Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods

We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extende...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of chemical theory and computation Ročník 17; číslo 7; s. 4250
Hlavní autori: Ehlert, Sebastian, Stahn, Marcel, Spicher, Sebastian, Grimme, Stefan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 13.07.2021
ISSN:1549-9626, 1549-9626
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications.We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications.
AbstractList We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications.We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications.
Author Ehlert, Sebastian
Spicher, Sebastian
Stahn, Marcel
Grimme, Stefan
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Ehlert
  fullname: Ehlert, Sebastian
– sequence: 2
  givenname: Marcel
  surname: Stahn
  fullname: Stahn, Marcel
– sequence: 3
  givenname: Sebastian
  surname: Spicher
  fullname: Spicher, Sebastian
– sequence: 4
  givenname: Stefan
  surname: Grimme
  fullname: Grimme, Stefan
BookMark eNpNjE1LwzAAQINMcJvePebopTXfaY4yNh10CE7PI80HZqRNbVJ_vwM9eHrv8HgrsBjS4AC4x6jGiOBHbXJ9NsXU2CDEJL4CS8yZqpQgYvHPb8Aq5zNClDJCl6B9S92cC9SDhVvvgwluKHDfj_GiBR5T_NYlpAEeknUR-jTBnb70R9cH149hCkZHeHDlM9l8C669jtnd_XENPnbb981L1b4-7zdPbaUZkqXyBouOqgZRpQzGhnVWIiwsQ44KJjjV0nfcCW-ENkoR5HljG9kI2xFliSJr8PD7Haf0NbtcTn3IxsWoB5fmfCKcCSU554r8ABSeVGI
CitedBy_id crossref_primary_10_1016_j_molliq_2023_122666
crossref_primary_10_1016_j_mtchem_2023_101771
crossref_primary_10_1002_chir_23576
crossref_primary_10_1016_j_jinorgbio_2024_112738
crossref_primary_10_1016_j_ast_2023_108665
crossref_primary_10_1038_s41467_024_48832_x
crossref_primary_10_1021_acs_joc_4c02546
crossref_primary_10_3390_catal14070447
crossref_primary_10_3390_polym15051166
crossref_primary_10_1021_jacs_5c02483
crossref_primary_10_1002_jcc_70099
crossref_primary_10_1002_jcc_27227
crossref_primary_10_1007_s10895_023_03358_1
crossref_primary_10_1002_anie_202106596
crossref_primary_10_1002_chem_202402637
crossref_primary_10_1016_j_ijbiomac_2025_142444
crossref_primary_10_1016_j_ejmech_2024_117128
crossref_primary_10_1016_j_fluid_2022_113472
crossref_primary_10_1016_j_saa_2023_123832
crossref_primary_10_1021_jacs_4c14826
crossref_primary_10_3390_molecules28062841
crossref_primary_10_1002_anie_202414172
crossref_primary_10_1016_j_chemosphere_2022_137201
crossref_primary_10_1107_S2052252525004543
crossref_primary_10_3390_molecules26195881
crossref_primary_10_3390_nano15050397
crossref_primary_10_1002_slct_202300523
crossref_primary_10_1016_j_molliq_2022_118673
crossref_primary_10_1016_j_molstruc_2023_136726
crossref_primary_10_1039_D5EN00455A
crossref_primary_10_1007_s11356_023_31546_w
crossref_primary_10_1021_acs_jmedchem_4c01616
crossref_primary_10_3390_catal15090810
crossref_primary_10_1002_ajoc_202500481
crossref_primary_10_1016_j_jpowsour_2024_236035
crossref_primary_10_1002_ange_202205735
crossref_primary_10_1021_acs_inorgchem_4c05030
crossref_primary_10_1002_anie_202318015
crossref_primary_10_1016_j_ijbiomac_2024_131392
crossref_primary_10_1016_j_colsurfb_2024_114046
crossref_primary_10_1055_a_2065_3962
crossref_primary_10_1016_j_comptc_2025_115484
crossref_primary_10_1021_jacs_4c02042
crossref_primary_10_1002_jcc_26927
crossref_primary_10_1021_acsomega_5c00562
crossref_primary_10_1134_S1070363225603527
crossref_primary_10_1016_j_corsci_2023_111733
crossref_primary_10_1002_chem_202400320
crossref_primary_10_1016_j_poly_2024_117134
crossref_primary_10_3390_catal15020174
crossref_primary_10_1016_j_ijbiomac_2025_144293
crossref_primary_10_1038_s42004_024_01116_3
crossref_primary_10_1039_D3SC02032K
crossref_primary_10_1021_acscatal_5c04889
crossref_primary_10_1080_08927022_2024_2329736
crossref_primary_10_3389_fenvs_2023_1119944
crossref_primary_10_1002_ange_202318210
crossref_primary_10_1021_acs_jctc_4c01665
crossref_primary_10_3390_molecules28073077
crossref_primary_10_1002_cphc_202400761
crossref_primary_10_1016_j_molstruc_2024_137686
crossref_primary_10_1021_acs_jctc_4c01788
crossref_primary_10_1002_anie_202510744
crossref_primary_10_1016_j_ejmech_2024_117109
crossref_primary_10_1021_acs_jpca_4c08065
crossref_primary_10_1007_s43630_022_00340_x
crossref_primary_10_1039_D3SC03769J
crossref_primary_10_1002_jcc_27472
crossref_primary_10_1016_j_ijpharm_2025_125994
crossref_primary_10_1016_j_molliq_2024_124231
crossref_primary_10_1016_j_saa_2025_126442
crossref_primary_10_1002_adfm_202309742
crossref_primary_10_1021_acs_jpca_5c01146
crossref_primary_10_1016_j_rechem_2025_102621
crossref_primary_10_1002_anie_202113905
crossref_primary_10_1002_jcc_70064
crossref_primary_10_1016_j_molliq_2024_124482
crossref_primary_10_1039_D1SC06728A
crossref_primary_10_1002_cphc_202400992
crossref_primary_10_1002_ange_202510744
crossref_primary_10_15212_bioi_2025_0071
crossref_primary_10_1002_anie_202416101
crossref_primary_10_1002_chem_202501991
crossref_primary_10_3762_bjoc_21_94
crossref_primary_10_1038_s41597_024_03698_y
crossref_primary_10_1039_D4PY00025K
crossref_primary_10_1016_j_ces_2025_121425
crossref_primary_10_1016_j_scitotenv_2025_179133
crossref_primary_10_1016_j_saa_2021_120647
crossref_primary_10_3390_ijms242316826
crossref_primary_10_1002_cmdc_202300395
crossref_primary_10_1016_j_apcatb_2024_124804
crossref_primary_10_1021_acs_inorgchem_5c00820
crossref_primary_10_1016_j_saa_2023_123634
crossref_primary_10_1021_acscentsci_3c01403
crossref_primary_10_1107_S2052252524002641
crossref_primary_10_1002_chem_202502604
crossref_primary_10_1002_chem_202200248
crossref_primary_10_1016_j_comptc_2022_113916
crossref_primary_10_3390_molecules29071680
crossref_primary_10_18359_rfcb_7200
crossref_primary_10_1134_S1061933X25600083
crossref_primary_10_3390_computation13090216
crossref_primary_10_1002_anie_202316667
crossref_primary_10_1002_chem_202501188
crossref_primary_10_1007_s10847_024_01249_x
crossref_primary_10_1016_j_molstruc_2024_140350
crossref_primary_10_1063_5_0235189
crossref_primary_10_1039_D2NR06521E
crossref_primary_10_1016_j_electacta_2024_144093
crossref_primary_10_1002_chem_202404687
crossref_primary_10_1021_acs_jpcb_4c04194
crossref_primary_10_1039_D3SC04960D
crossref_primary_10_1002_cssc_202401760
crossref_primary_10_1038_s42004_024_01247_7
crossref_primary_10_1038_s41467_022_28912_6
crossref_primary_10_1038_s41467_024_47997_9
crossref_primary_10_1016_j_poly_2025_117651
crossref_primary_10_1021_jacs_3c05278
crossref_primary_10_1038_s41597_022_01288_4
crossref_primary_10_1002_ange_202314848
crossref_primary_10_1007_s10847_024_01252_2
crossref_primary_10_1021_jacs_3c04986
crossref_primary_10_3390_molecules27217185
crossref_primary_10_1002_ange_202500856
crossref_primary_10_1002_chem_202302979
crossref_primary_10_3390_molecules27103247
crossref_primary_10_1007_s10895_024_03595_y
crossref_primary_10_1021_jacs_2c11265
crossref_primary_10_1134_S0023158424601839
crossref_primary_10_1016_j_molstruc_2024_140027
crossref_primary_10_1039_D3RA08650J
crossref_primary_10_1002_ejoc_202300704
crossref_primary_10_1002_ange_202510533
crossref_primary_10_1016_j_ejmech_2025_117304
crossref_primary_10_1021_acs_jctc_5c00262
crossref_primary_10_1021_acs_jctc_5c00022
crossref_primary_10_1016_j_inoche_2025_115331
crossref_primary_10_1021_acs_jcim_5c00522
crossref_primary_10_1002_cctc_202401275
crossref_primary_10_1007_s00894_023_05444_4
crossref_primary_10_1021_jacs_1c05286
crossref_primary_10_1002_anie_202500856
crossref_primary_10_1002_ange_202106596
crossref_primary_10_1021_acs_jctc_5c00930
crossref_primary_10_1002_aesr_202300288
crossref_primary_10_1002_anie_202510533
crossref_primary_10_1002_chem_202404348
crossref_primary_10_3390_catal14110746
crossref_primary_10_1002_jsfa_12561
crossref_primary_10_1039_D4FD00161C
crossref_primary_10_1021_jacs_3c10401
crossref_primary_10_1002_cmdc_202400087
crossref_primary_10_1007_s10847_024_01219_3
crossref_primary_10_3390_molecules27123838
crossref_primary_10_1016_j_chempr_2025_102442
crossref_primary_10_1021_acs_jmedchem_5c01421
crossref_primary_10_1016_j_electacta_2024_144334
crossref_primary_10_1038_s42004_025_01445_x
crossref_primary_10_1038_s41597_024_03521_8
crossref_primary_10_1080_00268976_2025_2456108
crossref_primary_10_1021_acs_jctc_5c00602
crossref_primary_10_1063_5_0197592
crossref_primary_10_3390_biophysica3020017
crossref_primary_10_1016_j_catcom_2023_106729
crossref_primary_10_1016_j_cbi_2023_110742
crossref_primary_10_1002_chem_202404651
crossref_primary_10_1002_adhm_202400664
crossref_primary_10_1007_s10008_023_05433_w
crossref_primary_10_1021_acs_joc_5c00600
crossref_primary_10_1002_anie_202314848
crossref_primary_10_1038_s41597_022_01814_4
crossref_primary_10_1039_D4NR02922D
crossref_primary_10_1002_ange_202318015
crossref_primary_10_1002_ajoc_202300655
crossref_primary_10_1002_ange_202113905
crossref_primary_10_1039_D5MH00559K
crossref_primary_10_1007_s10822_024_00560_6
crossref_primary_10_1002_jcc_27299
crossref_primary_10_1021_acs_joc_5c00724
crossref_primary_10_1021_acs_jced_5c00388
crossref_primary_10_1038_s44318_025_00510_4
crossref_primary_10_3390_reactions5040037
crossref_primary_10_3762_bjoc_19_109
crossref_primary_10_1002_ange_202504337
crossref_primary_10_1039_D2NJ03499A
crossref_primary_10_1002_ange_202414172
crossref_primary_10_1002_chem_202304033
crossref_primary_10_1002_ange_202505666
crossref_primary_10_1007_s00894_023_05685_3
crossref_primary_10_1002_ange_202316667
crossref_primary_10_1002_qua_27297
crossref_primary_10_1002_anie_202508952
crossref_primary_10_3390_chemosensors13090353
crossref_primary_10_3390_polym15030714
crossref_primary_10_1021_jacs_3c08586
crossref_primary_10_3390_ijms26146911
crossref_primary_10_1002_ange_202416101
crossref_primary_10_1002_chem_202302662
crossref_primary_10_1126_science_adp2447
crossref_primary_10_1007_s11356_023_28854_6
crossref_primary_10_1016_j_jece_2024_114121
crossref_primary_10_1002_anie_202505666
crossref_primary_10_1002_anie_202504337
crossref_primary_10_3390_cryst14100875
crossref_primary_10_1002_chem_202303635
crossref_primary_10_1039_D2RA04610E
crossref_primary_10_1002_ange_202111869
crossref_primary_10_1002_jcc_26788
crossref_primary_10_1002_chem_202403336
crossref_primary_10_1016_j_fluid_2024_114250
crossref_primary_10_1016_j_molstruc_2025_142378
crossref_primary_10_1002_jcc_27199
crossref_primary_10_1002_jcc_27517
crossref_primary_10_1007_s10847_025_01300_5
crossref_primary_10_1016_j_dyepig_2025_113197
crossref_primary_10_1016_j_molstruc_2021_132055
crossref_primary_10_1002_chem_202501913
crossref_primary_10_1002_chem_202200529
crossref_primary_10_3390_molecules29204908
crossref_primary_10_1016_j_jinorgbio_2025_112936
crossref_primary_10_1002_ange_202508952
crossref_primary_10_3389_fphar_2024_1415266
crossref_primary_10_1016_j_dyepig_2022_110916
crossref_primary_10_1007_s10847_023_01192_3
crossref_primary_10_1002_anie_202421062
crossref_primary_10_1016_j_molstruc_2024_139642
crossref_primary_10_1002_chem_202401109
crossref_primary_10_1016_j_dyepig_2023_111332
crossref_primary_10_1016_j_jcat_2025_116008
crossref_primary_10_1039_D4RA02524E
crossref_primary_10_3390_molecules28237856
crossref_primary_10_1021_acschemneuro_4c00365
crossref_primary_10_1038_s41467_022_28041_0
crossref_primary_10_1038_s41467_025_58638_0
crossref_primary_10_1039_D2CP01717B
crossref_primary_10_1016_j_saa_2023_123231
crossref_primary_10_3390_catal15080793
crossref_primary_10_1016_j_jfca_2024_106843
crossref_primary_10_1007_s00894_024_05983_4
crossref_primary_10_1002_anie_202111869
crossref_primary_10_1039_D2SC01714H
crossref_primary_10_1021_jacs_4c15547
crossref_primary_10_1002_anie_202318210
crossref_primary_10_1021_acs_jctc_4c00565
crossref_primary_10_1016_j_molstruc_2024_139899
crossref_primary_10_1016_j_jinorgbio_2025_112932
crossref_primary_10_1016_j_molliq_2025_127193
crossref_primary_10_1016_j_ejmech_2025_117979
crossref_primary_10_1002_anie_202214477
crossref_primary_10_1002_chem_202202953
crossref_primary_10_1002_ejoc_202300575
crossref_primary_10_1371_journal_pone_0312034
crossref_primary_10_2478_acs_2025_0002
crossref_primary_10_1016_j_saa_2022_122050
crossref_primary_10_1016_j_molstruc_2024_137802
crossref_primary_10_1002_adfm_202421048
crossref_primary_10_1007_s10847_025_01276_2
crossref_primary_10_1021_jacs_5c02268
crossref_primary_10_1002_ange_202421062
crossref_primary_10_1021_acs_jpca_5c02207
crossref_primary_10_1002_anie_202205735
crossref_primary_10_1002_cphc_202200111
crossref_primary_10_1007_s00894_025_06417_5
crossref_primary_10_1016_j_molliq_2025_127730
crossref_primary_10_1016_j_conbuildmat_2024_138129
crossref_primary_10_1002_ange_202214477
crossref_primary_10_1021_acs_jafc_5c01913
crossref_primary_10_1016_j_catcom_2023_106821
crossref_primary_10_3390_molecules28217426
crossref_primary_10_1002_jcc_27201
crossref_primary_10_1002_jcc_27320
crossref_primary_10_1016_j_ica_2023_121848
crossref_primary_10_1021_acs_jpcc_5c01790
crossref_primary_10_3390_inorganics12010035
crossref_primary_10_3390_aichem1010001
crossref_primary_10_3390_antibiotics13121167
crossref_primary_10_3390_ijms25168599
crossref_primary_10_1002_chem_202303435
crossref_primary_10_1002_elps_202300232
crossref_primary_10_1002_cbic_202401014
crossref_primary_10_1016_j_comptc_2025_115108
crossref_primary_10_1016_j_mencom_2024_01_024
crossref_primary_10_1002_cphc_202500094
crossref_primary_10_1002_ceur_202400003
crossref_primary_10_1016_j_comptc_2024_114517
crossref_primary_10_1002_chem_202404501
crossref_primary_10_1128_aac_00331_25
ContentType Journal Article
DBID 7X8
DOI 10.1021/acs.jctc.1c00471
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
GroupedDBID 4.4
53G
55A
5GY
5VS
7X8
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ID FETCH-LOGICAL-a407t-fc16b3980399c11c4bd7016d40e364653a7fb5e6fc6ac9920f58d8786db29d292
IEDL.DBID 7X8
ISICitedReferencesCount 384
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674289800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-9626
IngestDate Fri Jul 11 16:14:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a407t-fc16b3980399c11c4bd7016d40e364653a7fb5e6fc6ac9920f58d8786db29d292
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2546975559
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2546975559
PublicationCentury 2000
PublicationDate 2021-07-13
PublicationDateYYYYMMDD 2021-07-13
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-13
  day: 13
PublicationDecade 2020
PublicationTitle Journal of chemical theory and computation
PublicationYear 2021
SSID ssj0033423
Score 2.7095408
Snippet We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A...
SourceID proquest
SourceType Aggregation Database
StartPage 4250
Title Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods
URI https://www.proquest.com/docview/2546975559
Volume 17
WOSCitedRecordID wos000674289800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qBb34Ft9E8Lrt7ia72ZxESotCLWJVeit5QqXuVnfr73eS7urBi-A9hGSSzHyZGb4PoatIhcJEwgQ0FSSgKqSBzJI4SHmcSRZZYz198cuADYfZeMwf6oRbWbdVNj7RO2pdKJcj7zjeds4SAMDX8_fAqUa56motobGKWgSgjGvpYuPvKgJx7HaeL5U6Fsq4KVNCWOsIVbZfVaXasNiQsuiXK_bxpb_935XtoK0aWeKb5VXYRSsm30Mb3UbQbR8NHgu5KCssco17njkCAg6-8y3l0wqPitkyPYudPtoMA5rFfQHjRzCDeZtPPZkIvveS0-UBeu73nrq3QS2mEAj4s1WBVVEqwUQhIBIVRYpKzQDuaRoakjqSNcGsTExqVSoU53Fok0xnLHN6U1zHPD5Ea3mRmyOEmQ2llcRRw3GaAsKKiOaawPFK-N2x9BhdNoaawBZdBULkpliUkx9TnfxhzCnajF0HiaOxJGeoZeFBmnO0rj6raflx4c_6CyB2sxk
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+Efficient+Implicit+Solvation+Model+for+Fast+Semiempirical+Methods&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Ehlert%2C+Sebastian&rft.au=Stahn%2C+Marcel&rft.au=Spicher%2C+Sebastian&rft.au=Grimme%2C+Stefan&rft.date=2021-07-13&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=17&rft.issue=7&rft.spage=4250&rft_id=info:doi/10.1021%2Facs.jctc.1c00471&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon