Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry

When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of chemical theory and computation Ročník 13; číslo 9; s. 4324
Hlavní autoři: Luk, Hoi Ling, Feist, Johannes, Toppari, J Jussi, Groenhof, Gerrit
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 12.09.2017
ISSN:1549-9626, 1549-9626
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.
AbstractList When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.
When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.
Author Groenhof, Gerrit
Toppari, J Jussi
Luk, Hoi Ling
Feist, Johannes
Author_xml – sequence: 1
  givenname: Hoi Ling
  surname: Luk
  fullname: Luk, Hoi Ling
– sequence: 2
  givenname: Johannes
  surname: Feist
  fullname: Feist, Johannes
  organization: Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , 28049 Madrid, Spain
– sequence: 3
  givenname: J Jussi
  orcidid: 0000-0002-1698-5591
  surname: Toppari
  fullname: Toppari, J Jussi
– sequence: 4
  givenname: Gerrit
  orcidid: 0000-0001-8148-5334
  surname: Groenhof
  fullname: Groenhof, Gerrit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28749690$$D View this record in MEDLINE/PubMed
BookMark eNpNj81LxDAQxYOsuLvVuyfp0UtrmnQnyVHrJ-yioJ5LkqaYJW3WJj30v7fgCh6Gebx5vB-zRove9wahywLnBSbFjdQh3-uoc6YwppyfoFWxKUUmgMDin16idQj7OUJLQs_QknBWChB4he52o4s2aOlMuvPO6NHJIb2fetlZHdJ3281GtL4PqW_TNz9fbfS91Wn1ZTob4jCdo9NWumAujjtBn48PH9Vztn19eqlut5ksMcQMBCk1UAObViguWcuEbKihHFrGgDFFCSGmAUZbzQrCG8EVKKEa3oBkXJEEXf_2Hgb_PZoQ65mvjXOyN34MdTEDABOYJ0FXx-ioOtPUh8F2cpjqv7_JD4rlXVo
CitedBy_id crossref_primary_10_1002_adfm_201901317
crossref_primary_10_1063_5_0224779
crossref_primary_10_1088_1367_2630_ab8264
crossref_primary_10_1103_PhysRevResearch_6_033283
crossref_primary_10_1038_s41467_018_06971_y
crossref_primary_10_1146_annurev_physchem_090519_042621
crossref_primary_10_1002_cphc_202300628
crossref_primary_10_1002_wcms_1665
crossref_primary_10_1038_s42005_022_00892_5
crossref_primary_10_1103_PhysRevResearch_6_013222
crossref_primary_10_1364_JOSAB_36_000E88
crossref_primary_10_1063_5_0271753
crossref_primary_10_1063_5_0251767
crossref_primary_10_1063_5_0012723
crossref_primary_10_1080_00268976_2023_2272691
crossref_primary_10_1002_solr_202100308
crossref_primary_10_1063_5_0130287
crossref_primary_10_1002_anie_201908876
crossref_primary_10_1016_j_chemphys_2018_02_008
crossref_primary_10_1038_s41467_024_50532_5
crossref_primary_10_1002_jcc_26369
crossref_primary_10_1021_acs_jctc_5c00911
crossref_primary_10_1002_wcms_1417
crossref_primary_10_1021_acs_jctc_4c01652
crossref_primary_10_1038_s41467_023_42067_y
crossref_primary_10_1016_j_bbrc_2023_02_025
crossref_primary_10_1038_s42005_020_00424_z
crossref_primary_10_1088_1367_2630_ab3fcc
crossref_primary_10_1016_j_matchemphys_2025_130854
crossref_primary_10_1063_5_0033773
crossref_primary_10_1002_advs_202302650
crossref_primary_10_1002_cplu_202400020
crossref_primary_10_1038_s41467_019_11315_5
crossref_primary_10_1063_5_0037853
crossref_primary_10_1063_5_0094956
crossref_primary_10_1002_ange_201908876
crossref_primary_10_1039_D0SC05164K
crossref_primary_10_1111_wcms_70039
crossref_primary_10_3390_cryst12020248
crossref_primary_10_1063_5_0283096
crossref_primary_10_1103_PhysRevX_15_021040
crossref_primary_10_1038_s41467_022_31703_8
crossref_primary_10_1515_nanoph_2019_0110
crossref_primary_10_1029_2021JB023681
crossref_primary_10_1021_acs_jpca_5c01166
crossref_primary_10_1021_jacs_2c10170
crossref_primary_10_1016_j_chempr_2019_11_001
crossref_primary_10_1016_j_chemphys_2017_12_017
crossref_primary_10_1016_j_jcp_2023_111920
crossref_primary_10_1002_jrs_6004
crossref_primary_10_1515_nanoph_2023_0684
crossref_primary_10_1002_wcms_1684
crossref_primary_10_1103_PhysRevX_9_021057
crossref_primary_10_1073_pnas_2009272117
crossref_primary_10_1103_x5q3_tm1q
crossref_primary_10_1038_s41570_022_00368_8
crossref_primary_10_1039_D3NR01108A
crossref_primary_10_1063_5_0216787
crossref_primary_10_1039_C8SC01043A
crossref_primary_10_1021_acs_jpclett_5c01391
crossref_primary_10_1080_00268976_2019_1665199
crossref_primary_10_1073_pnas_2219223120
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.jctc.7b00388
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
ExternalDocumentID 28749690
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
J9A
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a406t-6924c63e65f9b8a7f79ad3e386f77677b3222ed673fc7128d98b6b9bd8d6a78b2
IEDL.DBID 7X8
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000410867500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-9626
IngestDate Thu Oct 02 06:58:30 EDT 2025
Thu Jan 02 23:09:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a406t-6924c63e65f9b8a7f79ad3e386f77677b3222ed673fc7128d98b6b9bd8d6a78b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1698-5591
0000-0001-8148-5334
OpenAccessLink https://jyx.jyu.fi/bitstreams/4dbd31dd-dcda-495e-a7c0-4fb34a5cefe1/download
PMID 28749690
PQID 1924602660
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1924602660
pubmed_primary_28749690
PublicationCentury 2000
PublicationDate 2017-09-12
PublicationDateYYYYMMDD 2017-09-12
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J Chem Theory Comput
PublicationYear 2017
SSID ssj0033423
Score 2.6096735
Snippet When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4324
Title Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry
URI https://www.ncbi.nlm.nih.gov/pubmed/28749690
https://www.proquest.com/docview/1924602660
Volume 13
WOSCitedRecordID wos000410867500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qBb34ftQXEbxuazfbPE6i1eKlpaBCb0ueUMHd6lZ_vzP7qBcPgpe9ZRkmk3wzmeT7CLkKtm_xwWYUS86ixIYQ6cB5FPds7CyUFJq7UmxCjMdyOlWT-sCtqK9VNntiuVG73OIZeRcLBZRL4tc38_cIVaOwu1pLaKySFoNUBq90iemyi8CQ3a7kS02QhTJu2pQAa11ti86rXdiOwLiudVd-TTBLoBlu_9fEHbJVp5j0toqJXbLisz2yMWiU3fbJXfnqtoDZ8XTUyOPS-0qbvqBPs7da06ugeaATLH5h3WczS5c_OSAvw4fnwWNUaylEGiB7EXGwzXLmeT8oI7UIQmnHPJM8IJ-PMNhx8Y4LFqwAzHJKGm6UcdJxLaSJD8lalmf-mFDIeQzjygsYkojQN0IpDVVi0Mb1Eifb5LJxTwo2YQNCZz7_LNIfB7XJUeXjdF6RaqTIu6-gVD_5w-hTshkjupZKDmekFWCl-nOybr_AeR8XZRDAdzwZfQNdyLzW
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Molecular+Dynamics+Simulations+of+Polaritonic+Chemistry&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Luk%2C+Hoi+Ling&rft.au=Feist%2C+Johannes&rft.au=Toppari%2C+J+Jussi&rft.au=Groenhof%2C+Gerrit&rft.date=2017-09-12&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=13&rft.issue=9&rft.spage=4324&rft_id=info:doi/10.1021%2Facs.jctc.7b00388&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon