Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting

Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution rea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chemical reviews Ročník 124; číslo 7; s. 3694
Hlavní autori: Quan, Li, Jiang, Hui, Mei, Guoliang, Sun, Yujie, You, Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 10.04.2024
ISSN:1520-6890, 1520-6890
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
AbstractList Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Author You, Bo
Quan, Li
Mei, Guoliang
Sun, Yujie
Jiang, Hui
Author_xml – sequence: 1
  givenname: Li
  surname: Quan
  fullname: Quan, Li
  organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
– sequence: 2
  givenname: Hui
  surname: Jiang
  fullname: Jiang, Hui
  organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
– sequence: 3
  givenname: Guoliang
  surname: Mei
  fullname: Mei, Guoliang
  organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
– sequence: 4
  givenname: Yujie
  orcidid: 0000-0002-4122-6255
  surname: Sun
  fullname: Sun, Yujie
  organization: Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
– sequence: 5
  givenname: Bo
  orcidid: 0000-0003-1849-0418
  surname: You
  fullname: You, Bo
  organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38517093$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1Kw0AYRQep2B99AkGydJM6P8lkstS2WqHQhYrL8GXyRUcmkzozKfTtLVjB1b2Lw4F7p2TkeoeEXDM6Z5SzO9Bhrj-x87ifC02pEPyMTFjOaSpVSUf_-phMQ_iilOY5Ly7IWKicFbQUE7J8MO3gdDS9A5usLOroew0R7CHEkLS9T7Z79GBtAq5J1ofamyZ5h4g-edlZE6NxH5fkvAUb8OqUM_L2uHpdrNPN9ul5cb9JIaMypsi5YGUGOWCGqmy1aFmhpVCSo8gyzWgpGy5RMlYj1tColqtGCl4LyVAJPiO3v96d778HDLHqTNBoLTjsh1DxssiOPyjBjujNCR3qDptq500H_lD9Lec_oSZeuw
CitedBy_id crossref_primary_10_1038_s41467_025_59771_6
crossref_primary_10_1039_D5CC00792E
crossref_primary_10_1039_D4LF00394B
crossref_primary_10_1016_j_jcis_2025_137389
crossref_primary_10_1016_j_jcis_2025_03_034
crossref_primary_10_1039_D4NR02745K
crossref_primary_10_1016_j_apsusc_2025_163766
crossref_primary_10_1002_ange_202416763
crossref_primary_10_1016_j_jelechem_2025_119338
crossref_primary_10_1002_smll_202502250
crossref_primary_10_1016_j_jre_2024_10_008
crossref_primary_10_1002_adfm_202423330
crossref_primary_10_1002_smll_202501176
crossref_primary_10_1039_D5CC02887F
crossref_primary_10_1016_j_fuel_2025_134704
crossref_primary_10_1039_D5MA00706B
crossref_primary_10_1016_j_ijhydene_2025_150917
crossref_primary_10_1016_j_ijhydene_2025_150918
crossref_primary_10_1002_smll_202411238
crossref_primary_10_1039_D5DT00939A
crossref_primary_10_1039_D4TA09039J
crossref_primary_10_1002_adsu_202500495
crossref_primary_10_1016_j_cis_2025_103493
crossref_primary_10_1002_smll_202404729
crossref_primary_10_1021_acsami_5c12076
crossref_primary_10_3390_molecules29184435
crossref_primary_10_1016_j_ijhydene_2025_150927
crossref_primary_10_1002_cnl2_70048
crossref_primary_10_1016_j_ccr_2025_216651
crossref_primary_10_1039_D5NR01393C
crossref_primary_10_1002_cssc_202401197
crossref_primary_10_1002_anie_202424195
crossref_primary_10_1016_j_apsusc_2025_164643
crossref_primary_10_1016_j_jallcom_2024_175523
crossref_primary_10_1016_j_cej_2025_162823
crossref_primary_10_1002_adfm_202504862
crossref_primary_10_1002_ange_202414202
crossref_primary_10_1016_j_jcis_2025_138225
crossref_primary_10_1016_j_jallcom_2025_179056
crossref_primary_10_1039_D4NR04915B
crossref_primary_10_1039_D4NJ04744C
crossref_primary_10_1021_acsaem_5c00250
crossref_primary_10_1002_smll_202411017
crossref_primary_10_1002_adfm_202515761
crossref_primary_10_1016_j_cej_2025_161501
crossref_primary_10_1016_j_jpowsour_2024_235951
crossref_primary_10_1016_j_inoche_2025_114328
crossref_primary_10_1021_acs_iecr_5c01749
crossref_primary_10_1016_j_cej_2025_161709
crossref_primary_10_1021_acscatal_5c00623
crossref_primary_10_1016_j_mssp_2025_109287
crossref_primary_10_1021_acsami_4c13769
crossref_primary_10_1021_acsami_5c07985
crossref_primary_10_1016_j_ijhydene_2025_150944
crossref_primary_10_1016_j_apsusc_2024_161392
crossref_primary_10_1016_j_jpowsour_2024_235942
crossref_primary_10_1021_acs_iecr_5c00532
crossref_primary_10_1016_j_jechem_2025_03_001
crossref_primary_10_1002_smll_202411049
crossref_primary_10_1039_D5TC01265A
crossref_primary_10_1039_D5TA00530B
crossref_primary_10_1016_j_fuel_2025_135836
crossref_primary_10_1021_acs_energyfuels_5c00967
crossref_primary_10_1002_adsu_202400957
crossref_primary_10_1088_2053_1591_ad68cd
crossref_primary_10_1007_s12598_024_03055_3
crossref_primary_10_1016_j_ijhydene_2025_05_340
crossref_primary_10_1039_D5TA03626G
crossref_primary_10_1016_j_jallcom_2025_182001
crossref_primary_10_1002_adma_202504922
crossref_primary_10_1016_j_jcis_2025_139014
crossref_primary_10_1016_j_jpowsour_2025_238274
crossref_primary_10_3390_molecules29245845
crossref_primary_10_1002_ange_202424195
crossref_primary_10_1002_smll_202411394
crossref_primary_10_1039_D4DT02823F
crossref_primary_10_3390_molecules29194562
crossref_primary_10_1002_smll_202501464
crossref_primary_10_1002_anie_202416763
crossref_primary_10_1021_acscatal_4c07829
crossref_primary_10_1039_D5DT00790A
crossref_primary_10_1021_acs_energyfuels_5c00879
crossref_primary_10_1002_smll_202311770
crossref_primary_10_1002_smll_202500135
crossref_primary_10_1039_D4NR02400A
crossref_primary_10_1016_j_ijhydene_2024_11_366
crossref_primary_10_1016_j_jcis_2025_137287
crossref_primary_10_1016_j_jpowsour_2025_238120
crossref_primary_10_1002_advs_202411964
crossref_primary_10_1039_D4EE03084B
crossref_primary_10_1002_smtd_202500643
crossref_primary_10_1016_j_cclet_2024_110573
crossref_primary_10_1016_j_ijhydene_2024_06_061
crossref_primary_10_3390_coatings15070772
crossref_primary_10_1002_anov_70007
crossref_primary_10_1016_j_cej_2025_168214
crossref_primary_10_1016_j_fuel_2024_132368
crossref_primary_10_1016_j_decarb_2024_100091
crossref_primary_10_1002_chem_202500632
crossref_primary_10_1021_acs_inorgchem_5c00825
crossref_primary_10_1016_j_jcis_2024_10_084
crossref_primary_10_1021_acscatal_5c01964
crossref_primary_10_3390_en18164223
crossref_primary_10_1016_j_pes_2024_100018
crossref_primary_10_1016_j_jallcom_2024_177855
crossref_primary_10_1021_jacs_4c17225
crossref_primary_10_1016_j_jcat_2024_115928
crossref_primary_10_1016_j_cclet_2025_111370
crossref_primary_10_1002_anie_202414202
crossref_primary_10_1016_j_ces_2025_121461
crossref_primary_10_1016_j_jallcom_2025_182833
crossref_primary_10_1002_smll_202504837
crossref_primary_10_1016_j_electacta_2025_146475
crossref_primary_10_1039_D5QI00437C
crossref_primary_10_1016_j_apsusc_2025_164337
crossref_primary_10_1016_j_apsusc_2025_163015
crossref_primary_10_1021_jacs_5c07428
crossref_primary_10_1039_D5EE00859J
crossref_primary_10_1002_adfm_202424141
crossref_primary_10_1021_acsaem_4c03070
crossref_primary_10_26599_ECS_2025_9600033
crossref_primary_10_1021_jacs_4c18109
crossref_primary_10_1016_j_ijhydene_2024_07_030
crossref_primary_10_1039_D5CC00206K
crossref_primary_10_1039_D5SC04536C
crossref_primary_10_1016_j_jcis_2024_11_022
crossref_primary_10_1016_j_jcis_2025_138646
crossref_primary_10_1002_adma_202503198
crossref_primary_10_1002_cnma_202400571
crossref_primary_10_1002_adma_202504280
crossref_primary_10_1016_j_cej_2025_161003
crossref_primary_10_1039_D5TA01680K
crossref_primary_10_1039_D4EE03704A
crossref_primary_10_1016_j_jcis_2025_137765
crossref_primary_10_1016_j_apcatb_2025_125270
crossref_primary_10_1021_acs_inorgchem_5c02265
crossref_primary_10_1016_j_cej_2024_155736
crossref_primary_10_1016_j_cej_2025_160362
crossref_primary_10_1016_j_jechem_2025_03_021
crossref_primary_10_1016_j_fuel_2025_135067
crossref_primary_10_1016_j_ijhydene_2024_08_195
crossref_primary_10_1016_j_jallcom_2025_181652
crossref_primary_10_1016_j_nanoen_2024_110564
crossref_primary_10_1016_j_jcis_2025_138745
crossref_primary_10_1002_adma_202417516
crossref_primary_10_1039_D5CS00090D
crossref_primary_10_1002_ange_202513970
crossref_primary_10_1016_j_apsusc_2025_163025
crossref_primary_10_1016_j_apsusc_2025_163267
crossref_primary_10_1016_j_cej_2025_161348
crossref_primary_10_1016_j_cej_2025_163888
crossref_primary_10_1016_j_ijhydene_2024_12_402
crossref_primary_10_1016_j_ijhydene_2025_01_137
crossref_primary_10_1039_D5NJ02455B
crossref_primary_10_1016_j_jcis_2024_11_197
crossref_primary_10_1016_j_jcis_2025_138312
crossref_primary_10_1016_j_nxmate_2025_100560
crossref_primary_10_1002_ange_202500678
crossref_primary_10_1016_j_jssc_2025_125356
crossref_primary_10_1002_chem_202501473
crossref_primary_10_1016_j_jcis_2024_10_154
crossref_primary_10_1002_ange_202502735
crossref_primary_10_1016_j_ccr_2024_216399
crossref_primary_10_1039_D5SC01249J
crossref_primary_10_1039_D5DT01438G
crossref_primary_10_1002_anie_202425657
crossref_primary_10_1002_adfm_202416705
crossref_primary_10_1016_j_apcatb_2025_125211
crossref_primary_10_1002_eem2_70159
crossref_primary_10_1021_acsaem_5c00879
crossref_primary_10_1039_D5NJ01243K
crossref_primary_10_1039_D5EY00147A
crossref_primary_10_1016_j_ccr_2024_216141
crossref_primary_10_1016_j_jallcom_2025_180462
crossref_primary_10_1039_D5TA03666F
crossref_primary_10_1002_cctc_202401653
crossref_primary_10_1021_acs_iecr_4c04262
crossref_primary_10_1016_j_cej_2025_163505
crossref_primary_10_1039_D5EE01802A
crossref_primary_10_1021_acsomega_5c01734
crossref_primary_10_1016_j_apmate_2025_100330
crossref_primary_10_1016_j_fuel_2024_132751
crossref_primary_10_1002_adfm_202503066
crossref_primary_10_1021_jacs_5c02700
crossref_primary_10_1016_j_cej_2025_159694
crossref_primary_10_1016_j_jelechem_2025_119391
crossref_primary_10_1016_j_cjche_2025_05_016
crossref_primary_10_1039_D4EE05356G
crossref_primary_10_1039_D5MH00368G
crossref_primary_10_1016_j_jechem_2025_03_067
crossref_primary_10_1016_j_ijhydene_2024_08_272
crossref_primary_10_1039_D5SC01106J
crossref_primary_10_1016_j_ces_2024_121095
crossref_primary_10_3390_en17225712
crossref_primary_10_1016_j_jcis_2025_138426
crossref_primary_10_1002_cctc_202401431
crossref_primary_10_1002_smll_202405225
crossref_primary_10_1021_jacs_4c18390
crossref_primary_10_1016_j_inoche_2024_113817
crossref_primary_10_1016_j_colsurfa_2025_136855
crossref_primary_10_1039_D5NJ00901D
crossref_primary_10_1063_5_0281416
crossref_primary_10_1039_D5NR00721F
crossref_primary_10_1039_D5SE00080G
crossref_primary_10_1016_j_poly_2025_117673
crossref_primary_10_1007_s12598_025_03486_6
crossref_primary_10_1039_D4SE01532K
crossref_primary_10_1002_aenm_202402429
crossref_primary_10_1016_j_ijhydene_2025_03_392
crossref_primary_10_1016_j_jiec_2024_12_037
crossref_primary_10_1002_advs_202412679
crossref_primary_10_1039_D5TA04563K
crossref_primary_10_1002_slct_202503919
crossref_primary_10_1063_5_0291007
crossref_primary_10_1021_acs_chemmater_5c01781
crossref_primary_10_1021_acs_langmuir_5c02133
crossref_primary_10_1016_j_jallcom_2025_180701
crossref_primary_10_1021_acsomega_5c05206
crossref_primary_10_1007_s11426_024_2136_1
crossref_primary_10_1039_D5CP00243E
crossref_primary_10_1016_j_apsusc_2025_163087
crossref_primary_10_1016_j_jelechem_2024_118872
crossref_primary_10_1021_acssuschemeng_5c00773
crossref_primary_10_1021_acs_jpcc_5c03709
crossref_primary_10_1002_adfm_202509426
crossref_primary_10_1002_smll_202406107
crossref_primary_10_1021_acsanm_4c06793
crossref_primary_10_1039_D4QI01789G
crossref_primary_10_1002_adfm_202500944
crossref_primary_10_1039_D5CP01249J
crossref_primary_10_1002_aenm_202403657
crossref_primary_10_1021_acsami_5c08374
crossref_primary_10_1039_D5NR00332F
crossref_primary_10_1016_j_jmst_2025_03_046
crossref_primary_10_1016_j_mcat_2025_115313
crossref_primary_10_1002_adma_202411134
crossref_primary_10_1002_smll_202501833
crossref_primary_10_1039_D5TA05348J
crossref_primary_10_1016_j_cej_2024_158950
crossref_primary_10_1016_j_cej_2024_154235
crossref_primary_10_1016_j_jelechem_2024_118532
crossref_primary_10_1016_j_ccr_2025_217071
crossref_primary_10_1002_adma_202500063
crossref_primary_10_26599_NR_2025_94907670
crossref_primary_10_1016_j_apcatb_2025_125326
crossref_primary_10_1088_2752_5724_adeac5
crossref_primary_10_1038_s44359_025_00061_1
crossref_primary_10_1002_slct_202404089
crossref_primary_10_1021_jacs_4c11445
crossref_primary_10_1016_j_ijhydene_2025_03_129
crossref_primary_10_1002_slct_202403155
crossref_primary_10_1039_D4EE02365J
crossref_primary_10_26599_NR_2025_94907381
crossref_primary_10_1016_j_coelec_2024_101602
crossref_primary_10_1016_j_fuel_2025_135161
crossref_primary_10_1016_j_ijhydene_2025_150026
crossref_primary_10_1016_j_jallcom_2024_178137
crossref_primary_10_1002_anie_202502032
crossref_primary_10_1016_j_jallcom_2025_180847
crossref_primary_10_1016_j_jcis_2024_11_239
crossref_primary_10_1002_smll_202410752
crossref_primary_10_1016_j_nxener_2025_100407
crossref_primary_10_1016_j_jelechem_2024_118844
crossref_primary_10_1016_j_jssc_2025_125629
crossref_primary_10_1016_j_jcis_2025_138842
crossref_primary_10_1016_j_jcis_2025_137876
crossref_primary_10_1002_advs_202514301
crossref_primary_10_1002_smll_202410739
crossref_primary_10_1039_D5TA03125G
crossref_primary_10_1039_D5NR00589B
crossref_primary_10_1016_S1872_2067_25_64653_5
crossref_primary_10_1039_D4EE05559D
crossref_primary_10_3390_nano15120917
crossref_primary_10_1016_j_cej_2025_161490
crossref_primary_10_1016_j_ijhydene_2025_02_243
crossref_primary_10_1016_j_cej_2025_159290
crossref_primary_10_3390_catal15060516
crossref_primary_10_1002_aenm_202403744
crossref_primary_10_1016_j_mssp_2025_109985
crossref_primary_10_1039_D5QI01196E
crossref_primary_10_1007_s12598_024_03081_1
crossref_primary_10_1039_D4RA04644G
crossref_primary_10_1016_j_mtener_2025_101847
crossref_primary_10_1016_j_ijhydene_2025_03_299
crossref_primary_10_1016_j_ijhydene_2025_151370
crossref_primary_10_1039_D4CC04822A
crossref_primary_10_1002_cssc_202401553
crossref_primary_10_1002_smll_202504175
crossref_primary_10_1016_j_cej_2025_162340
crossref_primary_10_1038_s41467_025_57798_3
crossref_primary_10_1088_2752_5724_add415
crossref_primary_10_1021_acsanm_5c02814
crossref_primary_10_1016_j_ijhydene_2024_09_120
crossref_primary_10_3390_nano15171356
crossref_primary_10_1002_cctc_202402006
crossref_primary_10_1016_j_jcis_2024_12_005
crossref_primary_10_1039_D4GC02727B
crossref_primary_10_1016_j_jpowsour_2025_236864
crossref_primary_10_1016_j_fuel_2025_134285
crossref_primary_10_1021_acs_langmuir_5c01579
crossref_primary_10_1021_acsanm_5c02669
crossref_primary_10_1016_j_jallcom_2025_181184
crossref_primary_10_1016_j_renene_2025_122663
crossref_primary_10_1021_acs_energyfuels_5c02796
crossref_primary_10_1016_j_ijhydene_2025_06_089
crossref_primary_10_1016_j_ijhydene_2025_04_479
crossref_primary_10_1016_j_jallcom_2024_176312
crossref_primary_10_1038_s41467_025_63361_x
crossref_primary_10_1016_j_cclet_2025_110830
crossref_primary_10_1016_j_ijhydene_2025_03_436
crossref_primary_10_1002_anie_202502735
crossref_primary_10_1016_S1872_2067_24_60130_0
crossref_primary_10_1002_anie_202500678
crossref_primary_10_1016_j_fuel_2025_136602
crossref_primary_10_1039_D4QI01280A
crossref_primary_10_1016_S1872_2067_25_64708_5
crossref_primary_10_1002_advs_202507657
crossref_primary_10_1016_j_jcis_2025_01_036
crossref_primary_10_1021_acs_energyfuels_5c02303
crossref_primary_10_1016_j_jcis_2025_138089
crossref_primary_10_1002_cctc_202500421
crossref_primary_10_1016_j_ijhydene_2025_150757
crossref_primary_10_1002_cctc_202500427
crossref_primary_10_1002_ange_202502032
crossref_primary_10_1002_inf2_70053
crossref_primary_10_1016_j_jcis_2025_138053
crossref_primary_10_1002_smtd_202401139
crossref_primary_10_1002_adfm_202515920
crossref_primary_10_1002_anie_202513970
crossref_primary_10_1080_14686996_2025_2520159
crossref_primary_10_1021_acs_iecr_5c00673
crossref_primary_10_1038_s41578_025_00826_x
crossref_primary_10_1016_j_mattod_2025_03_003
crossref_primary_10_1002_adfm_202409306
crossref_primary_10_1002_cssc_202501163
crossref_primary_10_1021_acs_energyfuels_5c02321
crossref_primary_10_1016_j_apcata_2025_120399
crossref_primary_10_1016_j_jallcom_2024_177417
crossref_primary_10_1016_j_rser_2025_115570
crossref_primary_10_1002_smll_202406070
crossref_primary_10_1007_s11426_024_2262_8
crossref_primary_10_1002_smll_202505350
crossref_primary_10_1016_j_mtchem_2025_102666
crossref_primary_10_1002_cey2_708
crossref_primary_10_1002_advs_202509902
crossref_primary_10_3390_polym16223155
crossref_primary_10_1016_j_checat_2025_101332
crossref_primary_10_1039_D5TC00624D
crossref_primary_10_1016_j_carbon_2025_120399
crossref_primary_10_1039_D5CC03058G
crossref_primary_10_1016_j_jsamd_2024_100843
crossref_primary_10_1039_D5NJ00742A
crossref_primary_10_1016_j_cej_2025_162097
crossref_primary_10_1016_j_jcis_2025_02_141
crossref_primary_10_1016_j_jmst_2025_03_023
crossref_primary_10_1016_j_molstruc_2025_142791
crossref_primary_10_1021_acssuschemeng_5c04488
crossref_primary_10_1002_adfm_202409849
crossref_primary_10_1016_j_ijhydene_2024_09_414
crossref_primary_10_1016_j_ijhydene_2025_151526
crossref_primary_10_1016_j_ijhydene_2025_150434
crossref_primary_10_1016_j_microc_2025_113566
crossref_primary_10_1016_j_cej_2024_156119
crossref_primary_10_1016_j_diamond_2025_112727
crossref_primary_10_1016_j_jcis_2025_137903
crossref_primary_10_1016_j_cej_2025_167661
crossref_primary_10_1016_j_cej_2025_161095
crossref_primary_10_1016_j_mcat_2024_114777
crossref_primary_10_1088_1361_6528_adaafa
crossref_primary_10_1007_s11426_025_2810_3
crossref_primary_10_1002_adma_202420565
crossref_primary_10_1016_S1872_2067_25_64685_7
crossref_primary_10_1016_j_apsusc_2025_162807
crossref_primary_10_1002_ange_202425657
crossref_primary_10_1002_smll_202403845
crossref_primary_10_1007_s00604_024_06792_5
crossref_primary_10_1002_adma_202501113
crossref_primary_10_1002_celc_202400154
crossref_primary_10_1002_advs_202505418
crossref_primary_10_1016_j_checat_2025_101324
crossref_primary_10_1039_D5NJ01742D
crossref_primary_10_1016_j_jcis_2025_01_251
crossref_primary_10_1021_acsaem_5c01390
crossref_primary_10_1021_acs_jpcc_5c02752
crossref_primary_10_1007_s12678_024_00913_7
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.chemrev.3c00332
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
ExternalDocumentID 38517093
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
.DC
.K2
29B
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
LG6
NPM
P2P
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
~02
7X8
ABUFD
ID FETCH-LOGICAL-a406t-e223194a5ae4e89fc3f17c63862e344c1096d26e611beebad8f28d632b361e832
IEDL.DBID 7X8
ISICitedReferencesCount 463
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001189990800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6890
IngestDate Sun Nov 09 10:47:21 EST 2025
Mon Jul 21 06:04:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a406t-e223194a5ae4e89fc3f17c63862e344c1096d26e611beebad8f28d632b361e832
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4122-6255
0000-0003-1849-0418
PMID 38517093
PQID 2974003831
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2974003831
pubmed_primary_38517093
PublicationCentury 2000
PublicationDate 2024-04-10
PublicationDateYYYYMMDD 2024-04-10
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem Rev
PublicationYear 2024
SSID ssj0005527
Score 2.7557712
SecondaryResourceType review_article
Snippet Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3694
Title Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting
URI https://www.ncbi.nlm.nih.gov/pubmed/38517093
https://www.proquest.com/docview/2974003831
Volume 124
WOSCitedRecordID wos001189990800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcHtYJe3Je6MYLX0MzSSeYkLi09aC2o2FuYLVjQtDa10G_vmyz0JAheckogeZk37zfvzbw_QlepdpEVXAdG-GyVb0OopAoDlTqvV2gBaYuDwg9Rvx8Ph3JQJdzyaltlPScWE7UdG58jb1EAX1_GYuR68hV41ShfXa0kNFZRgwHKeMeMhstu4e1SshVCFCyRYhnWXYcoaSkDv_TdfXqhF2a8ohn9nTGLWNPd_u9b7qCtijLxTTksdtGKy_bQxl0t7raP7m9HPqKViUDcKbVwilTOIp_lGEgWP819uuoDq8zi3sIf7MJvAKZT_AzcWuyWPkCv3c7LXS-oBBUCBXF7FjhgASK5aivHXSxTw1ISGfBAQR3j3BBYz1gqnCBEO6eVjVMaW8GoZoI48P1DtJaNM3eMMBeMCxXxVAvNY7iZUSuJjdrSUidj3USXtYES-DRfhVCZG3_nydJETXRUWjmZlJ01Egb8F4WSnfzh6VO0SQEwfGWHhGeokYK7unO0buazUT69KEYCXPuDxx-7-76m
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+Electrocatalysts+for+Overall+and+Hybrid+Water+Splitting&rft.jtitle=Chemical+reviews&rft.au=Quan%2C+Li&rft.au=Jiang%2C+Hui&rft.au=Mei%2C+Guoliang&rft.au=Sun%2C+Yujie&rft.date=2024-04-10&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=124&rft.issue=7&rft.spage=3694&rft_id=info:doi/10.1021%2Facs.chemrev.3c00332&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon