Theory and computation of electromagnetic fields

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell's equations, boundary condition, and transmission line theory) and advanced topics (su...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Jin, Jian-Ming
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Newark Wiley 2015
IEEE Press
John Wiley & Sons, Incorporated
Wiley-Blackwell
Vydání:2nd ed
Edice:Wiley - IEEE
Témata:
ISBN:9781119108047, 1119108047, 9781119108085, 111910808X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Chapter 3 Electromagnetic Theorems and Principles -- 3.1 Uniqueness Theorem -- 3.2 Image Theory -- 3.2.1 Basic Image Theory -- 3.2.2 Half-Space Field-Source Relations -- 3.3 Reciprocity Theorems -- 3.3.1 General Reciprocity Theorem -- 3.3.2 Lorentz Reciprocity Theorem -- 3.3.3 Rayleigh-Carson Reciprocity Theorem -- 3.4 Equivalence Principles -- 3.4.1 Surface Equivalence Principle -- 3.4.2 Application to Scattering by a Conducting Object -- 3.4.3 Application to Scattering by a Dielectric Object -- 3.4.4 Volume Equivalence Principle -- 3.5 Duality Principle -- 3.6 Aperture Radiation and Scattering -- 3.6.1 Equivalent Problems -- 3.6.2 Babinet's Principle -- 3.6.3 Complementary Antennas -- References -- Problems -- Chapter 4 Transmission Lines and Plane Waves -- 4.1 Transmission Line Theory -- 4.1.1 Governing Differential Equations and General Solutions -- 4.1.2 Reflection and Transmission -- 4.1.3 Green's Function and Eigenfunction Expansion -- 4.2 Wave Equations and General Solutions -- 4.2.1 Wave Equations and Solution by Separation of Variables -- 4.2.2 Characteristics of a Plane Wave -- 4.2.3 Wave Velocities and Attenuation -- 4.2.4 Linear, Circular, and Elliptical Polarizations -- 4.2.5 Wave Propagation in Metamaterials -- 4.3 Plane Waves Generated by a Current Sheet -- 4.4 Reflection and Transmission -- 4.4.1 Reflection and Transmission at Normal Incidence -- 4.4.2 Reflection and Transmission at Oblique Incidence -- 4.4.3 Total Transmission and Total Reflection -- 4.4.4 Transmission into a Left-Handed Medium -- 4.4.5 Plane Waves Versus Transmission Lines -- 4.5 Plane Waves in Anisotropic and Bi-Isotropic Media -- 4.5.1 Plane Waves in Uniaxial Media -- 4.5.2 Plane Waves in Gyrotropic Media -- 4.5.3 Plane Waves in Chiral Media -- References -- Problems -- Chapter 5 Fields and Waves in Rectangular Coordinates -- 5.1 Uniform Waveguides
  • Problems -- Chapter 7 Fields and Waves in Spherical Coordinates -- 7.1 Solution of Wave Equation -- 7.1.1 Solution by Separation of Variables -- 7.1.2 Spherical Wave Functions -- 7.1.3 TEr and TMr Modes -- 7.2 Spherical Cavity -- 7.3 Biconical Antenna -- 7.3.1 Infinitely Long Model -- 7.3.2 Finite Biconical Antenna -- 7.4 Wave Transformation and Scattering Analysis -- 7.4.1 Wave Transformation -- 7.4.2 Expansion of a Plane Wave -- 7.4.3 Scattering by a Conducting Sphere -- 7.4.4 Scattering by a Dielectric Sphere -- 7.4.5 Scattering by a Multilayer Dielectric Sphere -- 7.5 Addition Theorem and Radiation Analysis -- 7.5.1 Addition Theorem for Spherical Wave Functions -- 7.5.2 Radiation of a Spherical Surface Current -- 7.5.3 Radiation in the Presence of a Sphere -- 7.5.4 Radiation in the Presence of a Conducting Cone -- References -- Problems -- Part II Electromagnetic Field Computation -- Chapter 8 The Finite Difference Method -- 8.1 Finite Differencing Formulas -- 8.2 One-Dimensional Analysis -- 8.2.1 Solution of the Diffusion Equation -- 8.2.2 Solution of the Wave Equation -- 8.2.3 Stability Analysis -- 8.2.4 Numerical Dispersion Analysis -- 8.3 Two-Dimensional Analysis -- 8.3.1 Analysis in the Time Domain -- 8.3.2 Analysis in the Frequency Domain -- 8.4 Yee's FDTD Scheme -- 8.4.1 Two-Dimensional Analysis -- 8.4.2 Three-Dimensional Analysis -- 8.5 Absorbing Boundary Conditions -- 8.5.1 One-Dimensional ABC -- 8.5.2 Two-Dimensional ABCs -- 8.5.3 Perfectly Matched Layers -- 8.6 Modeling of Dispersive Media -- 8.6.1 Recursive Convolution Approach -- 8.6.2 Auxiliary Differential Equation Approach -- 8.7 Wave Excitation and Far-Field Calculation -- 8.7.1 Modeling of Wave Excitation -- 8.7.2 Near-to-Far-Field Transformation -- 8.8 Summary -- References -- Problems -- Chapter 9 The Finite Element Method -- 9.1 Introduction to the Finite Element Method
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Part I Electromagnetic Field Theory -- Chapter 1 Basic Electromagnetic Theory -- 1.1 Review of Vector Analysis -- 1.1.1 Vector Operations and Integral Theorems -- 1.1.2 Symbolic Vector Method -- 1.1.3 Helmholtz Decomposition Theorem -- 1.1.4 Green's Theorems -- 1.2 Maxwell's Equations in Terms of Total Charges and Currents -- 1.2.1 Maxwell's Equations in Integral Form -- 1.2.2 Maxwell's Equations in Differential Form -- 1.2.3 Current Continuity Equation -- 1.2.4 The Lorentz Force Law -- 1.3 Constitutive Relations -- 1.3.1 Electric Polarization -- 1.3.2 Magnetization -- 1.3.3 Electric Conduction -- 1.3.4 Classification of Media -- 1.4 Maxwell's Equations in Terms of Free Charges and Currents -- 1.5 Boundary Conditions -- 1.6 Energy, Power, and Poynting's Theorem -- 1.7 Time-Harmonic Fields -- 1.7.1 Time-Harmonic Fields -- 1.7.2 Fourier Transforms -- 1.7.3 Complex Power -- 1.7.4 Complex Permittivity and Permeability -- References -- Problems -- Chapter 2 Electromagnetic Radiation in Free Space -- 2.1 Scalar and Vector Potentials -- 2.1.1 Static Fields -- 2.1.2 Time-Harmonic Fields and the Lorenz Gauge Condition -- 2.2 Solution of Vector Potentials in Free Space -- 2.2.1 Delta Function and Green's Function -- 2.2.2 Green's Function in Free Space -- 2.2.3 Field-Source Relations in Free Space -- 2.2.4 Why Use Auxiliary Potential Functions -- 2.2.5 Free-Space Dyadic Green's Functions -- 2.3 Electromagnetic Radiation in Free Space -- 2.3.1 Infinitesimal Electric Dipole -- 2.3.2 Finite Electric Dipole -- 2.3.3 Far-Field Approximation and the Sommerfeld Radiation Condition -- 2.3.4 Circular Current Loop and Magnetic Dipole -- 2.4 Radiation by Surface Currents and Phased Arrays -- 2.4.1 Radiation by a Surface Current -- 2.4.2 Radiation by a Phased Array -- References -- Problems
  • 9.1.1 The General Principle -- 9.1.2 One-Dimensional Example -- 9.2 Finite Element Analysis of Scalar Fields -- 9.2.1 The Boundary-Value Problem -- 9.2.2 Finite Element Formulation -- 9.2.3 Application Examples -- 9.3 Finite Element Analysis of Vector Fields -- 9.3.1 The Boundary-Value Problem -- 9.3.2 Finite Element Formulation -- 9.3.3 Application Examples -- 9.4 Finite Element Analysis in the Time Domain -- 9.4.1 The Boundary-Value Problem -- 9.4.2 Finite Element Formulation -- 9.4.3 Application Examples -- 9.5 Discontinuous Galerkin Time-Domain Method -- 9.5.1 Basic Idea -- 9.5.2 Central-Flux DGTD Method -- 9.5.3 Upwind-Flux DGTD Method -- 9.5.4 Application Example -- 9.6 Absorbing Boundary Conditions -- 9.6.1 Two-Dimensional ABCs -- 9.6.2 Three-Dimensional ABCs -- 9.6.3 Perfectly Matched Layers -- 9.7 Some Numerical Aspects -- 9.7.1 Mesh Generation -- 9.7.2 Matrix Solvers -- 9.7.3 Higher-Order Elements -- 9.7.4 Curvilinear Elements -- 9.7.5 Adaptive Finite Element Analysis -- 9.8 Summary -- References -- Problems -- Chapter 10 The Method of Moments -- 10.1 Introduction to the Method of Moments -- 10.2 Two-Dimensional Analysis -- 10.2.1 Formulation of Integral Equations -- 10.2.2 Scattering by a Conducting Cylinder -- 10.2.3 Scattering by a Conducting Strip -- 10.2.4 Scattering by a Homogeneous Dielectric Cylinder -- 10.3 Three-Dimensional Analysis -- 10.3.1 Formulation of Integral Equations -- 10.3.2 Scattering and Radiation by a Conducting Wire -- 10.3.3 Scattering by a Conducting Body -- 10.3.4 Scattering by a Homogeneous Dielectric Body -- 10.3.5 Scattering by an Inhomogeneous Dielectric Body -- 10.4 Analysis of Periodic Structures -- 10.4.1 Scattering by a Planar Periodic Conducting Patch Array -- 10.4.2 Scattering by a Discrete Body-of-Revolution Object -- 10.5 Analysis of Microstrip Antennas and Circuits
  • 5.1.1 General Analysis -- 5.1.2 General Characteristics -- 5.1.3 Uniform Rectangular Waveguide -- 5.1.4 Losses in Waveguides and Attenuation Constant -- 5.2 Uniform Cavities -- 5.2.1 General Theory -- 5.2.2 Rectangular Cavity -- 5.2.3 Material and Geometry Perturbations -- 5.3 Partially Filled Waveguides and Dielectric Slab Waveguides -- 5.3.1 General Theory -- 5.3.2 Partially Filled Rectangular Waveguide -- 5.3.3 Dielectric Slab Waveguide on a Ground Plane -- 5.4 Field Excitation in Waveguides -- 5.4.1 Excitation by Planar Surface Currents -- 5.4.2 Excitation by General Volumetric Currents -- 5.5 Fields in Planar Layered Media -- 5.5.1 Spectral Green's Function and Sommerfeld Identity -- 5.5.2 Vertical Electric Dipole above a Layered Medium -- 5.5.3 Horizontal Electric Dipole above a Layered Medium -- 5.5.4 Dipoles on a Grounded Dielectric Slab -- References -- Problems -- Chapter 6 Fields and Waves in Cylindrical Coordinates -- 6.1 Solution of Wave Equation -- 6.1.1 Solution by Separation of Variables -- 6.1.2 Cylindrical Wave Functions -- 6.2 Circular and Coaxial Waveguides and Cavities -- 6.2.1 Circular Waveguide -- 6.2.2 Coaxial Waveguide -- 6.2.3 Cylindrical Cavity -- 6.3 Circular Dielectric Waveguide -- 6.3.1 Analysis of Hybrid Modes -- 6.3.2 Characteristics of Hybrid Modes -- 6.4 Wave Transformation and Scattering Analysis -- 6.4.1 Wave Transformation -- 6.4.2 Scattering by a Circular Conducting Cylinder -- 6.4.3 Scattering by a Circular Dielectric Cylinder -- 6.4.4 Scattering by a Circular Multilayer Dielectric Cylinder -- 6.5 Radiation by Infinitely Long Currents -- 6.5.1 Line Current Radiation in Free Space -- 6.5.2 Radiation by a Cylindrical Surface Current -- 6.5.3 Radiation in the Presence of a Circular Conducting Cylinder -- 6.5.4 Radiation in the Presence of a Conducting Wedge -- 6.5.5 Radiation by a Finite Current -- References
  • 10.5.1 Formulation of Integral Equations
  • 6.5 Radiation by Infinitely Long Currents -- References -- Problems -- Chapter 7: Fields and Waves in Spherical Coordinates -- 7.1 Solution of Wave Equation -- 7.2 Spherical Cavity -- 7.3 Biconical Antenna -- 7.4 Wave Transformation and Scattering Analysis -- 7.5 Addition Theorem and Radiation Analysis -- References -- Problems -- Part II: Electromagnetic Field Computation -- Chapter 8: The Finite Difference Method -- 8.1 Finite Differencing Formulas -- 8.2 One-Dimensional Analysis -- 8.3 Two-Dimensional Analysis -- 8.4 Yee's FDTD Scheme -- 8.5 Absorbing Boundary Conditions -- 8.6 Modeling of Dispersive Media -- 8.7 Wave Excitation and Far-Field Calculation -- 8.8 Summary -- References -- Problems -- Chapter 9: The Finite Element Method -- 9.1 Introduction to the Finite Element Method -- 9.2 Finite Element Analysis of Scalar Fields -- 9.3 Finite Element Analysis of Vector Fields -- 9.4 Finite Element Analysis in the Time Domain -- 9.5 Discontinuous Galerkin Time-Domain Method -- 9.6 Absorbing Boundary Conditions -- 9.7 Some Numerical Aspects -- 9.8 Summary -- References -- Problems -- Chapter 10: The Method of Moments -- 10.1 Introduction to the Method of Moments -- 10.2 Two-Dimensional Analysis -- 10.3 Three-Dimensional Analysis -- 10.4 Analysis of Periodic Structures -- 10.5 Analysis of Microstrip Antennas and Circuits -- 10.6 The Moment Method in the Time Domain -- 10.7 Summary -- References -- Problems -- Chapter 11: Fast Algorithms and Hybrid Techniques -- 11.1 Introduction to Fast Algorithms -- 11.2 Conjugate Gradient-FFT Method -- 11.3 Adaptive Integral Method -- 11.4 Fast Multipole Method -- 11.5 Adaptive Cross-Approximation Algorithm -- 11.6 Introduction to Hybrid Techniques -- 11.7 Hybrid Finite Difference-Finite Element Method -- 11.8 Hybrid Finite Element-Boundary Integral Method -- 11.9 Summary -- References -- Problems
  • Chapter 12: Concluding Remarks on Computational Electromagnetics -- 12.1 Overview of Computational Electromagnetics -- 12.2 Applications of Computational Electromagnetics -- 12.3 Challenges in Computational Electromagnetics -- References -- Appendix A: Vector Identities, Integral Theorems, and Coordinate Transformation -- A.1 Vector Identities -- A.2 Integral Theorems -- A.3 Coordinate Transformation -- Appendix B: Bessel Functions -- B.1 Definition -- B.2 Series Expressions -- B.3 Integral Representation -- B.4 Asymptotic Expressions -- B.5 Recurrence and Derivative Relations -- B.6 Symmetry Relations -- B.7 Wronskian Relation -- B.8 Useful Integrals -- Appendix C: Modified Bessel Functions -- C.1 Definition -- C.2 Series Expressions -- C.3 Integral Representations -- C.4 Asymptotic Expressions -- C.5 Recurrence and Derivative Relations -- C.6 Symmetry Relations -- C.7 Wronskian Relation -- C.8 Useful Integrals -- Appendix D: Spherical Bessel Functions -- D.1 Definition -- D.2 Series Expressions -- D.3 Asymptotic Expressions -- D.4 Recurrence and Derivative Relations -- D.5 Symmetry Relations -- D.6 Wronskian Relation -- D.7 Riccati-Bessel Functions -- D.8 Modified Spherical Bessel Functions -- Appendix E: Associated Legendre Polynomials -- E.1 Definition -- E.2 Series Expression -- E.3 Special Values -- E.4 Symmetry Relations -- E.5 Recurrence and Derivative Relations -- E.6 Orthogonal Relations -- E.7 Fourier-Legendre Series -- Index -- End User License Agreement
  • Intro -- Title Page -- Copyright -- Table of Contents -- Preface -- A Note about the second edition -- Acknowledgments -- Part I: Electromagnetic Field Theory -- Chapter 1: Basic Electromagnetic Theory -- 1.1 Review of Vector Analysis -- 1.2 Maxwell's Equations in Terms of Total Charges and Currents -- 1.3 Constitutive Relations -- 1.4 Maxwell's Equations in Terms of Free Charges and Currents -- 1.5 Boundary Conditions -- 1.6 Energy, Power, and Poynting's Theorem -- 1.7 Time-Harmonic Fields -- References -- Problems -- Chapter 2: Electromagnetic Radiation in Free Space -- 2.1 Scalar and Vector Potentials -- 2.2 Solution of Vector Potentials in Free Space -- 2.3 Electromagnetic Radiation in Free Space -- 2.4 Radiation by Surface Currents and Phased Arrays -- References -- Problems -- Chapter 3: Electromagnetic Theorems and Principles -- 3.1 Uniqueness Theorem -- 3.2 Image Theory -- 3.3 Reciprocity Theorems -- 3.4 Equivalence Principles -- 3.5 Duality Principle -- 3.6 Aperture Radiation and Scattering -- References -- Problems -- Chapter 4: Transmission Lines and Plane Waves -- 4.1 Transmission Line Theory -- 4.2 Wave Equations and General Solutions -- 4.3 Plane Waves Generated by a Current Sheet -- 4.4 Reflection and Transmission -- 4.5 Plane Waves in Anisotropic and Bi-Isotropic Media -- References -- Problems -- Chapter 5: Fields and Waves in Rectangular Coordinates -- 5.1 Uniform Waveguides -- 5.2 Uniform Cavities -- 5.3 Partially Filled Waveguides and Dielectric Slab Waveguides -- 5.4 Field Excitation in Waveguides -- 5.5 Fields in Planar Layered Media -- References -- Problems -- Chapter 6: Fields and Waves in Cylindrical Coordinates -- 6.1 Solution of Wave Equation -- 6.2 Circular and Coaxial Waveguides and Cavities -- 6.3 Circular Dielectric Waveguide -- 6.4 Wave Transformation and Scattering Analysis