Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution rea...
Uložené v:
| Vydané v: | Chemical reviews Ročník 124; číslo 7; s. 3694 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
10.04.2024
|
| ISSN: | 1520-6890, 1520-6890 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production. |
|---|---|
| AbstractList | Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production. Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production. |
| Author | You, Bo Quan, Li Mei, Guoliang Sun, Yujie Jiang, Hui |
| Author_xml | – sequence: 1 givenname: Li surname: Quan fullname: Quan, Li organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China – sequence: 2 givenname: Hui surname: Jiang fullname: Jiang, Hui organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China – sequence: 3 givenname: Guoliang surname: Mei fullname: Mei, Guoliang organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China – sequence: 4 givenname: Yujie orcidid: 0000-0002-4122-6255 surname: Sun fullname: Sun, Yujie organization: Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States – sequence: 5 givenname: Bo orcidid: 0000-0003-1849-0418 surname: You fullname: You, Bo organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38517093$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1Kw0AYRQep2B99AkGydJM6P8lkstS2WqHQhYrL8GXyRUcmkzozKfTtLVjB1b2Lw4F7p2TkeoeEXDM6Z5SzO9Bhrj-x87ifC02pEPyMTFjOaSpVSUf_-phMQ_iilOY5Ly7IWKicFbQUE7J8MO3gdDS9A5usLOroew0R7CHEkLS9T7Z79GBtAq5J1ofamyZ5h4g-edlZE6NxH5fkvAUb8OqUM_L2uHpdrNPN9ul5cb9JIaMypsi5YGUGOWCGqmy1aFmhpVCSo8gyzWgpGy5RMlYj1tColqtGCl4LyVAJPiO3v96d778HDLHqTNBoLTjsh1DxssiOPyjBjujNCR3qDptq500H_lD9Lec_oSZeuw |
| CitedBy_id | crossref_primary_10_1038_s41467_025_59771_6 crossref_primary_10_1039_D5CC00792E crossref_primary_10_1039_D4LF00394B crossref_primary_10_1016_j_jcis_2025_137389 crossref_primary_10_1016_j_jcis_2025_03_034 crossref_primary_10_1039_D4NR02745K crossref_primary_10_1016_j_apsusc_2025_163766 crossref_primary_10_1002_ange_202416763 crossref_primary_10_1016_j_jelechem_2025_119338 crossref_primary_10_1002_smll_202502250 crossref_primary_10_1016_j_jre_2024_10_008 crossref_primary_10_1002_adfm_202423330 crossref_primary_10_1002_smll_202501176 crossref_primary_10_1039_D5CC02887F crossref_primary_10_1016_j_fuel_2025_134704 crossref_primary_10_1039_D5MA00706B crossref_primary_10_1016_j_ijhydene_2025_150917 crossref_primary_10_1016_j_ijhydene_2025_150918 crossref_primary_10_1002_smll_202411238 crossref_primary_10_1039_D5DT00939A crossref_primary_10_1039_D4TA09039J crossref_primary_10_1002_adsu_202500495 crossref_primary_10_1016_j_cis_2025_103493 crossref_primary_10_1002_smll_202404729 crossref_primary_10_1021_acsami_5c12076 crossref_primary_10_3390_molecules29184435 crossref_primary_10_1016_j_ijhydene_2025_150927 crossref_primary_10_1002_cnl2_70048 crossref_primary_10_1016_j_ccr_2025_216651 crossref_primary_10_1039_D5NR01393C crossref_primary_10_1002_cssc_202401197 crossref_primary_10_1002_anie_202424195 crossref_primary_10_1016_j_apsusc_2025_164643 crossref_primary_10_1016_j_jallcom_2024_175523 crossref_primary_10_1016_j_cej_2025_162823 crossref_primary_10_1002_adfm_202504862 crossref_primary_10_1002_ange_202414202 crossref_primary_10_1016_j_jcis_2025_138225 crossref_primary_10_1016_j_jallcom_2025_179056 crossref_primary_10_1039_D4NR04915B crossref_primary_10_1039_D4NJ04744C crossref_primary_10_1021_acsaem_5c00250 crossref_primary_10_1002_smll_202411017 crossref_primary_10_1002_adfm_202515761 crossref_primary_10_1016_j_cej_2025_161501 crossref_primary_10_1016_j_jpowsour_2024_235951 crossref_primary_10_1016_j_inoche_2025_114328 crossref_primary_10_1021_acs_iecr_5c01749 crossref_primary_10_1016_j_cej_2025_161709 crossref_primary_10_1021_acscatal_5c00623 crossref_primary_10_1016_j_mssp_2025_109287 crossref_primary_10_1021_acsami_4c13769 crossref_primary_10_1021_acsami_5c07985 crossref_primary_10_1016_j_ijhydene_2025_150944 crossref_primary_10_1016_j_apsusc_2024_161392 crossref_primary_10_1016_j_jpowsour_2024_235942 crossref_primary_10_1021_acs_iecr_5c00532 crossref_primary_10_1016_j_jechem_2025_03_001 crossref_primary_10_1002_smll_202411049 crossref_primary_10_1039_D5TC01265A crossref_primary_10_1039_D5TA00530B crossref_primary_10_1016_j_fuel_2025_135836 crossref_primary_10_1021_acs_energyfuels_5c00967 crossref_primary_10_1002_adsu_202400957 crossref_primary_10_1088_2053_1591_ad68cd crossref_primary_10_1007_s12598_024_03055_3 crossref_primary_10_1016_j_ijhydene_2025_05_340 crossref_primary_10_1039_D5TA03626G crossref_primary_10_1016_j_jallcom_2025_182001 crossref_primary_10_1002_adma_202504922 crossref_primary_10_1016_j_jcis_2025_139014 crossref_primary_10_1016_j_jpowsour_2025_238274 crossref_primary_10_3390_molecules29245845 crossref_primary_10_1002_ange_202424195 crossref_primary_10_1002_smll_202411394 crossref_primary_10_1039_D4DT02823F crossref_primary_10_3390_molecules29194562 crossref_primary_10_1002_smll_202501464 crossref_primary_10_1002_anie_202416763 crossref_primary_10_1021_acscatal_4c07829 crossref_primary_10_1039_D5DT00790A crossref_primary_10_1021_acs_energyfuels_5c00879 crossref_primary_10_1002_smll_202311770 crossref_primary_10_1002_smll_202500135 crossref_primary_10_1039_D4NR02400A crossref_primary_10_1016_j_ijhydene_2024_11_366 crossref_primary_10_1016_j_jcis_2025_137287 crossref_primary_10_1016_j_jpowsour_2025_238120 crossref_primary_10_1002_advs_202411964 crossref_primary_10_1039_D4EE03084B crossref_primary_10_1002_smtd_202500643 crossref_primary_10_1016_j_cclet_2024_110573 crossref_primary_10_1016_j_ijhydene_2024_06_061 crossref_primary_10_3390_coatings15070772 crossref_primary_10_1002_anov_70007 crossref_primary_10_1016_j_cej_2025_168214 crossref_primary_10_1016_j_fuel_2024_132368 crossref_primary_10_1016_j_decarb_2024_100091 crossref_primary_10_1002_chem_202500632 crossref_primary_10_1021_acs_inorgchem_5c00825 crossref_primary_10_1016_j_jcis_2024_10_084 crossref_primary_10_1021_acscatal_5c01964 crossref_primary_10_3390_en18164223 crossref_primary_10_1016_j_pes_2024_100018 crossref_primary_10_1016_j_jallcom_2024_177855 crossref_primary_10_1021_jacs_4c17225 crossref_primary_10_1016_j_jcat_2024_115928 crossref_primary_10_1016_j_cclet_2025_111370 crossref_primary_10_1002_anie_202414202 crossref_primary_10_1016_j_ces_2025_121461 crossref_primary_10_1016_j_jallcom_2025_182833 crossref_primary_10_1002_smll_202504837 crossref_primary_10_1016_j_electacta_2025_146475 crossref_primary_10_1039_D5QI00437C crossref_primary_10_1016_j_apsusc_2025_164337 crossref_primary_10_1016_j_apsusc_2025_163015 crossref_primary_10_1021_jacs_5c07428 crossref_primary_10_1039_D5EE00859J crossref_primary_10_1002_adfm_202424141 crossref_primary_10_1021_acsaem_4c03070 crossref_primary_10_26599_ECS_2025_9600033 crossref_primary_10_1021_jacs_4c18109 crossref_primary_10_1016_j_ijhydene_2024_07_030 crossref_primary_10_1039_D5CC00206K crossref_primary_10_1039_D5SC04536C crossref_primary_10_1016_j_jcis_2024_11_022 crossref_primary_10_1016_j_jcis_2025_138646 crossref_primary_10_1002_adma_202503198 crossref_primary_10_1002_cnma_202400571 crossref_primary_10_1002_adma_202504280 crossref_primary_10_1016_j_cej_2025_161003 crossref_primary_10_1039_D5TA01680K crossref_primary_10_1039_D4EE03704A crossref_primary_10_1016_j_jcis_2025_137765 crossref_primary_10_1016_j_apcatb_2025_125270 crossref_primary_10_1021_acs_inorgchem_5c02265 crossref_primary_10_1016_j_cej_2024_155736 crossref_primary_10_1016_j_cej_2025_160362 crossref_primary_10_1016_j_jechem_2025_03_021 crossref_primary_10_1016_j_fuel_2025_135067 crossref_primary_10_1016_j_ijhydene_2024_08_195 crossref_primary_10_1016_j_jallcom_2025_181652 crossref_primary_10_1016_j_nanoen_2024_110564 crossref_primary_10_1016_j_jcis_2025_138745 crossref_primary_10_1002_adma_202417516 crossref_primary_10_1039_D5CS00090D crossref_primary_10_1002_ange_202513970 crossref_primary_10_1016_j_apsusc_2025_163025 crossref_primary_10_1016_j_apsusc_2025_163267 crossref_primary_10_1016_j_cej_2025_161348 crossref_primary_10_1016_j_cej_2025_163888 crossref_primary_10_1016_j_ijhydene_2024_12_402 crossref_primary_10_1016_j_ijhydene_2025_01_137 crossref_primary_10_1039_D5NJ02455B crossref_primary_10_1016_j_jcis_2024_11_197 crossref_primary_10_1016_j_jcis_2025_138312 crossref_primary_10_1016_j_nxmate_2025_100560 crossref_primary_10_1002_ange_202500678 crossref_primary_10_1016_j_jssc_2025_125356 crossref_primary_10_1002_chem_202501473 crossref_primary_10_1016_j_jcis_2024_10_154 crossref_primary_10_1002_ange_202502735 crossref_primary_10_1016_j_ccr_2024_216399 crossref_primary_10_1039_D5SC01249J crossref_primary_10_1039_D5DT01438G crossref_primary_10_1002_anie_202425657 crossref_primary_10_1002_adfm_202416705 crossref_primary_10_1016_j_apcatb_2025_125211 crossref_primary_10_1002_eem2_70159 crossref_primary_10_1021_acsaem_5c00879 crossref_primary_10_1039_D5NJ01243K crossref_primary_10_1039_D5EY00147A crossref_primary_10_1016_j_ccr_2024_216141 crossref_primary_10_1016_j_jallcom_2025_180462 crossref_primary_10_1039_D5TA03666F crossref_primary_10_1002_cctc_202401653 crossref_primary_10_1021_acs_iecr_4c04262 crossref_primary_10_1016_j_cej_2025_163505 crossref_primary_10_1039_D5EE01802A crossref_primary_10_1021_acsomega_5c01734 crossref_primary_10_1016_j_apmate_2025_100330 crossref_primary_10_1016_j_fuel_2024_132751 crossref_primary_10_1002_adfm_202503066 crossref_primary_10_1021_jacs_5c02700 crossref_primary_10_1016_j_cej_2025_159694 crossref_primary_10_1016_j_jelechem_2025_119391 crossref_primary_10_1016_j_cjche_2025_05_016 crossref_primary_10_1039_D4EE05356G crossref_primary_10_1039_D5MH00368G crossref_primary_10_1016_j_jechem_2025_03_067 crossref_primary_10_1016_j_ijhydene_2024_08_272 crossref_primary_10_1039_D5SC01106J crossref_primary_10_1016_j_ces_2024_121095 crossref_primary_10_3390_en17225712 crossref_primary_10_1016_j_jcis_2025_138426 crossref_primary_10_1002_cctc_202401431 crossref_primary_10_1002_smll_202405225 crossref_primary_10_1021_jacs_4c18390 crossref_primary_10_1016_j_inoche_2024_113817 crossref_primary_10_1016_j_colsurfa_2025_136855 crossref_primary_10_1039_D5NJ00901D crossref_primary_10_1063_5_0281416 crossref_primary_10_1039_D5NR00721F crossref_primary_10_1039_D5SE00080G crossref_primary_10_1016_j_poly_2025_117673 crossref_primary_10_1007_s12598_025_03486_6 crossref_primary_10_1039_D4SE01532K crossref_primary_10_1002_aenm_202402429 crossref_primary_10_1016_j_ijhydene_2025_03_392 crossref_primary_10_1016_j_jiec_2024_12_037 crossref_primary_10_1002_advs_202412679 crossref_primary_10_1039_D5TA04563K crossref_primary_10_1002_slct_202503919 crossref_primary_10_1063_5_0291007 crossref_primary_10_1021_acs_chemmater_5c01781 crossref_primary_10_1021_acs_langmuir_5c02133 crossref_primary_10_1016_j_jallcom_2025_180701 crossref_primary_10_1021_acsomega_5c05206 crossref_primary_10_1007_s11426_024_2136_1 crossref_primary_10_1039_D5CP00243E crossref_primary_10_1016_j_apsusc_2025_163087 crossref_primary_10_1016_j_jelechem_2024_118872 crossref_primary_10_1021_acssuschemeng_5c00773 crossref_primary_10_1021_acs_jpcc_5c03709 crossref_primary_10_1002_adfm_202509426 crossref_primary_10_1002_smll_202406107 crossref_primary_10_1021_acsanm_4c06793 crossref_primary_10_1039_D4QI01789G crossref_primary_10_1002_adfm_202500944 crossref_primary_10_1039_D5CP01249J crossref_primary_10_1002_aenm_202403657 crossref_primary_10_1021_acsami_5c08374 crossref_primary_10_1039_D5NR00332F crossref_primary_10_1016_j_jmst_2025_03_046 crossref_primary_10_1016_j_mcat_2025_115313 crossref_primary_10_1002_adma_202411134 crossref_primary_10_1002_smll_202501833 crossref_primary_10_1039_D5TA05348J crossref_primary_10_1016_j_cej_2024_158950 crossref_primary_10_1016_j_cej_2024_154235 crossref_primary_10_1016_j_jelechem_2024_118532 crossref_primary_10_1016_j_ccr_2025_217071 crossref_primary_10_1002_adma_202500063 crossref_primary_10_26599_NR_2025_94907670 crossref_primary_10_1016_j_apcatb_2025_125326 crossref_primary_10_1088_2752_5724_adeac5 crossref_primary_10_1038_s44359_025_00061_1 crossref_primary_10_1002_slct_202404089 crossref_primary_10_1021_jacs_4c11445 crossref_primary_10_1016_j_ijhydene_2025_03_129 crossref_primary_10_1002_slct_202403155 crossref_primary_10_1039_D4EE02365J crossref_primary_10_26599_NR_2025_94907381 crossref_primary_10_1016_j_coelec_2024_101602 crossref_primary_10_1016_j_fuel_2025_135161 crossref_primary_10_1016_j_ijhydene_2025_150026 crossref_primary_10_1016_j_jallcom_2024_178137 crossref_primary_10_1002_anie_202502032 crossref_primary_10_1016_j_jallcom_2025_180847 crossref_primary_10_1016_j_jcis_2024_11_239 crossref_primary_10_1002_smll_202410752 crossref_primary_10_1016_j_nxener_2025_100407 crossref_primary_10_1016_j_jelechem_2024_118844 crossref_primary_10_1016_j_jssc_2025_125629 crossref_primary_10_1016_j_jcis_2025_138842 crossref_primary_10_1016_j_jcis_2025_137876 crossref_primary_10_1002_advs_202514301 crossref_primary_10_1002_smll_202410739 crossref_primary_10_1039_D5TA03125G crossref_primary_10_1039_D5NR00589B crossref_primary_10_1016_S1872_2067_25_64653_5 crossref_primary_10_1039_D4EE05559D crossref_primary_10_3390_nano15120917 crossref_primary_10_1016_j_cej_2025_161490 crossref_primary_10_1016_j_ijhydene_2025_02_243 crossref_primary_10_1016_j_cej_2025_159290 crossref_primary_10_3390_catal15060516 crossref_primary_10_1002_aenm_202403744 crossref_primary_10_1016_j_mssp_2025_109985 crossref_primary_10_1039_D5QI01196E crossref_primary_10_1007_s12598_024_03081_1 crossref_primary_10_1039_D4RA04644G crossref_primary_10_1016_j_mtener_2025_101847 crossref_primary_10_1016_j_ijhydene_2025_03_299 crossref_primary_10_1016_j_ijhydene_2025_151370 crossref_primary_10_1039_D4CC04822A crossref_primary_10_1002_cssc_202401553 crossref_primary_10_1002_smll_202504175 crossref_primary_10_1016_j_cej_2025_162340 crossref_primary_10_1038_s41467_025_57798_3 crossref_primary_10_1088_2752_5724_add415 crossref_primary_10_1021_acsanm_5c02814 crossref_primary_10_1016_j_ijhydene_2024_09_120 crossref_primary_10_3390_nano15171356 crossref_primary_10_1002_cctc_202402006 crossref_primary_10_1016_j_jcis_2024_12_005 crossref_primary_10_1039_D4GC02727B crossref_primary_10_1016_j_jpowsour_2025_236864 crossref_primary_10_1016_j_fuel_2025_134285 crossref_primary_10_1021_acs_langmuir_5c01579 crossref_primary_10_1021_acsanm_5c02669 crossref_primary_10_1016_j_jallcom_2025_181184 crossref_primary_10_1016_j_renene_2025_122663 crossref_primary_10_1021_acs_energyfuels_5c02796 crossref_primary_10_1016_j_ijhydene_2025_06_089 crossref_primary_10_1016_j_ijhydene_2025_04_479 crossref_primary_10_1016_j_jallcom_2024_176312 crossref_primary_10_1038_s41467_025_63361_x crossref_primary_10_1016_j_cclet_2025_110830 crossref_primary_10_1016_j_ijhydene_2025_03_436 crossref_primary_10_1002_anie_202502735 crossref_primary_10_1016_S1872_2067_24_60130_0 crossref_primary_10_1002_anie_202500678 crossref_primary_10_1016_j_fuel_2025_136602 crossref_primary_10_1039_D4QI01280A crossref_primary_10_1016_S1872_2067_25_64708_5 crossref_primary_10_1002_advs_202507657 crossref_primary_10_1016_j_jcis_2025_01_036 crossref_primary_10_1021_acs_energyfuels_5c02303 crossref_primary_10_1016_j_jcis_2025_138089 crossref_primary_10_1002_cctc_202500421 crossref_primary_10_1016_j_ijhydene_2025_150757 crossref_primary_10_1002_cctc_202500427 crossref_primary_10_1002_ange_202502032 crossref_primary_10_1002_inf2_70053 crossref_primary_10_1016_j_jcis_2025_138053 crossref_primary_10_1002_smtd_202401139 crossref_primary_10_1002_adfm_202515920 crossref_primary_10_1002_anie_202513970 crossref_primary_10_1080_14686996_2025_2520159 crossref_primary_10_1021_acs_iecr_5c00673 crossref_primary_10_1038_s41578_025_00826_x crossref_primary_10_1016_j_mattod_2025_03_003 crossref_primary_10_1002_adfm_202409306 crossref_primary_10_1002_cssc_202501163 crossref_primary_10_1021_acs_energyfuels_5c02321 crossref_primary_10_1016_j_apcata_2025_120399 crossref_primary_10_1016_j_jallcom_2024_177417 crossref_primary_10_1016_j_rser_2025_115570 crossref_primary_10_1002_smll_202406070 crossref_primary_10_1007_s11426_024_2262_8 crossref_primary_10_1002_smll_202505350 crossref_primary_10_1016_j_mtchem_2025_102666 crossref_primary_10_1002_cey2_708 crossref_primary_10_1002_advs_202509902 crossref_primary_10_3390_polym16223155 crossref_primary_10_1016_j_checat_2025_101332 crossref_primary_10_1039_D5TC00624D crossref_primary_10_1016_j_carbon_2025_120399 crossref_primary_10_1039_D5CC03058G crossref_primary_10_1016_j_jsamd_2024_100843 crossref_primary_10_1039_D5NJ00742A crossref_primary_10_1016_j_cej_2025_162097 crossref_primary_10_1016_j_jcis_2025_02_141 crossref_primary_10_1016_j_jmst_2025_03_023 crossref_primary_10_1016_j_molstruc_2025_142791 crossref_primary_10_1021_acssuschemeng_5c04488 crossref_primary_10_1002_adfm_202409849 crossref_primary_10_1016_j_ijhydene_2024_09_414 crossref_primary_10_1016_j_ijhydene_2025_151526 crossref_primary_10_1016_j_ijhydene_2025_150434 crossref_primary_10_1016_j_microc_2025_113566 crossref_primary_10_1016_j_cej_2024_156119 crossref_primary_10_1016_j_diamond_2025_112727 crossref_primary_10_1016_j_jcis_2025_137903 crossref_primary_10_1016_j_cej_2025_167661 crossref_primary_10_1016_j_cej_2025_161095 crossref_primary_10_1016_j_mcat_2024_114777 crossref_primary_10_1088_1361_6528_adaafa crossref_primary_10_1007_s11426_025_2810_3 crossref_primary_10_1002_adma_202420565 crossref_primary_10_1016_S1872_2067_25_64685_7 crossref_primary_10_1016_j_apsusc_2025_162807 crossref_primary_10_1002_ange_202425657 crossref_primary_10_1002_smll_202403845 crossref_primary_10_1007_s00604_024_06792_5 crossref_primary_10_1002_adma_202501113 crossref_primary_10_1002_celc_202400154 crossref_primary_10_1002_advs_202505418 crossref_primary_10_1016_j_checat_2025_101324 crossref_primary_10_1039_D5NJ01742D crossref_primary_10_1016_j_jcis_2025_01_251 crossref_primary_10_1021_acsaem_5c01390 crossref_primary_10_1021_acs_jpcc_5c02752 crossref_primary_10_1007_s12678_024_00913_7 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.chemrev.3c00332 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-6890 |
| ExternalDocumentID | 38517093 |
| Genre | Journal Article Review |
| GroupedDBID | --- -DZ -~X .DC .K2 29B 4.4 53G 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABPPZ ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ LG6 NPM P2P PQQKQ ROL RWL TAE TN5 UI2 UKR UPT VF5 VG9 W1F WH7 XSW YZZ ~02 7X8 ABUFD |
| ID | FETCH-LOGICAL-a406t-e223194a5ae4e89fc3f17c63862e344c1096d26e611beebad8f28d632b361e832 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 463 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001189990800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-6890 |
| IngestDate | Sun Nov 09 10:47:21 EST 2025 Mon Jul 21 06:04:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a406t-e223194a5ae4e89fc3f17c63862e344c1096d26e611beebad8f28d632b361e832 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4122-6255 0000-0003-1849-0418 |
| PMID | 38517093 |
| PQID | 2974003831 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2974003831 pubmed_primary_38517093 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-10 |
| PublicationDateYYYYMMDD | 2024-04-10 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Chemical reviews |
| PublicationTitleAlternate | Chem Rev |
| PublicationYear | 2024 |
| SSID | ssj0005527 |
| Score | 2.7557712 |
| SecondaryResourceType | review_article |
| Snippet | Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 3694 |
| Title | Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38517093 https://www.proquest.com/docview/2974003831 |
| Volume | 124 |
| WOSCitedRecordID | wos001189990800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcHtYJe3Je6MYLX0MzSSeYkLi09aC2o2FuYLVjQtDa10G_vmyz0JAheckogeZk37zfvzbw_QlepdpEVXAdG-GyVb0OopAoDlTqvV2gBaYuDwg9Rvx8Ph3JQJdzyaltlPScWE7UdG58jb1EAX1_GYuR68hV41ShfXa0kNFZRgwHKeMeMhstu4e1SshVCFCyRYhnWXYcoaSkDv_TdfXqhF2a8ohn9nTGLWNPd_u9b7qCtijLxTTksdtGKy_bQxl0t7raP7m9HPqKViUDcKbVwilTOIp_lGEgWP819uuoDq8zi3sIf7MJvAKZT_AzcWuyWPkCv3c7LXS-oBBUCBXF7FjhgASK5aivHXSxTw1ISGfBAQR3j3BBYz1gqnCBEO6eVjVMaW8GoZoI48P1DtJaNM3eMMBeMCxXxVAvNY7iZUSuJjdrSUidj3USXtYES-DRfhVCZG3_nydJETXRUWjmZlJ01Egb8F4WSnfzh6VO0SQEwfGWHhGeokYK7unO0buazUT69KEYCXPuDxx-7-76m |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+Electrocatalysts+for+Overall+and+Hybrid+Water+Splitting&rft.jtitle=Chemical+reviews&rft.au=Quan%2C+Li&rft.au=Jiang%2C+Hui&rft.au=Mei%2C+Guoliang&rft.au=Sun%2C+Yujie&rft.date=2024-04-10&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=124&rft.issue=7&rft.spage=3694&rft_id=info:doi/10.1021%2Facs.chemrev.3c00332&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon |