Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites

Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an application of artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in multiple wells located over a river b...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management Vol. 29; no. 15; pp. 5521 - 5532
Main Authors: Mohanty, S., Jha, Madan K., Raul, S. K., Panda, R. K., Sudheer, K. P.
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.12.2015
Springer Nature B.V
Subjects:
ISSN:0920-4741, 1573-1650
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an application of artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in multiple wells located over a river basin. Gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm was employed to predict groundwater levels 1 week ahead at 18 sites over the study area. Based on the domain knowledge and pertinent statistical analysis, appropriate set of inputs for the ANN model was selected. This consisted of weekly rainfall, pan evaporation, river stage, water level in the surface drain, pumping rates of 18 sites and groundwater levels of 18 sites in the previous week, which led to 40 input nodes and 18 output nodes. During training of the ANN model, the optimum number of hidden neurons was found to be 40 and the model performance was found satisfactory (RMSE = 0.2397 m, r  = 0.9861, and NSE = 0.9722). During testing of the model, the values of statistical indicators RMSE, r and NSE were 0.4118 m, 0.9715 and 0.9288, respectively. Using the same inputs, the developed ANN model was further used for forecasting groundwater levels 2, 3 and 4 weeks ahead in 18 tubewells. The model performance was better while forecasting groundwater levels at shorter lead times (up to 2 weeks) than that for larger lead times.
AbstractList Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an application of artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in multiple wells located over a river basin. Gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm was employed to predict groundwater levels 1 week ahead at 18 sites over the study area. Based on the domain knowledge and pertinent statistical analysis, appropriate set of inputs for the ANN model was selected. This consisted of weekly rainfall, pan evaporation, river stage, water level in the surface drain, pumping rates of 18 sites and groundwater levels of 18 sites in the previous week, which led to 40 input nodes and 18 output nodes. During training of the ANN model, the optimum number of hidden neurons was found to be 40 and the model performance was found satisfactory (RMSE=0.2397 m, r=0.9861, and NSE=0.9722). During testing of the model, the values of statistical indicators RMSE, r and NSE were 0.4118 m, 0.9715 and 0.9288, respectively. Using the same inputs, the developed ANN model was further used for forecasting groundwater levels 2, 3 and 4 weeks ahead in 18 tubewells. The model performance was better while forecasting groundwater levels at shorter lead times (up to 2 weeks) than that for larger lead times.
Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an application of artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in multiple wells located over a river basin. Gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm was employed to predict groundwater levels 1 week ahead at 18 sites over the study area. Based on the domain knowledge and pertinent statistical analysis, appropriate set of inputs for the ANN model was selected. This consisted of weekly rainfall, pan evaporation, river stage, water level in the surface drain, pumping rates of 18 sites and groundwater levels of 18 sites in the previous week, which led to 40 input nodes and 18 output nodes. During training of the ANN model, the optimum number of hidden neurons was found to be 40 and the model performance was found satisfactory (RMSE = 0.2397 m, r  = 0.9861, and NSE = 0.9722). During testing of the model, the values of statistical indicators RMSE, r and NSE were 0.4118 m, 0.9715 and 0.9288, respectively. Using the same inputs, the developed ANN model was further used for forecasting groundwater levels 2, 3 and 4 weeks ahead in 18 tubewells. The model performance was better while forecasting groundwater levels at shorter lead times (up to 2 weeks) than that for larger lead times.
Author Jha, Madan K.
Raul, S. K.
Sudheer, K. P.
Mohanty, S.
Panda, R. K.
Author_xml – sequence: 1
  givenname: S.
  surname: Mohanty
  fullname: Mohanty, S.
  email: smohanty.wtcer@gmail.com
  organization: ICAR-Indian Institute of Water Management
– sequence: 2
  givenname: Madan K.
  surname: Jha
  fullname: Jha, Madan K.
  organization: AgFE Department, IIT Kharagpur
– sequence: 3
  givenname: S. K.
  surname: Raul
  fullname: Raul, S. K.
  organization: College of Agricultural Engineering &Technology, AAU
– sequence: 4
  givenname: R. K.
  surname: Panda
  fullname: Panda, R. K.
  organization: ICAR-Indian Institute of Water Management
– sequence: 5
  givenname: K. P.
  surname: Sudheer
  fullname: Sudheer, K. P.
  organization: Department of Civil Engineering, IIT Madras
BookMark eNqFkU1PVDEUhhsDiQP4A9w1cePmSr8_lhMiaDLoAonLptZTLNy5HdteCP_ejteFIVE2PZvnOadv3iN0MOUJEHpNyTtKiD6tlDJlB0LlQClng3qBVlRqPlAlyQFaEcvIILSgL9FRrbeEdMuSFWrXNU03eF1aiikkP-JPMJffoz3kcofXu13JPvzAMRd8lbbz2PwEea74PBcIvra9nyP-CnA3PuKLkufp-4NvUPAG7mGs2Dd82bW0G6FvaFBP0GH0Y4VXf-Yxuj5__-Xsw7D5fPHxbL0ZvCCyDVHYKKOl3mvQxhjOAkhlg-WhBzHE9leHaLS3gXEmKJDIldVKfrOWR8uP0dtlb4_wc4ba3DbVAOO4JHDUSMkVE4I8j2rODDdCsY6-eYLe5rlMPUinmDCaKaY7RRcqlFxrgeh2JW19eXSUuH1lbqnM9crcvjKnuqOfOCE131KeWvFp_K_JFrP2K9MNlL_-9E_pF6Fhq84
CitedBy_id crossref_primary_10_1007_s11269_021_02787_6
crossref_primary_10_1007_s00704_020_03263_8
crossref_primary_10_1007_s13201_025_02361_0
crossref_primary_10_1007_s40899_025_01254_z
crossref_primary_10_1007_s10666_023_09938_6
crossref_primary_10_3390_w15234129
crossref_primary_10_3390_app14167358
crossref_primary_10_3390_w14060862
crossref_primary_10_1007_s11269_017_1757_8
crossref_primary_10_1016_j_ijforecast_2022_01_008
crossref_primary_10_1016_j_scitotenv_2019_135539
crossref_primary_10_2166_wcc_2022_198
crossref_primary_10_1016_j_agwat_2021_107032
crossref_primary_10_1016_j_jhydrol_2016_08_006
crossref_primary_10_1080_02626667_2021_1968404
crossref_primary_10_1080_02626667_2019_1651933
crossref_primary_10_5004_dwt_2019_23458
crossref_primary_10_5194_hess_28_4407_2024
crossref_primary_10_1007_s00704_021_03825_4
crossref_primary_10_3389_frwa_2023_1241451
crossref_primary_10_1007_s11269_016_1453_0
crossref_primary_10_1016_j_envres_2022_113747
crossref_primary_10_1007_s11269_017_1811_6
crossref_primary_10_1016_j_jhydrol_2023_130359
crossref_primary_10_3390_hydrology6010019
crossref_primary_10_1007_s13369_019_04200_2
crossref_primary_10_1007_s40430_017_0956_9
crossref_primary_10_1007_s43832_024_00073_1
crossref_primary_10_5194_hess_25_3555_2021
crossref_primary_10_3390_su12104023
crossref_primary_10_1088_1755_1315_837_1_012010
crossref_primary_10_1016_j_pce_2024_103603
crossref_primary_10_3390_w15061182
crossref_primary_10_1007_s10668_021_01361_9
crossref_primary_10_3390_w11010009
crossref_primary_10_1007_s11269_017_1726_2
crossref_primary_10_2166_ws_2020_015
crossref_primary_10_1007_s11269_018_2126_y
crossref_primary_10_1080_02626667_2022_2063724
crossref_primary_10_2166_nh_2016_396
crossref_primary_10_1016_j_jafrearsci_2021_104244
crossref_primary_10_1080_15715124_2022_2079653
crossref_primary_10_1016_j_jhydrol_2018_12_037
crossref_primary_10_2166_hydro_2017_102
crossref_primary_10_5194_hess_22_4771_2018
crossref_primary_10_1007_s10661_024_12357_z
crossref_primary_10_1051_e3sconf_201911803018
crossref_primary_10_1007_s11069_017_2767_9
crossref_primary_10_1016_j_jhydrol_2018_02_005
crossref_primary_10_1007_s00521_022_07009_7
crossref_primary_10_1007_s11600_022_00827_2
crossref_primary_10_3390_w11091879
crossref_primary_10_3390_w11020391
crossref_primary_10_1016_j_heha_2024_100114
crossref_primary_10_2166_wcc_2022_339
crossref_primary_10_3390_w13213130
crossref_primary_10_1007_s00704_023_04624_9
crossref_primary_10_1007_s10661_021_08955_w
crossref_primary_10_1109_ACCESS_2021_3130306
crossref_primary_10_1016_j_jhydrol_2017_10_015
crossref_primary_10_1016_j_jhydrol_2019_124115
crossref_primary_10_2166_ws_2021_066
crossref_primary_10_1007_s11270_024_07247_6
crossref_primary_10_3390_hydrology7030059
crossref_primary_10_1007_s10661_023_10971_x
crossref_primary_10_1007_s10706_018_0713_6
crossref_primary_10_3390_w15061085
crossref_primary_10_1016_j_gsd_2024_101142
crossref_primary_10_5194_hess_22_2987_2018
crossref_primary_10_1007_s11269_016_1418_3
crossref_primary_10_1007_s42452_025_06817_5
crossref_primary_10_5194_hess_24_5759_2020
crossref_primary_10_1007_s00704_017_2244_0
crossref_primary_10_3390_su12218932
crossref_primary_10_2166_nh_2019_127
crossref_primary_10_1007_s10661_020_08332_z
crossref_primary_10_1016_j_gsd_2022_100882
crossref_primary_10_1111_wej_12390
crossref_primary_10_3390_w15173118
crossref_primary_10_1016_j_agwat_2025_109729
crossref_primary_10_2166_hydro_2018_002
crossref_primary_10_1007_s11053_020_09634_2
crossref_primary_10_1007_s11053_018_9403_6
crossref_primary_10_1007_s10661_022_10277_4
crossref_primary_10_1007_s12517_022_09900_y
crossref_primary_10_1007_s13201_018_0742_6
crossref_primary_10_1016_j_jhydrol_2020_124957
crossref_primary_10_3389_frwa_2020_573034
crossref_primary_10_1016_j_jhydrol_2019_123948
Cites_doi 10.1007/s11269-014-0810-0
10.1007/s11269-014-0802-0
10.1029/2000WR900368
10.1016/j.watres.2003.09.026
10.1111/j.1745-6584.1992.tb01787.x
10.1016/j.jhydrol.2010.12.016
10.1061/(ASCE)1084-0699(2000)5:2(115)
10.1029/98WR00006
10.1016/S0022-1694(02)00103-8
10.1016/j.jhydrol.2010.09.003
10.1007/978-94-015-9341-0
10.1016/j.jhydrol.2004.12.001
10.1061/(ASCE)0887-3801(2003)17:4(281)
10.1007/s00254-006-0452-5
10.1016/j.jappgeo.2014.05.010
10.1007/s10040-008-0279-0
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1016/j.jhydrol.2010.11.002
10.1061/(ASCE)1084-0699(2003)8:6(348)
10.1061/(ASCE)0733-9496(2002)128:5(370)
10.1007/s11269-006-4007-z
10.1016/S1364-8152(99)00007-9
10.1007/s11269-009-9527-x
10.1016/j.jhydrol.2007.03.017
10.1007/s10040-013-1029-5
10.1111/j.1745-6584.2005.0003.x
10.1016/S1364-8152(98)00019-X
10.1016/j.jhydrol.2013.07.008
10.1016/j.engappai.2012.02.009
10.1016/j.jhydrol.2005.05.028
10.1016/S1462-0758(01)00045-0
10.1002/hyp.6686
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.0
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7QO
7TG
7U6
KL.
P64
DOI 10.1007/s11269-015-1132-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Biotechnology Research Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Technology Research Database

ProQuest Business Collection (Alumni Edition)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 5532
ExternalDocumentID 3843066681
10_1007_s11269_015_1132_6
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.0
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7QO
7TG
7U6
KL.
P64
ID FETCH-LOGICAL-a405t-f49f5f91aa7e788832ce569c93c7418097417cf87a9c23241e0f369765b993f93
IEDL.DBID RSV
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363259500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Sun Nov 09 09:07:19 EST 2025
Tue Oct 07 10:18:59 EDT 2025
Tue Nov 04 22:07:49 EST 2025
Sat Nov 29 02:11:42 EST 2025
Tue Nov 18 21:12:08 EST 2025
Fri Feb 21 02:26:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Neural network modeling
Backpropagation GDX algorithm
Alluvial aquifer system
Groundwater-level forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a405t-f49f5f91aa7e788832ce569c93c7418097417cf87a9c23241e0f369765b993f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1724872627
PQPubID 54174
PageCount 12
ParticipantIDs proquest_miscellaneous_1855362440
proquest_miscellaneous_1732838462
proquest_journals_1724872627
crossref_primary_10_1007_s11269_015_1132_6
crossref_citationtrail_10_1007_s11269_015_1132_6
springer_journals_10_1007_s11269_015_1132_6
PublicationCentury 2000
PublicationDate 20151200
2015-12-00
20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151200
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Maier, Dandy (CR20) 2000; 15
(CR30) 2000; 5
Uddameri (CR31) 2007; 51
Kuo, Liu, Lin (CR18) 2004; 38
Coulibaly, Anctil, Aravena, Bobee (CR7) 2001; 37
Daliakopoulos, Coulibaly, Tsanis (CR8) 2005; 309
Emamgholizadeh, Moslemi, Karami (CR9) 2014; 28
Morshed, Kaluarachchi (CR23) 1998; 34
Aziz, Wong (CR1) 1992; 30
Viveros, Parra (CR32) 2014; 107
Yoon, Jun, Hyun, Bae, Lee (CR33) 2011; 396
Shigdi, Garcia (CR27) 2003; 17
Mohanty, Jha, Kumar, Sudheer (CR22) 2010; 24
Karahan, Ayvaz (CR16) 2008; 16
Krishna, Rao, Vijaya (CR17) 2008; 22
Coppola, Szidarovszky, Poulton, Charles (CR5) 2003; 8
Balkhair (CR2) 2002; 265
Haykin (CR13) 1999
Banerjee, Singh, Chattopadhyay, Chandra, Singh (CR3) 2011; 398
Hong, Rosen (CR15) 2001; 3
(CR29) 2000; 5
Maier, Dandy (CR19) 1998; 13
Sahoo, Jha (CR25) 2013; 21
Samani, Gohari-Moghadam, Safavi (CR26) 2007; 340
Coppola, Rana, Poulton, Szidarovszky, Uhl (CR6) 2005; 43
Milot, Rodriguez, Serodes (CR21) 2002; 128
Gobindraju, Ramachandra Rao (CR12) 2000
Taormina, Chau, Sethi (CR28) 2012; 25
Garcia, Shigdi (CR10) 2006; 318
Ghose, Panda, Swain (CR11) 2010; 394
Nayak, Rao, Sudheer (CR24) 2006; 20
He, Zhang, Guo, Zhao (CR14) 2014; 28
Chang, Chen, Liu, Liao, Liao (CR4) 2013; 499
A Shigdi (1132_CR27) 2003; 17
P Banerjee (1132_CR3) 2011; 398
F Chang (1132_CR4) 2013; 499
M Samani (1132_CR26) 2007; 340
S Haykin (1132_CR13) 1999
HR Maier (1132_CR19) 1998; 13
ARA Aziz (1132_CR1) 1992; 30
EA Coppola (1132_CR6) 2005; 43
H Yoon (1132_CR33) 2011; 396
S Emamgholizadeh (1132_CR9) 2014; 28
Z He (1132_CR14) 2014; 28
RS Gobindraju (1132_CR12) 2000
IN Daliakopoulos (1132_CR8) 2005; 309
P Coulibaly (1132_CR7) 2001; 37
S Mohanty (1132_CR22) 2010; 24
V Uddameri (1132_CR31) 2007; 51
UI Viveros (1132_CR32) 2014; 107
H Karahan (1132_CR16) 2008; 16
KS Balkhair (1132_CR2) 2002; 265
V Kuo (1132_CR18) 2004; 38
E Coppola (1132_CR5) 2003; 8
PC Nayak (1132_CR24) 2006; 20
J Milot (1132_CR21) 2002; 128
J Morshed (1132_CR23) 1998; 34
B Krishna (1132_CR17) 2008; 22
S Sahoo (1132_CR25) 2013; 21
HR Maier (1132_CR20) 2000; 15
R Taormina (1132_CR28) 2012; 25
YS Hong (1132_CR15) 2001; 3
ASCE Task Committee (1132_CR29) 2000; 5
LA Garcia (1132_CR10) 2006; 318
DK Ghose (1132_CR11) 2010; 394
ASCE Task Committee (1132_CR30) 2000; 5
References_xml – volume: 28
  start-page: 5433
  year: 2014
  end-page: 5446
  ident: CR9
  article-title: Prediction the groundwater level of Bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0810-0
– volume: 28
  start-page: 5297
  year: 2014
  end-page: 5317
  ident: CR14
  article-title: Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0802-0
– volume: 37
  start-page: 885
  issue: 4
  year: 2001
  end-page: 896
  ident: CR7
  article-title: Artificial neural network modeling of water table depth fluctuations
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900368
– volume: 38
  start-page: 148
  issue: 1
  year: 2004
  end-page: 158
  ident: CR18
  article-title: Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
  publication-title: Water Res
  doi: 10.1016/j.watres.2003.09.026
– volume: 30
  start-page: 164
  issue: 2
  year: 1992
  end-page: 166
  ident: CR1
  article-title: Neural network approach to the determination of aquifer parameters
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1992.tb01787.x
– volume: 398
  start-page: 212
  issue: 3–4
  year: 2011
  end-page: 220
  ident: CR3
  article-title: Artificial neural network model as a potential alternative for groundwater salinity forecasting
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.12.016
– volume: 5
  start-page: 115
  issue: 2
  year: 2000
  end-page: 123
  ident: CR29
  article-title: Artificial neural networks in hydrology- I: preliminary concepts
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
– year: 1999
  ident: CR13
  publication-title: Neural networks: a comprehensive foundation
– volume: 34
  start-page: 1101
  issue: 5
  year: 1998
  end-page: 1113
  ident: CR23
  article-title: Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
  publication-title: Water Resour Res
  doi: 10.1029/98WR00006
– volume: 265
  start-page: 118
  issue: 1
  year: 2002
  end-page: 128
  ident: CR2
  article-title: Aquifer parameters determination for large diameter wells using neural network approach
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(02)00103-8
– volume: 394
  start-page: 296
  year: 2010
  end-page: 304
  ident: CR11
  article-title: Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.09.003
– year: 2000
  ident: CR12
  publication-title: Artificial neural network in hydrology
  doi: 10.1007/978-94-015-9341-0
– volume: 309
  start-page: 229
  year: 2005
  end-page: 240
  ident: CR8
  article-title: Groundwater level forecasting using artificial neural network
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.12.001
– volume: 17
  start-page: 281
  issue: 4
  year: 2003
  end-page: 289
  ident: CR27
  article-title: Parameter estimation in groundwater hydrology using artificial neural networks
  publication-title: J Comput Civ Eng ASCE
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(281)
– volume: 51
  start-page: 885
  year: 2007
  end-page: 895
  ident: CR31
  article-title: Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas
  publication-title: Environ Geol
  doi: 10.1007/s00254-006-0452-5
– volume: 107
  start-page: 45
  year: 2014
  end-page: 54
  ident: CR32
  article-title: Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well log data
  publication-title: J Appl Geophys
  doi: 10.1016/j.jappgeo.2014.05.010
– volume: 16
  start-page: 817
  year: 2008
  end-page: 827
  ident: CR16
  article-title: Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-008-0279-0
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  end-page: 137
  ident: CR30
  article-title: Artificial neural networks in hydrology- II: hydrologic applications
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– volume: 396
  start-page: 128
  year: 2011
  end-page: 138
  ident: CR33
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 8
  start-page: 348
  issue: 6
  year: 2003
  end-page: 360
  ident: CR5
  article-title: Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2003)8:6(348)
– volume: 128
  start-page: 370
  issue: 5
  year: 2002
  end-page: 376
  ident: CR21
  article-title: Contribution of neural networks for modeling trihalomethanes occurrence in drinking water
  publication-title: J Water Resour Plan Manag ASCE
  doi: 10.1061/(ASCE)0733-9496(2002)128:5(370)
– volume: 20
  start-page: 77
  year: 2006
  end-page: 90
  ident: CR24
  article-title: Groundwater level forecasting in a shallow aquifer using artificial neural network approach
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-4007-z
– volume: 15
  start-page: 101
  year: 2000
  end-page: 124
  ident: CR20
  article-title: Neural networks for prediction and forecasting of water resources variables: a review of modeling issue and application
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 24
  start-page: 1845
  year: 2010
  end-page: 1865
  ident: CR22
  article-title: Artificial neural network modeling for groundwater level forecasting in a river island of eastern India
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9527-x
– volume: 340
  start-page: 1
  year: 2007
  end-page: 11
  ident: CR26
  article-title: A simple neural network model for the determination of aquifer parameters
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.03.017
– volume: 21
  start-page: 1865
  issue: 8
  year: 2013
  end-page: 1887
  ident: CR25
  article-title: Groundwater level prediction using multiple linear regression and artificial neural network techniques
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-013-1029-5
– volume: 43
  start-page: 231
  issue: 2
  year: 2005
  end-page: 241
  ident: CR6
  article-title: A neural network model for predicting aquifer water level elevations
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2005.0003.x
– volume: 13
  start-page: 179
  year: 1998
  end-page: 191
  ident: CR19
  article-title: Understanding the behavior and optimizing the performance of backpropagation neural networks: an empirical study
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(98)00019-X
– volume: 499
  start-page: 265
  year: 2013
  end-page: 274
  ident: CR4
  article-title: Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.07.008
– volume: 25
  start-page: 1670
  issue: 8
  year: 2012
  end-page: 1676
  ident: CR28
  article-title: Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.02.009
– volume: 318
  start-page: 215
  issue: 1–4
  year: 2006
  end-page: 231
  ident: CR10
  article-title: Using neural networks for parameter estimation in ground water
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.05.028
– volume: 3
  start-page: 193
  issue: 3
  year: 2001
  end-page: 204
  ident: CR15
  article-title: Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network
  publication-title: Urban Water
  doi: 10.1016/S1462-0758(01)00045-0
– volume: 22
  start-page: 1180
  year: 2008
  end-page: 1188
  ident: CR17
  article-title: Modeling groundwater levels in an urban coastal aquifer using artificial neural networks
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6686
– volume: 38
  start-page: 148
  issue: 1
  year: 2004
  ident: 1132_CR18
  publication-title: Water Res
  doi: 10.1016/j.watres.2003.09.026
– volume: 43
  start-page: 231
  issue: 2
  year: 2005
  ident: 1132_CR6
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2005.0003.x
– volume: 265
  start-page: 118
  issue: 1
  year: 2002
  ident: 1132_CR2
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(02)00103-8
– volume: 22
  start-page: 1180
  year: 2008
  ident: 1132_CR17
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6686
– volume: 24
  start-page: 1845
  year: 2010
  ident: 1132_CR22
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9527-x
– volume: 28
  start-page: 5297
  year: 2014
  ident: 1132_CR14
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0802-0
– volume: 51
  start-page: 885
  year: 2007
  ident: 1132_CR31
  publication-title: Environ Geol
  doi: 10.1007/s00254-006-0452-5
– volume: 17
  start-page: 281
  issue: 4
  year: 2003
  ident: 1132_CR27
  publication-title: J Comput Civ Eng ASCE
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(281)
– volume: 34
  start-page: 1101
  issue: 5
  year: 1998
  ident: 1132_CR23
  publication-title: Water Resour Res
  doi: 10.1029/98WR00006
– volume: 15
  start-page: 101
  year: 2000
  ident: 1132_CR20
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 13
  start-page: 179
  year: 1998
  ident: 1132_CR19
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(98)00019-X
– volume: 28
  start-page: 5433
  year: 2014
  ident: 1132_CR9
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0810-0
– volume: 318
  start-page: 215
  issue: 1–4
  year: 2006
  ident: 1132_CR10
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.05.028
– volume: 398
  start-page: 212
  issue: 3–4
  year: 2011
  ident: 1132_CR3
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.12.016
– volume: 396
  start-page: 128
  year: 2011
  ident: 1132_CR33
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 30
  start-page: 164
  issue: 2
  year: 1992
  ident: 1132_CR1
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1992.tb01787.x
– volume: 394
  start-page: 296
  year: 2010
  ident: 1132_CR11
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.09.003
– volume: 5
  start-page: 115
  issue: 2
  year: 2000
  ident: 1132_CR29
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
– volume: 107
  start-page: 45
  year: 2014
  ident: 1132_CR32
  publication-title: J Appl Geophys
  doi: 10.1016/j.jappgeo.2014.05.010
– volume: 21
  start-page: 1865
  issue: 8
  year: 2013
  ident: 1132_CR25
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-013-1029-5
– volume: 37
  start-page: 885
  issue: 4
  year: 2001
  ident: 1132_CR7
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900368
– volume: 499
  start-page: 265
  year: 2013
  ident: 1132_CR4
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.07.008
– volume-title: Neural networks: a comprehensive foundation
  year: 1999
  ident: 1132_CR13
– volume-title: Artificial neural network in hydrology
  year: 2000
  ident: 1132_CR12
– volume: 20
  start-page: 77
  year: 2006
  ident: 1132_CR24
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-4007-z
– volume: 3
  start-page: 193
  issue: 3
  year: 2001
  ident: 1132_CR15
  publication-title: Urban Water
  doi: 10.1016/S1462-0758(01)00045-0
– volume: 340
  start-page: 1
  year: 2007
  ident: 1132_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.03.017
– volume: 128
  start-page: 370
  issue: 5
  year: 2002
  ident: 1132_CR21
  publication-title: J Water Resour Plan Manag ASCE
  doi: 10.1061/(ASCE)0733-9496(2002)128:5(370)
– volume: 309
  start-page: 229
  year: 2005
  ident: 1132_CR8
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.12.001
– volume: 25
  start-page: 1670
  issue: 8
  year: 2012
  ident: 1132_CR28
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.02.009
– volume: 8
  start-page: 348
  issue: 6
  year: 2003
  ident: 1132_CR5
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2003)8:6(348)
– volume: 16
  start-page: 817
  year: 2008
  ident: 1132_CR16
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-008-0279-0
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  ident: 1132_CR30
  publication-title: J Hydrol Eng ASCE
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
SSID ssj0010090
Score 2.4596007
Snippet Reliable forecast of groundwater level is necessary for its sustainable use and for planning land and water management strategies. This paper deals with an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5521
SubjectTerms Algorithms
Aquifers
Artificial neural networks
Atmospheric Sciences
Back propagation
Civil Engineering
Earth and Environmental Science
Earth Sciences
Environment
Evaporation
Forecasting
Forecasting techniques
Geotechnical Engineering & Applied Earth Sciences
Groundwater
Groundwater levels
Hydrogeology
Hydrology
Hydrology/Water Resources
Irrigation
Lead time
Learning theory
Mathematical models
Monsoons
Neural networks
Pan evaporation
Parameter estimation
Rain
River basins
Rivers
Statistical analysis
Studies
Sustainable use
Water management
Water resources
Water resources management
Wind
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefoOwwDsBgiI4f8iROoIgkjpP4hCoE4gBoEkPqLXIcW0JCaWnS7d_fe47TMiR64dRD3NTKc-yP_b79PoBTza0VXFY4-6UlblDKMECOiwJl80xWXCMiaFdsInt4yMdj-csfuDVeVtnPiW6iriaazsgvcKFFto7TOLucvgZUNYqyq76ExjpskEtC7KR7j4ssAvKDO2ORuEVKcOnss5rur3NRnJJSSARUaz1I_1-XlrD5Lj_qlp2b7c92eAe2PHCyUTdCvsGaqXdh840N4R60TjfgmnR-EowsO9yH04izkTceZ0i47PGZRIiqNpN5w6iyp1YNaafZxLLOn5_RgVZd_UWMnbE7UiU1TLXs3msX8Q7It9_h6eb699Vt4KsxBAqhrg1sIq2wMlIqM7Rv5rE2IpVack0OOCFuTKJMY4iV1IRpkQktT5F2RIkMZCXfh0E9qc0BMKMTJbibAMrEmiSvhMljRM1cJ2mkyiGEfSwK7a3KqWLGS7E0WabwFRi-gsJXpEM4W3xl2vl0rGp81Ies8K9sUyzjNYSfi8v4slEGpXuo2IYjjiGyxSva5EIgFSRJOITzfvC8-ZmPOvVjdacO4WvsRispaY5g0M7m5hi-6D_tczM7ceP-H4ENB-A
  priority: 102
  providerName: ProQuest
Title Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites
URI https://link.springer.com/article/10.1007/s11269-015-1132-6
https://www.proquest.com/docview/1724872627
https://www.proquest.com/docview/1732838462
https://www.proquest.com/docview/1855362440
Volume 29
WOSCitedRecordID wos000363259500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M0C
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: PCBAR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: PATMY
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 7WY
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M7P
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M2P
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4NysN42AZsoqyrPIknUKQkjpP4kVVFe1irqoUNniLHtaVKKJ2aFP4-d07SsokhsRdXVa9JZPty3-W-fAdwqrm1gss53v3iHBOU3PcQxwWesmki51wjRNCu2UQyHqc3N3LSvMddtmz3tiTp7tTbl92CMCZuj_CoO7oX70AHo11K3jid_dyUDhA0uAcrEvOiCONlW8p87hB_BqMtwvyrKOpizeX7_7rKD_CugZbsot4LB_DGFIew_0Rw8AgqxxBwJrVyBCNxDvfh2ODsopEYZ4hl2WxBdENVmOW6ZNTDU6uSWNJsaVmtxM_o0VUxf0DAumI_iH9UMlWxUcNSxCMgkv0I15fDq8F3r-m74CmEb5VnI2mFlYFSiaEMmYfaiFhqyTVp3fiYggSJxsVUUhMgC4xveYy4RuSIdqzkn2C3WBbmGJjRkRLcuXoeWROlc2HSEEFlqqM4UHkX_HYBMt2IklNvjLtsK6dME5rhhGY0oVnchbPNX37XihwvGffaVc0a5ywzxGyYpoVxmHTh6-ZndCuqldSTijYcgReCs_AFm1QIjP9R5HfhvN0NT07zr4s6eZX1Z3gbuu1EFJoe7FartfkCe_q-WpSrPuwkv2770Pk2HE-m-G3kD2gMJzQm9TjrOw95BOcAA4U
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0hQCocSj9AbLsUV2ovrSISJ07iQ4UQHwKxrCqVStxSx7ElJJSlm9AVf4rfyIyT7EIl9saBUw5xEscZzzx7Xt4AfNGhtSKUBXq_OMcFSu57iOMCT9k0kUWoESJoV2wiGQ7Tiwv5cwHuun9hiFbZ-UTnqIuRpj3yHQy0iK15zJPd678eVY2i7GpXQqMxi1NzO8ElW_Xj5AC_71fOjw7P94-9tqqApxCc1J6NpBVWBkolhtZ_IddGxFLLUJOSi48AO0g0dlVJTXAjML4NY4zaIsdYbkl8CV3-UhThdCCqoL8_zVogXnF7OhKXZBHepsuiul_1Ah4TM0l4VNvdix_HwRm4_S8f68Lc0dpLG6A38LoF1GyvmQFvYcGU72D1gczie6gdL8I1afQyGEmSuIPjwLO9VlidIYJnvy6JZKlKM7qpGFUu1aoibjgbWdbUH2C0YVcWE4TpYzYg1lXFVM3OWm4m3gHx-zr8fpbX3oDFclSaTWBGR0qEzsHlkTVRWgiTcoTSqY7iQOU98Ltvn-lWip0qglxlMxFpMpcMzSUjc8niHnybXnLd6JDMa9zvTCRrXVKVzeyjB5-np9GZUIaoGVRsEyLcREjK57RJhUDUg_bfg--dsT54zFOd-jC_U9vw6vj8bJANToanH2GFu5lCrKE-LNbjG7MFy_pffVmNP7k5x-DPc9vwPeN4YZo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB2hUCE4lJaCSEvLVoILlYW_duM9VCiFRkXQKIJW4mbW610JqXJobED8tf66zqzthCI1Nw6ccsjaWW_ezrzZeZ4B2NGRtTySOVo_kWGAkvke8rjAUzbpyTzSSBG0azbRGw6Tiws5WoA_7bswJKtsbaIz1PlY0xn5Pjpa5NahwFDdNrKI0dHg4Pq3Rx2kKNPattOoIXJi7u8wfCs_Hx_hf70bhoOvPw6_eU2HAU8hUak8G0vLrQyU6hmKBaNQGy6klpGmqi4-ku2gp3HaSmqiHoHxbSTQg_MM_bqlQkxo_hcTgfumA4ujwy_9s2kOA9mLO-GRGKDFeKM2p-pe3AtCQTol7lGnd0_86xVnVPdRdtY5vcHqc16uV_CyodqsX--N17BgijVYeVCA8Q1UTjHhhtSVNBgVK3EfTh3P-k3JdYbcnp1fkfxSFWZ8UzLqaapVSapxNras7kzA6CivyO-QwE_YKemxSqYq9r1RbeIdkNmvw88neewN6BTjwmwCMzpWPHKmL4utiZOcmyREkp3oWAQq64Lf4iDVTZF26hXyK52VlybopAidlKCTii7sTS-5riuUzBu81cIlbYxVmc6w0oWP06_RzFDuqF5UHBMhEUWyGs4Zk3COfCiO_S58aoH74Gf-N6m38ye1DUsI3fT0eHjyDpZDt2lITrQFnWpyY97DC31bXZWTD80GZHD51CD-C0ZLa7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Artificial+Neural+Network+Approach+for+Simultaneous+Forecasting+of+Weekly+Groundwater+Levels+at+Multiple+Sites&rft.jtitle=Water+resources+management&rft.au=Mohanty%2C+S&rft.au=Jha%2C+Madan+K&rft.au=Raul%2C+S+K&rft.au=Panda%2C+R+K&rft.date=2015-12-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=29&rft.issue=15&rft.spage=5521&rft.epage=5532&rft_id=info:doi/10.1007%2Fs11269-015-1132-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon