catcom_2023_106729 crossref_primary_10_1016_j_cbi_2023_110742 crossref_primary_10_1002_chem_202404651 crossref_primary_10_1002_adhm_202400664 crossref_primary_10_1007_s10008_023_05433_w crossref_primary_10_1021_acs_joc_5c00600 crossref_primary_10_1002_anie_202314848 crossref_primary_10_1038_s41597_022_01814_4 crossref_primary_10_1039_D4NR02922D crossref_primary_10_1002_ange_202318015 crossref_primary_10_1002_ajoc_202300655 crossref_primary_10_1002_ange_202113905 crossref_primary_10_1039_D5MH00559K crossref_primary_10_1007_s10822_024_00560_6 crossref_primary_10_1002_jcc_27299 crossref_primary_10_1021_acs_joc_5c00724 crossref_primary_10_1021_acs_jced_5c00388 crossref_primary_10_1038_s44318_025_00510_4 crossref_primary_10_3390_reactions5040037 crossref_primary_10_3762_bjoc_19_109 crossref_primary_10_1002_ange_202504337 crossref_primary_10_1039_D2NJ03499A crossref_primary_10_1002_ange_202414172 crossref_primary_10_1002_chem_202304033 crossref_primary_10_1002_ange_202505666 crossref_primary_10_1007_s00894_023_05685_3 crossref_primary_10_1002_ange_202316667 crossref_primary_10_1002_qua_27297 crossref_primary_10_1002_anie_202508952 crossref_primary_10_3390_chemosensors13090353 crossref_primary_10_3390_polym15030714 crossref_primary_10_1021_jacs_3c08586 crossref_primary_10_3390_ijms26146911 crossref_primary_10_1002_ange_202416101 crossref_primary_10_1002_chem_202302662 crossref_primary_10_1126_science_adp2447 crossref_primary_10_1007_s11356_023_28854_6 crossref_primary_10_1016_j_jece_2024_114121 crossref_primary_10_1002_anie_202505666 crossref_primary_10_1002_anie_202504337 crossref_primary_10_3390_cryst14100875 crossref_primary_10_1002_chem_202303635 crossref_primary_10_1039_D2RA04610E crossref_primary_10_1002_ange_202111869 crossref_primary_10_1002_jcc_26788 crossref_primary_10_1002_chem_202403336 crossref_primary_10_1016_j_fluid_2024_114250 crossref_primary_10_1016_j_molstruc_2025_142378 crossref_primary_10_1002_jcc_27199 crossref_primary_10_1002_jcc_27517 crossref_primary_10_1007_s10847_025_01300_5 crossref_primary_10_1016_j_dyepig_2025_113197 crossref_primary_10_1016_j_molstruc_2021_132055 crossref_primary_10_1002_chem_202501913 crossref_primary_10_1002_chem_202200529 crossref_primary_10_3390_molecules29204908 crossref_primary_10_1016_j_jinorgbio_2025_112936 crossref_primary_10_1002_ange_202508952 crossref_primary_10_3389_fphar_2024_1415266 crossref_primary_10_1016_j_dyepig_2022_110916 crossref_primary_10_1007_s10847_023_01192_3 crossref_primary_10_1002_anie_202421062 crossref_primary_10_1016_j_molstruc_2024_139642 crossref_primary_10_1002_chem_202401109 crossref_primary_10_1016_j_dyepig_2023_111332 crossref_primary_10_1016_j_jcat_2025_116008 crossref_primary_10_1039_D4RA02524E crossref_primary_10_3390_molecules28237856 crossref_primary_10_1021_acschemneuro_4c00365 crossref_primary_10_1038_s41467_022_28041_0 crossref_primary_10_1038_s41467_025_58638_0 crossref_primary_10_1039_D2CP01717B crossref_primary_10_1016_j_saa_2023_123231 crossref_primary_10_3390_catal15080793 crossref_primary_10_1016_j_jfca_2024_106843 crossref_primary_10_1007_s00894_024_05983_4 crossref_primary_10_1002_anie_202111869 crossref_primary_10_1039_D2SC01714H crossref_primary_10_1021_jacs_4c15547 crossref_primary_10_1002_anie_202318210 crossref_primary_10_1021_acs_jctc_4c00565 crossref_primary_10_1016_j_molstruc_2024_139899 crossref_primary_10_1016_j_jinorgbio_2025_112932 crossref_primary_10_1016_j_molliq_2025_127193 crossref_primary_10_1016_j_ejmech_2025_117979 crossref_primary_10_1002_anie_202214477 crossref_primary_10_1002_chem_202202953 crossref_primary_10_1002_ejoc_202300575 crossref_primary_10_1371_journal_pone_0312034 crossref_primary_10_2478_acs_2025_0002 crossref_primary_10_1016_j_saa_2022_122050 crossref_primary_10_1016_j_molstruc_2024_137802 crossref_primary_10_1002_adfm_202421048 crossref_primary_10_1007_s10847_025_01276_2 crossref_primary_10_1021_jacs_5c02268 crossref_primary_10_1002_ange_202421062 crossref_primary_10_1021_acs_jpca_5c02207 crossref_primary_10_1002_anie_202205735 crossref_primary_10_1002_cphc_202200111 crossref_primary_10_1007_s00894_025_06417_5 crossref_primary_10_1016_j_molliq_2025_127730 crossref_primary_10_1016_j_conbuildmat_2024_138129 crossref_primary_10_1002_ange_202214477 crossref_primary_10_1021_acs_jafc_5c01913 crossref_primary_10_1016_j_catcom_2023_106821 crossref_primary_10_3390_molecules28217426 crossref_primary_10_1002_jcc_27201 crossref_primary_10_1002_jcc_27320 crossref_primary_10_1016_j_ica_2023_121848 crossref_primary_10_1021_acs_jpcc_5c01790 crossref_primary_10_3390_inorganics12010035 crossref_primary_10_3390_aichem1010001 crossref_primary_10_3390_antibiotics13121167 crossref_primary_10_3390_ijms25168599 crossref_primary_10_1002_chem_202303435 crossref_primary_10_1002_elps_202300232 crossref_primary_10_1002_cbic_202401014 crossref_primary_10_1016_j_comptc_2025_115108 crossref_primary_10_1016_j_mencom_2024_01_024 crossref_primary_10_1002_cphc_202500094 crossref_primary_10_1002_ceur_202400003 crossref_primary_10_1016_j_comptc_2024_114517 crossref_primary_10_1002_chem_202404501 crossref_primary_10_1128_aac_00331_25 |
| ContentType | Journal Article |
| DBID | 7X8 |
| DOI | 10.1021/acs.jctc.1c00471 |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7X8 7~N AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 J9A JG~ P2P RNS ROL UI2 VF5 VG9 W1F |
| ID | FETCH-LOGICAL-a407t-fc16b3980399c11c4bd7016d40e364653a7fb5e6fc6ac9920f58d8786db29d292 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 384 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674289800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-9626 |
| IngestDate | Fri Jul 11 16:14:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a407t-fc16b3980399c11c4bd7016d40e364653a7fb5e6fc6ac9920f58d8786db29d292 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2546975559 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2546975559 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-13 |
| PublicationDateYYYYMMDD | 2021-07-13 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationYear | 2021 |
| SSID | ssj0033423 |
| Score | 2.7095408 |
| Snippet | We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 4250 |
| Title | Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods |
| URI | https://www.proquest.com/docview/2546975559 |
| Volume | 17 |
| WOSCitedRecordID | wos000674289800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qBb34Ft9E8LrtZl_JnkRKi0ItYhV6K5NsAi11t7pbf7-TdFcPXgTvIWQn2ZlvHnwfITdSiUgC1x6YFBMUIUNPgkg8YIaBDJj0wVHmD_hwKMbj9KkuuJX1WGXjE52jzgpla-Qdy9ue8hgB8O3i3bOqUba7WktorJNWiFDGjnTx8XcXIbTsdo4vNbIslEHTpsSw1gFVtmeqUm2mLGEi--WKXXzp7_73ZHtkp0aW9G71FPbJms4PyFa3EXQ7JIPnQi7LikKe0Z5jjsCAQx_cSPm0oqNivirPUquPNqeIZmkfcP0Id9Bvi6kjE6GPTnK6PCKv_d5L996rxRQ8wJyt8oxiiUQT-YhIFGMqkhlHuJdFvg4TS7IG3MhYJ0YloNI08E0sMsGF1ZtKsyANjslGXuT6hFA_YyzkMcSaC8wmpZA6Bs0NWpslhplTct0YaoKfaDsQkOtiWU5-THX2hzXnZDuwEySWxjK8IC2DP6S-JJvqs5qWH1furr8AIJm0jA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+Efficient+Implicit+Solvation+Model+for+Fast+Semiempirical+Methods&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Ehlert%2C+Sebastian&rft.au=Stahn%2C+Marcel&rft.au=Spicher%2C+Sebastian&rft.au=Grimme%2C+Stefan&rft.date=2021-07-13&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=17&rft.issue=7&rft.spage=4250&rft_id=info:doi/10.1021%2Facs.jctc.1c00471&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon |