Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry
When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecul...
Uloženo v:
| Vydáno v: | Journal of chemical theory and computation Ročník 13; číslo 9; s. 4324 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
12.09.2017
|
| ISSN: | 1549-9626, 1549-9626 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry. |
|---|---|
| AbstractList | When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry. When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry. |
| Author | Groenhof, Gerrit Toppari, J Jussi Luk, Hoi Ling Feist, Johannes |
| Author_xml | – sequence: 1 givenname: Hoi Ling surname: Luk fullname: Luk, Hoi Ling – sequence: 2 givenname: Johannes surname: Feist fullname: Feist, Johannes organization: Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , 28049 Madrid, Spain – sequence: 3 givenname: J Jussi orcidid: 0000-0002-1698-5591 surname: Toppari fullname: Toppari, J Jussi – sequence: 4 givenname: Gerrit orcidid: 0000-0001-8148-5334 surname: Groenhof fullname: Groenhof, Gerrit |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28749690$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81LxDAQxYOsuLvVuyfp0UtrmnQnyVHrJ-yioJ5LkqaYJW3WJj30v7fgCh6Gebx5vB-zRove9wahywLnBSbFjdQh3-uoc6YwppyfoFWxKUUmgMDin16idQj7OUJLQs_QknBWChB4he52o4s2aOlMuvPO6NHJIb2fetlZHdJ3281GtL4PqW_TNz9fbfS91Wn1ZTob4jCdo9NWumAujjtBn48PH9Vztn19eqlut5ksMcQMBCk1UAObViguWcuEbKihHFrGgDFFCSGmAUZbzQrCG8EVKKEa3oBkXJEEXf_2Hgb_PZoQ65mvjXOyN34MdTEDABOYJ0FXx-ioOtPUh8F2cpjqv7_JD4rlXVo |
| CitedBy_id | crossref_primary_10_1002_adfm_201901317 crossref_primary_10_1063_5_0224779 crossref_primary_10_1088_1367_2630_ab8264 crossref_primary_10_1103_PhysRevResearch_6_033283 crossref_primary_10_1038_s41467_018_06971_y crossref_primary_10_1146_annurev_physchem_090519_042621 crossref_primary_10_1002_cphc_202300628 crossref_primary_10_1002_wcms_1665 crossref_primary_10_1038_s42005_022_00892_5 crossref_primary_10_1103_PhysRevResearch_6_013222 crossref_primary_10_1364_JOSAB_36_000E88 crossref_primary_10_1063_5_0271753 crossref_primary_10_1063_5_0251767 crossref_primary_10_1063_5_0012723 crossref_primary_10_1080_00268976_2023_2272691 crossref_primary_10_1002_solr_202100308 crossref_primary_10_1063_5_0130287 crossref_primary_10_1002_anie_201908876 crossref_primary_10_1016_j_chemphys_2018_02_008 crossref_primary_10_1038_s41467_024_50532_5 crossref_primary_10_1002_jcc_26369 crossref_primary_10_1021_acs_jctc_5c00911 crossref_primary_10_1002_wcms_1417 crossref_primary_10_1021_acs_jctc_4c01652 crossref_primary_10_1038_s41467_023_42067_y crossref_primary_10_1016_j_bbrc_2023_02_025 crossref_primary_10_1038_s42005_020_00424_z crossref_primary_10_1088_1367_2630_ab3fcc crossref_primary_10_1016_j_matchemphys_2025_130854 crossref_primary_10_1063_5_0033773 crossref_primary_10_1002_advs_202302650 crossref_primary_10_1002_cplu_202400020 crossref_primary_10_1038_s41467_019_11315_5 crossref_primary_10_1063_5_0037853 crossref_primary_10_1063_5_0094956 crossref_primary_10_1002_ange_201908876 crossref_primary_10_1039_D0SC05164K crossref_primary_10_1111_wcms_70039 crossref_primary_10_3390_cryst12020248 crossref_primary_10_1063_5_0283096 crossref_primary_10_1103_PhysRevX_15_021040 crossref_primary_10_1038_s41467_022_31703_8 crossref_primary_10_1515_nanoph_2019_0110 crossref_primary_10_1029_2021JB023681 crossref_primary_10_1021_acs_jpca_5c01166 crossref_primary_10_1021_jacs_2c10170 crossref_primary_10_1016_j_chempr_2019_11_001 crossref_primary_10_1016_j_chemphys_2017_12_017 crossref_primary_10_1016_j_jcp_2023_111920 crossref_primary_10_1002_jrs_6004 crossref_primary_10_1515_nanoph_2023_0684 crossref_primary_10_1002_wcms_1684 crossref_primary_10_1103_PhysRevX_9_021057 crossref_primary_10_1073_pnas_2009272117 crossref_primary_10_1103_x5q3_tm1q crossref_primary_10_1038_s41570_022_00368_8 crossref_primary_10_1039_D3NR01108A crossref_primary_10_1063_5_0216787 crossref_primary_10_1039_C8SC01043A crossref_primary_10_1021_acs_jpclett_5c01391 crossref_primary_10_1080_00268976_2019_1665199 crossref_primary_10_1073_pnas_2219223120 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.jctc.7b00388 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| ExternalDocumentID | 28749690 |
| Genre | Journal Article |
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ EJD F5P GGK GNL IH9 J9A JG~ NPM P2P RNS ROL UI2 VF5 VG9 W1F 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a406t-6924c63e65f9b8a7f79ad3e386f77677b3222ed673fc7128d98b6b9bd8d6a78b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 143 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000410867500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-9626 |
| IngestDate | Thu Oct 02 06:58:30 EDT 2025 Thu Jan 02 23:09:37 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a406t-6924c63e65f9b8a7f79ad3e386f77677b3222ed673fc7128d98b6b9bd8d6a78b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1698-5591 0000-0001-8148-5334 |
| OpenAccessLink | https://jyx.jyu.fi/bitstreams/4dbd31dd-dcda-495e-a7c0-4fb34a5cefe1/download |
| PMID | 28749690 |
| PQID | 1924602660 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1924602660 pubmed_primary_28749690 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-12 |
| PublicationDateYYYYMMDD | 2017-09-12 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationTitleAlternate | J Chem Theory Comput |
| PublicationYear | 2017 |
| SSID | ssj0033423 |
| Score | 2.6096735 |
| Snippet | When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4324 |
| Title | Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28749690 https://www.proquest.com/docview/1924602660 |
| Volume | 13 |
| WOSCitedRecordID | wos000410867500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qBb34ftQXEbxuazfbPE6i1eKlpaBCb0ueUMHd6lZ_vzP7qBcPgpe9ZRkmk3wzmeT7CLkKtm_xwWYUS86ixIYQ6cB5FPds7CyUFJq7UmxCjMdyOlWT-sCtqK9VNntiuVG73OIZeRcLBZRL4tc38_cIVaOwu1pLaKySFoNUBq90iemyi8CQ3a7kS02QhTJu2pQAa11ti86rXdiOwLiudVd-TTBLoBlu_9fEHbJVp5j0toqJXbLisz2yMWiU3fbJXfnqtoDZ8XTUyOPS-0qbvqBPs7da06ugeaATLH5h3WczS5c_OSAvw4fnwWNUaylEGiB7EXGwzXLmeT8oI7UIQmnHPJM8IJ-PMNhx8Y4LFqwAzHJKGm6UcdJxLaSJD8lalmf-mFDIeQzjygsYkojQN0IpDVVi0Mb1Eifb5LJxTwo2YQNCZz7_LNIfB7XJUeXjdF6RaqTIu6-gVD_5w-hTshkjupZKDmekFWCl-nOybr_AeR8XZRDAdzwZfQNdyLzW |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Molecular+Dynamics+Simulations+of+Polaritonic+Chemistry&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Luk%2C+Hoi+Ling&rft.au=Feist%2C+Johannes&rft.au=Toppari%2C+J+Jussi&rft.au=Groenhof%2C+Gerrit&rft.date=2017-09-12&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=13&rft.issue=9&rft.spage=4324&rft_id=info:doi/10.1021%2Facs.jctc.7b00388&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon |