Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites
Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an application of artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in multiple wells located over a river b...
Saved in:
| Published in: | Water resources management Vol. 29; no. 15; pp. 5521 - 5532 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.12.2015
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-4741, 1573-1650 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an application of artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in multiple wells located over a river basin. Gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm was employed to predict groundwater levels 1 week ahead at 18 sites over the study area. Based on the domain knowledge and pertinent statistical analysis, appropriate set of inputs for the ANN model was selected. This consisted of weekly rainfall, pan evaporation, river stage, water level in the surface drain, pumping rates of 18 sites and groundwater levels of 18 sites in the previous week, which led to 40 input nodes and 18 output nodes. During training of the ANN model, the optimum number of hidden neurons was found to be 40 and the model performance was found satisfactory (RMSE = 0.2397 m,
r
= 0.9861, and NSE = 0.9722). During testing of the model, the values of statistical indicators RMSE, r and NSE were 0.4118 m, 0.9715 and 0.9288, respectively. Using the same inputs, the developed ANN model was further used for forecasting groundwater levels 2, 3 and 4 weeks ahead in 18 tubewells. The model performance was better while forecasting groundwater levels at shorter lead times (up to 2 weeks) than that for larger lead times. |
|---|---|
| AbstractList | Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an application of artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in multiple wells located over a river basin. Gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm was employed to predict groundwater levels 1 week ahead at 18 sites over the study area. Based on the domain knowledge and pertinent statistical analysis, appropriate set of inputs for the ANN model was selected. This consisted of weekly rainfall, pan evaporation, river stage, water level in the surface drain, pumping rates of 18 sites and groundwater levels of 18 sites in the previous week, which led to 40 input nodes and 18 output nodes. During training of the ANN model, the optimum number of hidden neurons was found to be 40 and the model performance was found satisfactory (RMSE=0.2397 m, r=0.9861, and NSE=0.9722). During testing of the model, the values of statistical indicators RMSE, r and NSE were 0.4118 m, 0.9715 and 0.9288, respectively. Using the same inputs, the developed ANN model was further used for forecasting groundwater levels 2, 3 and 4 weeks ahead in 18 tubewells. The model performance was better while forecasting groundwater levels at shorter lead times (up to 2 weeks) than that for larger lead times. Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an application of artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in multiple wells located over a river basin. Gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm was employed to predict groundwater levels 1 week ahead at 18 sites over the study area. Based on the domain knowledge and pertinent statistical analysis, appropriate set of inputs for the ANN model was selected. This consisted of weekly rainfall, pan evaporation, river stage, water level in the surface drain, pumping rates of 18 sites and groundwater levels of 18 sites in the previous week, which led to 40 input nodes and 18 output nodes. During training of the ANN model, the optimum number of hidden neurons was found to be 40 and the model performance was found satisfactory (RMSE = 0.2397 m, r = 0.9861, and NSE = 0.9722). During testing of the model, the values of statistical indicators RMSE, r and NSE were 0.4118 m, 0.9715 and 0.9288, respectively. Using the same inputs, the developed ANN model was further used for forecasting groundwater levels 2, 3 and 4 weeks ahead in 18 tubewells. The model performance was better while forecasting groundwater levels at shorter lead times (up to 2 weeks) than that for larger lead times. |
| Author | Jha, Madan K. Raul, S. K. Sudheer, K. P. Mohanty, S. Panda, R. K. |
| Author_xml | – sequence: 1 givenname: S. surname: Mohanty fullname: Mohanty, S. email: smohanty.wtcer@gmail.com organization: ICAR-Indian Institute of Water Management – sequence: 2 givenname: Madan K. surname: Jha fullname: Jha, Madan K. organization: AgFE Department, IIT Kharagpur – sequence: 3 givenname: S. K. surname: Raul fullname: Raul, S. K. organization: College of Agricultural Engineering &Technology, AAU – sequence: 4 givenname: R. K. surname: Panda fullname: Panda, R. K. organization: ICAR-Indian Institute of Water Management – sequence: 5 givenname: K. P. surname: Sudheer fullname: Sudheer, K. P. organization: Department of Civil Engineering, IIT Madras |
| BookMark | eNqFkU1PVDEUhhsDiQP4A9w1cePmSr8_lhMiaDLoAonLptZTLNy5HdteCP_ejteFIVE2PZvnOadv3iN0MOUJEHpNyTtKiD6tlDJlB0LlQClng3qBVlRqPlAlyQFaEcvIILSgL9FRrbeEdMuSFWrXNU03eF1aiikkP-JPMJffoz3kcofXu13JPvzAMRd8lbbz2PwEea74PBcIvra9nyP-CnA3PuKLkufp-4NvUPAG7mGs2Dd82bW0G6FvaFBP0GH0Y4VXf-Yxuj5__-Xsw7D5fPHxbL0ZvCCyDVHYKKOl3mvQxhjOAkhlg-WhBzHE9leHaLS3gXEmKJDIldVKfrOWR8uP0dtlb4_wc4ba3DbVAOO4JHDUSMkVE4I8j2rODDdCsY6-eYLe5rlMPUinmDCaKaY7RRcqlFxrgeh2JW19eXSUuH1lbqnM9crcvjKnuqOfOCE131KeWvFp_K_JFrP2K9MNlL_-9E_pF6Fhq84 |
| CitedBy_id | crossref_primary_10_1007_s11269_021_02787_6 crossref_primary_10_1007_s00704_020_03263_8 crossref_primary_10_1007_s13201_025_02361_0 crossref_primary_10_1007_s40899_025_01254_z crossref_primary_10_1007_s10666_023_09938_6 crossref_primary_10_3390_w15234129 crossref_primary_10_3390_app14167358 crossref_primary_10_3390_w14060862 crossref_primary_10_1007_s11269_017_1757_8 crossref_primary_10_1016_j_ijforecast_2022_01_008 crossref_primary_10_1016_j_scitotenv_2019_135539 crossref_primary_10_2166_wcc_2022_198 crossref_primary_10_1016_j_agwat_2021_107032 crossref_primary_10_1016_j_jhydrol_2016_08_006 crossref_primary_10_1080_02626667_2021_1968404 crossref_primary_10_1080_02626667_2019_1651933 crossref_primary_10_5004_dwt_2019_23458 crossref_primary_10_5194_hess_28_4407_2024 crossref_primary_10_1007_s00704_021_03825_4 crossref_primary_10_3389_frwa_2023_1241451 crossref_primary_10_1007_s11269_016_1453_0 crossref_primary_10_1016_j_envres_2022_113747 crossref_primary_10_1007_s11269_017_1811_6 crossref_primary_10_1016_j_jhydrol_2023_130359 crossref_primary_10_3390_hydrology6010019 crossref_primary_10_1007_s13369_019_04200_2 crossref_primary_10_1007_s40430_017_0956_9 crossref_primary_10_1007_s43832_024_00073_1 crossref_primary_10_5194_hess_25_3555_2021 crossref_primary_10_3390_su12104023 crossref_primary_10_1088_1755_1315_837_1_012010 crossref_primary_10_1016_j_pce_2024_103603 crossref_primary_10_3390_w15061182 crossref_primary_10_1007_s10668_021_01361_9 crossref_primary_10_3390_w11010009 crossref_primary_10_1007_s11269_017_1726_2 crossref_primary_10_2166_ws_2020_015 crossref_primary_10_1007_s11269_018_2126_y crossref_primary_10_1080_02626667_2022_2063724 crossref_primary_10_2166_nh_2016_396 crossref_primary_10_1016_j_jafrearsci_2021_104244 crossref_primary_10_1080_15715124_2022_2079653 crossref_primary_10_1016_j_jhydrol_2018_12_037 crossref_primary_10_2166_hydro_2017_102 crossref_primary_10_5194_hess_22_4771_2018 crossref_primary_10_1007_s10661_024_12357_z crossref_primary_10_1051_e3sconf_201911803018 crossref_primary_10_1007_s11069_017_2767_9 crossref_primary_10_1016_j_jhydrol_2018_02_005 crossref_primary_10_1007_s00521_022_07009_7 crossref_primary_10_1007_s11600_022_00827_2 crossref_primary_10_3390_w11091879 crossref_primary_10_3390_w11020391 crossref_primary_10_1016_j_heha_2024_100114 crossref_primary_10_2166_wcc_2022_339 crossref_primary_10_3390_w13213130 crossref_primary_10_1007_s00704_023_04624_9 crossref_primary_10_1007_s10661_021_08955_w crossref_primary_10_1109_ACCESS_2021_3130306 crossref_primary_10_1016_j_jhydrol_2017_10_015 crossref_primary_10_1016_j_jhydrol_2019_124115 crossref_primary_10_2166_ws_2021_066 crossref_primary_10_1007_s11270_024_07247_6 crossref_primary_10_3390_hydrology7030059 crossref_primary_10_1007_s10661_023_10971_x crossref_primary_10_1007_s10706_018_0713_6 crossref_primary_10_3390_w15061085 crossref_primary_10_1016_j_gsd_2024_101142 crossref_primary_10_5194_hess_22_2987_2018 crossref_primary_10_1007_s11269_016_1418_3 crossref_primary_10_1007_s42452_025_06817_5 crossref_primary_10_5194_hess_24_5759_2020 crossref_primary_10_1007_s00704_017_2244_0 crossref_primary_10_3390_su12218932 crossref_primary_10_2166_nh_2019_127 crossref_primary_10_1007_s10661_020_08332_z crossref_primary_10_1016_j_gsd_2022_100882 crossref_primary_10_1111_wej_12390 crossref_primary_10_3390_w15173118 crossref_primary_10_1016_j_agwat_2025_109729 crossref_primary_10_2166_hydro_2018_002 crossref_primary_10_1007_s11053_020_09634_2 crossref_primary_10_1007_s11053_018_9403_6 crossref_primary_10_1007_s10661_022_10277_4 crossref_primary_10_1007_s12517_022_09900_y crossref_primary_10_1007_s13201_018_0742_6 crossref_primary_10_1016_j_jhydrol_2020_124957 crossref_primary_10_3389_frwa_2020_573034 crossref_primary_10_1016_j_jhydrol_2019_123948 |
| Cites_doi | 10.1007/s11269-014-0810-0 10.1007/s11269-014-0802-0 10.1029/2000WR900368 10.1016/j.watres.2003.09.026 10.1111/j.1745-6584.1992.tb01787.x 10.1016/j.jhydrol.2010.12.016 10.1061/(ASCE)1084-0699(2000)5:2(115) 10.1029/98WR00006 10.1016/S0022-1694(02)00103-8 10.1016/j.jhydrol.2010.09.003 10.1007/978-94-015-9341-0 10.1016/j.jhydrol.2004.12.001 10.1061/(ASCE)0887-3801(2003)17:4(281) 10.1007/s00254-006-0452-5 10.1016/j.jappgeo.2014.05.010 10.1007/s10040-008-0279-0 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1016/j.jhydrol.2010.11.002 10.1061/(ASCE)1084-0699(2003)8:6(348) 10.1061/(ASCE)0733-9496(2002)128:5(370) 10.1007/s11269-006-4007-z 10.1016/S1364-8152(99)00007-9 10.1007/s11269-009-9527-x 10.1016/j.jhydrol.2007.03.017 10.1007/s10040-013-1029-5 10.1111/j.1745-6584.2005.0003.x 10.1016/S1364-8152(98)00019-X 10.1016/j.jhydrol.2013.07.008 10.1016/j.engappai.2012.02.009 10.1016/j.jhydrol.2005.05.028 10.1016/S1462-0758(01)00045-0 10.1002/hyp.6686 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2015 |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2015 |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.0 L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7QO 7TG 7U6 KL. P64 |
| DOI | 10.1007/s11269-015-1132-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Database ProQuest Central Business Premium Collection Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts Biotechnology Research Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) Biotechnology and BioEngineering Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 5532 |
| ExternalDocumentID | 3843066681 10_1007_s11269_015_1132_6 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.0 L.G PKEHL PQEST PQUKI Q9U SOI 7QO 7TG 7U6 KL. P64 |
| ID | FETCH-LOGICAL-a405t-f49f5f91aa7e788832ce569c93c7418097417cf87a9c23241e0f369765b993f93 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363259500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-4741 |
| IngestDate | Sun Nov 09 09:07:19 EST 2025 Tue Oct 07 10:18:59 EDT 2025 Tue Nov 04 22:07:49 EST 2025 Sat Nov 29 02:11:42 EST 2025 Tue Nov 18 21:12:08 EST 2025 Fri Feb 21 02:26:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | Neural network modeling Backpropagation GDX algorithm Alluvial aquifer system Groundwater-level forecasting |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a405t-f49f5f91aa7e788832ce569c93c7418097417cf87a9c23241e0f369765b993f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1724872627 |
| PQPubID | 54174 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1855362440 proquest_miscellaneous_1732838462 proquest_journals_1724872627 crossref_primary_10_1007_s11269_015_1132_6 crossref_citationtrail_10_1007_s11269_015_1132_6 springer_journals_10_1007_s11269_015_1132_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20151200 2015-12-00 20151201 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 20151200 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2015 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Maier, Dandy (CR20) 2000; 15 (CR30) 2000; 5 Uddameri (CR31) 2007; 51 Kuo, Liu, Lin (CR18) 2004; 38 Coulibaly, Anctil, Aravena, Bobee (CR7) 2001; 37 Daliakopoulos, Coulibaly, Tsanis (CR8) 2005; 309 Emamgholizadeh, Moslemi, Karami (CR9) 2014; 28 Morshed, Kaluarachchi (CR23) 1998; 34 Aziz, Wong (CR1) 1992; 30 Viveros, Parra (CR32) 2014; 107 Yoon, Jun, Hyun, Bae, Lee (CR33) 2011; 396 Shigdi, Garcia (CR27) 2003; 17 Mohanty, Jha, Kumar, Sudheer (CR22) 2010; 24 Karahan, Ayvaz (CR16) 2008; 16 Krishna, Rao, Vijaya (CR17) 2008; 22 Coppola, Szidarovszky, Poulton, Charles (CR5) 2003; 8 Balkhair (CR2) 2002; 265 Haykin (CR13) 1999 Banerjee, Singh, Chattopadhyay, Chandra, Singh (CR3) 2011; 398 Hong, Rosen (CR15) 2001; 3 (CR29) 2000; 5 Maier, Dandy (CR19) 1998; 13 Sahoo, Jha (CR25) 2013; 21 Samani, Gohari-Moghadam, Safavi (CR26) 2007; 340 Coppola, Rana, Poulton, Szidarovszky, Uhl (CR6) 2005; 43 Milot, Rodriguez, Serodes (CR21) 2002; 128 Gobindraju, Ramachandra Rao (CR12) 2000 Taormina, Chau, Sethi (CR28) 2012; 25 Garcia, Shigdi (CR10) 2006; 318 Ghose, Panda, Swain (CR11) 2010; 394 Nayak, Rao, Sudheer (CR24) 2006; 20 He, Zhang, Guo, Zhao (CR14) 2014; 28 Chang, Chen, Liu, Liao, Liao (CR4) 2013; 499 A Shigdi (1132_CR27) 2003; 17 P Banerjee (1132_CR3) 2011; 398 F Chang (1132_CR4) 2013; 499 M Samani (1132_CR26) 2007; 340 S Haykin (1132_CR13) 1999 HR Maier (1132_CR19) 1998; 13 ARA Aziz (1132_CR1) 1992; 30 EA Coppola (1132_CR6) 2005; 43 H Yoon (1132_CR33) 2011; 396 S Emamgholizadeh (1132_CR9) 2014; 28 Z He (1132_CR14) 2014; 28 RS Gobindraju (1132_CR12) 2000 IN Daliakopoulos (1132_CR8) 2005; 309 P Coulibaly (1132_CR7) 2001; 37 S Mohanty (1132_CR22) 2010; 24 V Uddameri (1132_CR31) 2007; 51 UI Viveros (1132_CR32) 2014; 107 H Karahan (1132_CR16) 2008; 16 KS Balkhair (1132_CR2) 2002; 265 V Kuo (1132_CR18) 2004; 38 E Coppola (1132_CR5) 2003; 8 PC Nayak (1132_CR24) 2006; 20 J Milot (1132_CR21) 2002; 128 J Morshed (1132_CR23) 1998; 34 B Krishna (1132_CR17) 2008; 22 S Sahoo (1132_CR25) 2013; 21 HR Maier (1132_CR20) 2000; 15 R Taormina (1132_CR28) 2012; 25 YS Hong (1132_CR15) 2001; 3 ASCE Task Committee (1132_CR29) 2000; 5 LA Garcia (1132_CR10) 2006; 318 DK Ghose (1132_CR11) 2010; 394 ASCE Task Committee (1132_CR30) 2000; 5 |
| References_xml | – volume: 28 start-page: 5433 year: 2014 end-page: 5446 ident: CR9 article-title: Prediction the groundwater level of Bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) publication-title: Water Resour Manag doi: 10.1007/s11269-014-0810-0 – volume: 28 start-page: 5297 year: 2014 end-page: 5317 ident: CR14 article-title: Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions publication-title: Water Resour Manag doi: 10.1007/s11269-014-0802-0 – volume: 37 start-page: 885 issue: 4 year: 2001 end-page: 896 ident: CR7 article-title: Artificial neural network modeling of water table depth fluctuations publication-title: Water Resour Res doi: 10.1029/2000WR900368 – volume: 38 start-page: 148 issue: 1 year: 2004 end-page: 158 ident: CR18 article-title: Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan publication-title: Water Res doi: 10.1016/j.watres.2003.09.026 – volume: 30 start-page: 164 issue: 2 year: 1992 end-page: 166 ident: CR1 article-title: Neural network approach to the determination of aquifer parameters publication-title: Ground Water doi: 10.1111/j.1745-6584.1992.tb01787.x – volume: 398 start-page: 212 issue: 3–4 year: 2011 end-page: 220 ident: CR3 article-title: Artificial neural network model as a potential alternative for groundwater salinity forecasting publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.12.016 – volume: 5 start-page: 115 issue: 2 year: 2000 end-page: 123 ident: CR29 article-title: Artificial neural networks in hydrology- I: preliminary concepts publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – year: 1999 ident: CR13 publication-title: Neural networks: a comprehensive foundation – volume: 34 start-page: 1101 issue: 5 year: 1998 end-page: 1113 ident: CR23 article-title: Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery publication-title: Water Resour Res doi: 10.1029/98WR00006 – volume: 265 start-page: 118 issue: 1 year: 2002 end-page: 128 ident: CR2 article-title: Aquifer parameters determination for large diameter wells using neural network approach publication-title: J Hydrol doi: 10.1016/S0022-1694(02)00103-8 – volume: 394 start-page: 296 year: 2010 end-page: 304 ident: CR11 article-title: Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.09.003 – year: 2000 ident: CR12 publication-title: Artificial neural network in hydrology doi: 10.1007/978-94-015-9341-0 – volume: 309 start-page: 229 year: 2005 end-page: 240 ident: CR8 article-title: Groundwater level forecasting using artificial neural network publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.12.001 – volume: 17 start-page: 281 issue: 4 year: 2003 end-page: 289 ident: CR27 article-title: Parameter estimation in groundwater hydrology using artificial neural networks publication-title: J Comput Civ Eng ASCE doi: 10.1061/(ASCE)0887-3801(2003)17:4(281) – volume: 51 start-page: 885 year: 2007 end-page: 895 ident: CR31 article-title: Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas publication-title: Environ Geol doi: 10.1007/s00254-006-0452-5 – volume: 107 start-page: 45 year: 2014 end-page: 54 ident: CR32 article-title: Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well log data publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2014.05.010 – volume: 16 start-page: 817 year: 2008 end-page: 827 ident: CR16 article-title: Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks publication-title: Hydrogeol J doi: 10.1007/s10040-008-0279-0 – volume: 5 start-page: 124 issue: 2 year: 2000 end-page: 137 ident: CR30 article-title: Artificial neural networks in hydrology- II: hydrologic applications publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – volume: 396 start-page: 128 year: 2011 end-page: 138 ident: CR33 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.002 – volume: 8 start-page: 348 issue: 6 year: 2003 end-page: 360 ident: CR5 article-title: Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2003)8:6(348) – volume: 128 start-page: 370 issue: 5 year: 2002 end-page: 376 ident: CR21 article-title: Contribution of neural networks for modeling trihalomethanes occurrence in drinking water publication-title: J Water Resour Plan Manag ASCE doi: 10.1061/(ASCE)0733-9496(2002)128:5(370) – volume: 20 start-page: 77 year: 2006 end-page: 90 ident: CR24 article-title: Groundwater level forecasting in a shallow aquifer using artificial neural network approach publication-title: Water Resour Manag doi: 10.1007/s11269-006-4007-z – volume: 15 start-page: 101 year: 2000 end-page: 124 ident: CR20 article-title: Neural networks for prediction and forecasting of water resources variables: a review of modeling issue and application publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 24 start-page: 1845 year: 2010 end-page: 1865 ident: CR22 article-title: Artificial neural network modeling for groundwater level forecasting in a river island of eastern India publication-title: Water Resour Manag doi: 10.1007/s11269-009-9527-x – volume: 340 start-page: 1 year: 2007 end-page: 11 ident: CR26 article-title: A simple neural network model for the determination of aquifer parameters publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.03.017 – volume: 21 start-page: 1865 issue: 8 year: 2013 end-page: 1887 ident: CR25 article-title: Groundwater level prediction using multiple linear regression and artificial neural network techniques publication-title: Hydrogeol J doi: 10.1007/s10040-013-1029-5 – volume: 43 start-page: 231 issue: 2 year: 2005 end-page: 241 ident: CR6 article-title: A neural network model for predicting aquifer water level elevations publication-title: Ground Water doi: 10.1111/j.1745-6584.2005.0003.x – volume: 13 start-page: 179 year: 1998 end-page: 191 ident: CR19 article-title: Understanding the behavior and optimizing the performance of backpropagation neural networks: an empirical study publication-title: Environ Model Softw doi: 10.1016/S1364-8152(98)00019-X – volume: 499 start-page: 265 year: 2013 end-page: 274 ident: CR4 article-title: Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.07.008 – volume: 25 start-page: 1670 issue: 8 year: 2012 end-page: 1676 ident: CR28 article-title: Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.02.009 – volume: 318 start-page: 215 issue: 1–4 year: 2006 end-page: 231 ident: CR10 article-title: Using neural networks for parameter estimation in ground water publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.05.028 – volume: 3 start-page: 193 issue: 3 year: 2001 end-page: 204 ident: CR15 article-title: Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network publication-title: Urban Water doi: 10.1016/S1462-0758(01)00045-0 – volume: 22 start-page: 1180 year: 2008 end-page: 1188 ident: CR17 article-title: Modeling groundwater levels in an urban coastal aquifer using artificial neural networks publication-title: Hydrol Process doi: 10.1002/hyp.6686 – volume: 38 start-page: 148 issue: 1 year: 2004 ident: 1132_CR18 publication-title: Water Res doi: 10.1016/j.watres.2003.09.026 – volume: 43 start-page: 231 issue: 2 year: 2005 ident: 1132_CR6 publication-title: Ground Water doi: 10.1111/j.1745-6584.2005.0003.x – volume: 265 start-page: 118 issue: 1 year: 2002 ident: 1132_CR2 publication-title: J Hydrol doi: 10.1016/S0022-1694(02)00103-8 – volume: 22 start-page: 1180 year: 2008 ident: 1132_CR17 publication-title: Hydrol Process doi: 10.1002/hyp.6686 – volume: 24 start-page: 1845 year: 2010 ident: 1132_CR22 publication-title: Water Resour Manag doi: 10.1007/s11269-009-9527-x – volume: 28 start-page: 5297 year: 2014 ident: 1132_CR14 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0802-0 – volume: 51 start-page: 885 year: 2007 ident: 1132_CR31 publication-title: Environ Geol doi: 10.1007/s00254-006-0452-5 – volume: 17 start-page: 281 issue: 4 year: 2003 ident: 1132_CR27 publication-title: J Comput Civ Eng ASCE doi: 10.1061/(ASCE)0887-3801(2003)17:4(281) – volume: 34 start-page: 1101 issue: 5 year: 1998 ident: 1132_CR23 publication-title: Water Resour Res doi: 10.1029/98WR00006 – volume: 15 start-page: 101 year: 2000 ident: 1132_CR20 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 13 start-page: 179 year: 1998 ident: 1132_CR19 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(98)00019-X – volume: 28 start-page: 5433 year: 2014 ident: 1132_CR9 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0810-0 – volume: 318 start-page: 215 issue: 1–4 year: 2006 ident: 1132_CR10 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.05.028 – volume: 398 start-page: 212 issue: 3–4 year: 2011 ident: 1132_CR3 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.12.016 – volume: 396 start-page: 128 year: 2011 ident: 1132_CR33 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.002 – volume: 30 start-page: 164 issue: 2 year: 1992 ident: 1132_CR1 publication-title: Ground Water doi: 10.1111/j.1745-6584.1992.tb01787.x – volume: 394 start-page: 296 year: 2010 ident: 1132_CR11 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.09.003 – volume: 5 start-page: 115 issue: 2 year: 2000 ident: 1132_CR29 publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – volume: 107 start-page: 45 year: 2014 ident: 1132_CR32 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2014.05.010 – volume: 21 start-page: 1865 issue: 8 year: 2013 ident: 1132_CR25 publication-title: Hydrogeol J doi: 10.1007/s10040-013-1029-5 – volume: 37 start-page: 885 issue: 4 year: 2001 ident: 1132_CR7 publication-title: Water Resour Res doi: 10.1029/2000WR900368 – volume: 499 start-page: 265 year: 2013 ident: 1132_CR4 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.07.008 – volume-title: Neural networks: a comprehensive foundation year: 1999 ident: 1132_CR13 – volume-title: Artificial neural network in hydrology year: 2000 ident: 1132_CR12 – volume: 20 start-page: 77 year: 2006 ident: 1132_CR24 publication-title: Water Resour Manag doi: 10.1007/s11269-006-4007-z – volume: 3 start-page: 193 issue: 3 year: 2001 ident: 1132_CR15 publication-title: Urban Water doi: 10.1016/S1462-0758(01)00045-0 – volume: 340 start-page: 1 year: 2007 ident: 1132_CR26 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.03.017 – volume: 128 start-page: 370 issue: 5 year: 2002 ident: 1132_CR21 publication-title: J Water Resour Plan Manag ASCE doi: 10.1061/(ASCE)0733-9496(2002)128:5(370) – volume: 309 start-page: 229 year: 2005 ident: 1132_CR8 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.12.001 – volume: 25 start-page: 1670 issue: 8 year: 2012 ident: 1132_CR28 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.02.009 – volume: 8 start-page: 348 issue: 6 year: 2003 ident: 1132_CR5 publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2003)8:6(348) – volume: 16 start-page: 817 year: 2008 ident: 1132_CR16 publication-title: Hydrogeol J doi: 10.1007/s10040-008-0279-0 – volume: 5 start-page: 124 issue: 2 year: 2000 ident: 1132_CR30 publication-title: J Hydrol Eng ASCE doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) |
| SSID | ssj0010090 |
| Score | 2.4594173 |
| Snippet | Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5521 |
| SubjectTerms | Algorithms Aquifers Artificial neural networks Atmospheric Sciences Back propagation Civil Engineering Earth and Environmental Science Earth Sciences Environment Evaporation Forecasting Forecasting techniques Geotechnical Engineering & Applied Earth Sciences Groundwater Groundwater levels Hydrogeology Hydrology Hydrology/Water Resources Irrigation Lead time Learning theory Mathematical models Monsoons Neural networks Pan evaporation Parameter estimation Rain River basins Rivers Statistical analysis Studies Sustainable use Water management Water resources Water resources management Wind |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9KAHf4vTKRE8KYUuTX_kOETxoEOcireSZQkMpJO103_f99J2m6IDPfXQ17S8JH1f8r58D-AMo0gklbHYA33fE9I3nkoGxotEbBF_9HkwEK7YRNztJi8v8r46x53XbPc6Jen-1LPDbm0eEbcn9Kg6uhctwwpGu4Rm40PveZo6QNDgNlYkrosExss6lflTE1-D0QxhfkuKulhzvfmvr9yCjQpask45FrZhyWQ7sD4nOLgLhWMIOJNSOYKROIe7ODY461QS4wyxLOsNiW6oMjOa5IxqeGqVE0uajSwrlfgZbV1lgw8ErGN2S_yjnKmC3VUsRWwBkewePF1fPV7eeFXdBU8hfCs8K6QNrWwrFRtaIQdcG-xRLQNNWjc-LkHasbZJrKQmQNY2vg0ixDVhH9GOlcE-NLJRZg6AWWMRHxieWBUIko7ToVUmUDz2ExNJ0QS_7oBUV6LkVBvjNZ3JKZNDU3RoSg5NoyacTx95KxU5Fhm36l5Nq8mZp4jZcJnGIx434XR6G6cV5UpKp6JNgMALwRlfYJOEIcZ_IfwmXNSjYe41v33U4Z-sj2CNu-FEFJoWNIrxxBzDqn4vhvn4xI39T7YG_RI priority: 102 providerName: Springer Nature |
| Title | Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites |
| URI | https://link.springer.com/article/10.1007/s11269-015-1132-6 https://www.proquest.com/docview/1724872627 https://www.proquest.com/docview/1732838462 https://www.proquest.com/docview/1855362440 |
| Volume | 29 |
| WOSCitedRecordID | wos000363259500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 7WY dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: M0C dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: M7P dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: PCBAR dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: PATMY dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-1650 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: M2P dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3xdaAHPgqo2wJyJU6tLLKOE8cnRBGoh7JasS2lp8jrtSWkKks3of37nXGcXajEXnpxFMVJrIztefa8vAE4QS-Sa-M8WmCccKkTx00xcTyXyiP-GIt0IkOyCTUYFHd3ehg33OpIq-zmxDBRT6aW9shP0dEitha5UGcPvzhljaLoakyhsQrrpJIgAnVvNI8iIH4Ieywal0gSXWcX1Qy_zvVFTkyhjFOudZ4_90sLsPlPfDS4navt_23wDmxFwMnO2x6yCyuueg2vnsgQ7kETeAOhSqsnwUiyIxwCR5ydR-FxhgiXje6JhGgqN32sGWX2tKYm7jSbetbq8zPa0KomfxDGztgXYiXVzDTsOnIX8QmIb_fh29Xl14vPPGZj4AZBXcO91D7zum-McrRuToV1aGerU0sKOAkuTPrK-kIZbQmm9V3i0xzRTjZGDOR1egBr1bRyb4B55xE1OFF4k0oSlLOZNy41QiWFy7XsQdLZorRRqpwyZvwsFyLLZL4SzVeS-cq8Bx_mtzy0Oh3LKh92JivjkK3Lhb168H5-GQcbRVDaj4p1UoRjCNnEkjpFliEqkDLpwceu8zx5zUuNeru8Ue9gU4TeSkyaQ1hrZo_uCDbs7-a-nh3Dqvr-4xjWP10Ohjd4dp1cUCmGVKq2HGF5M7r9C_2sDmA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hQGo5lFcRWx41Er2ALLKO8_ABIcRDIJZVpVKJW_B6bQkJZekmFPGn-I3MOMkuVGJvHHrKIU7ixOOZz54v3wBsYxSJlbYOR6AXcKkCy3XatzyWiUP80RNhX_piE0m3m15fq59T8Nz8C0O0ysYnekfdHxjaI9_DQIvYWsQiObj_w6lqFGVXmxIalVlc2KdHXLIV--fHOL4_hDg9uTo643VVAa4RnJTcSeUip9paJ5bWf6EwFvtrVGhIySVAgN1OjEsTrQzBjbYNXBhj1I56GMsdiS-hy5-REqcDUQWDo1HWAvGK39NRuCSTeJsmi-p_1WuLmJhJEafa7jx-GwfH4PaffKwPc6fz_9sHWoAvNaBmh9UMWIQpmy_B3CuZxWUoPS_CN6n0MhhJkviD58Czw1pYnSGCZ79uiWSpczt4KBhVLjW6IG44GzhW1R9gtGGX9x8Rpg9Zh1hXBdMlu6y5mXgHxO9f4feHvPYKTOeD3K4Cc9YhKrIidTqUJJhnIqdtqEUSpDZWsgVBM_aZqaXYqSLIXTYWkSZzydBcMjKXLG7BzuiS-0qHZFLj9cZEstolFdnYPlqwNTqNzoQyRNVHxTYhwk2EpGJCmzSKEPWg_bdgtzHWV495r1PfJnfqO3w6u7rsZJ3z7sUafBZ-phBraB2my-GD3YBZ87e8LYabfs4xuPloG34BqaRhlg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9swFL2UdIztYd1XWdaPabC9bIg6sixbD6Wk7cJKuxD2AX1zFUWCwnC62F3ZX-uv672ynbSD5a0Pe_JDFFu2j3SPdI_PBXiHUURp4zy-gXHEpY4cN9nEcSVTj_xjLOKJDMUm0uEwOz3VoxW4br-FIVllOyeGiXoytbRHvoOBFrm1ULhU940sYnQ42Lv4xamCFGVa23IaNUSO3Z8rXL6Vu0eH-K7fCzH49P3gM28qDHCDRKXiXmqfeN0zJnW0FoyFddh3q2NLri4Rku1ean2WGm2JevRc5GOFETwZY1z3ZMSE0_9qpnDcdGB1dLDf_zrPYSB7CTs8GhdoEk_U5lTDh3s9oUinlHCq9M7V3ai4oLp_ZWdD0Bus_c-P6yk8aag269dj4xmsuOI5PL5lwPgCqqCYCE1qJw1GZiXhENTxrN9YrjPk9uzbOckvTeGmlyWjmqbWlKQaZ1PP6soEjLbyiskVEvgZOyE9VslMxb40qk08AzL7l_DjXm57HTrFtHCvgHnnkS85kXkTS7LSs4k3LjYijTKntOxC1OIgt41JO9UK-Zkv7KUJOjlCJyfo5KoLH-Z_uagdSpY13mzhkjeTVZkvsNKFt_OfcZqh3FH9ULFNjEQUyapY0iZLEuRDUkZd-NgC99Zl_tWp18s79QYeInTzk6Ph8QY8EmHQkJxoEzrV7NJtwQP7uzovZ9vNAGRwdt8gvgEKuWu0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Artificial+Neural+Network+Approach+for+Simultaneous+Forecasting+of+Weekly+Groundwater+Levels+at+Multiple+Sites&rft.jtitle=Water+resources+management&rft.au=Mohanty%2C+S&rft.au=Jha%2C+Madan+K&rft.au=Raul%2C+S+K&rft.au=Panda%2C+R+K&rft.date=2015-12-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=29&rft.issue=15&rft.spage=5521&rft.epage=5532&rft_id=info:doi/10.1007%2Fs11269-015-1132-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |