3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms

We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & geosciences Ročník 160; s. 105030
Hlavní autori: Castillo-Reyes, Octavio, Modesto, David, Queralt, Pilar, Marcuello, Alex, Ledo, Juanjo, Amor-Martin, Adrian, de la Puente, Josep, García-Castillo, Luis Emilio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2022
Predmet:
ISSN:0098-3004, 1873-7803
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general. •Adaptive mesh design can be beneficial for the solution of the 3D MT problem.•High-order discretizations can offer excellent accuracy.•High-order basis achieve better parallel efficiency ratios than low-order basis.•Tailored meshes, HEFEM, and HPC can be extremely competitive for 3D MT modeling.•PETGEM is well suited to solve both active-source and passive-source EM methods
AbstractList We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general. •Adaptive mesh design can be beneficial for the solution of the 3D MT problem.•High-order discretizations can offer excellent accuracy.•High-order basis achieve better parallel efficiency ratios than low-order basis.•Tailored meshes, HEFEM, and HPC can be extremely competitive for 3D MT modeling.•PETGEM is well suited to solve both active-source and passive-source EM methods
We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general.
ArticleNumber 105030
Author Castillo-Reyes, Octavio
Marcuello, Alex
Ledo, Juanjo
Modesto, David
Queralt, Pilar
García-Castillo, Luis Emilio
Amor-Martin, Adrian
de la Puente, Josep
Author_xml – sequence: 1
  givenname: Octavio
  orcidid: 0000-0003-4271-5015
  surname: Castillo-Reyes
  fullname: Castillo-Reyes, Octavio
  email: octavio.castillo@bsc.es
  organization: Barcelona Supercomputing Center (BSC), c/Jordi Girona, 29. 08034, Barcelona, Spain
– sequence: 2
  givenname: David
  orcidid: 0000-0001-9540-8815
  surname: Modesto
  fullname: Modesto, David
  organization: Barcelona Supercomputing Center (BSC), c/Jordi Girona, 29. 08034, Barcelona, Spain
– sequence: 3
  givenname: Pilar
  surname: Queralt
  fullname: Queralt, Pilar
  organization: Institut Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, University of Barcelona, c/Martíi Franqués s/n. 08028, Barcelona, Spain
– sequence: 4
  givenname: Alex
  surname: Marcuello
  fullname: Marcuello, Alex
  organization: Institut Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, University of Barcelona, c/Martíi Franqués s/n. 08028, Barcelona, Spain
– sequence: 5
  givenname: Juanjo
  orcidid: 0000-0003-1548-1575
  surname: Ledo
  fullname: Ledo, Juanjo
  organization: Institut Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, University of Barcelona, c/Martíi Franqués s/n. 08028, Barcelona, Spain
– sequence: 6
  givenname: Adrian
  orcidid: 0000-0002-6123-4324
  surname: Amor-Martin
  fullname: Amor-Martin, Adrian
  organization: Department of Signal Theory and Communications, University Carlos III of Madrid, c/de la Universidad, 30. 28903, Madrid, Spain
– sequence: 7
  givenname: Josep
  surname: de la Puente
  fullname: de la Puente, Josep
  organization: Barcelona Supercomputing Center (BSC), c/Jordi Girona, 29. 08034, Barcelona, Spain
– sequence: 8
  givenname: Luis Emilio
  surname: García-Castillo
  fullname: García-Castillo, Luis Emilio
  organization: Department of Signal Theory and Communications, University Carlos III of Madrid, c/de la Universidad, 30. 28903, Madrid, Spain
BookMark eNqFkLFuFDEQhi2USFwSnoDGJc0es7bX3i0oUCCAFEGT1JZjz9755F0vtjdSHinPkRfDx1FRQDMjjf7vl-a7IGdznJGQty1sW2jl-8PWmh3GLQPW1ksHHF6RTdsr3qge-BnZAAx9wwHEa3KR8wEAGOu7DVn5JzqZ3YwlFgxhTd7SKToMft7RNR_n3u_2TUwOEy1YktmjSybQ7y_P7uU5oKUYcMK5ZBrn2pWzf8TwRBdTUwEDtXFa1nJsWoIpY0xTviLnowkZ3_zZl-T-5vPd9dfm9seXb9cfbxsjQJRGmIFbhl2n4EFBr9g4MFl_ME4ayUCMomdWCMe5NYORQqkHDhL7DnBQYB2_JO9OvUuKP1fMRU8-2_qnmTGuWTPJpZJd28sa5aeoTTHnhKNekp9MetIt6KNkfdC_JeujZH2SXKnhL8r6YoqPcxXlw3_YDycWq4FHj0ln63G26HxCW7SL_p_8L2ljnbo
CitedBy_id crossref_primary_10_1016_j_pepi_2024_107158
crossref_primary_10_3389_feart_2023_1206784
crossref_primary_10_1007_s10712_025_09879_7
crossref_primary_10_1109_TGRS_2025_3600408
crossref_primary_10_1016_j_pepi_2023_107029
crossref_primary_10_1190_geo2023_0726_1
crossref_primary_10_1016_j_jocs_2022_101813
crossref_primary_10_1190_geo2024_0725_1
crossref_primary_10_1109_TGRS_2022_3231921
crossref_primary_10_1109_TGRS_2022_3232488
crossref_primary_10_1007_s12665_024_11802_z
crossref_primary_10_1186_s40517_024_00314_5
crossref_primary_10_1109_TGRS_2024_3506739
crossref_primary_10_1016_j_cageo_2024_105557
crossref_primary_10_1016_j_cageo_2025_106019
crossref_primary_10_1038_s41598_023_27758_2
crossref_primary_10_1190_geo2023_0365_1
crossref_primary_10_1007_s10596_023_10247_w
crossref_primary_10_3390_app15105307
crossref_primary_10_1016_j_jappgeo_2023_105050
crossref_primary_10_3390_jmse12101750
crossref_primary_10_3390_rs15245636
crossref_primary_10_1007_s10712_024_09855_7
crossref_primary_10_3390_rs15020537
Cites_doi 10.1029/94RS00326
10.1016/j.cageo.2018.07.005
10.1111/j.1365-2478.2007.00614.x
10.1007/s11200-014-1041-9
10.1016/S1570-8659(00)07005-8
10.1002/2015GL063042
10.1016/j.cageo.2014.01.010
10.1002/cjg2.20068
10.1016/j.jappgeo.2017.12.009
10.1093/gji/ggw290
10.1190/geo2017-0406.1
10.1190/geo2015-0013.1
10.1093/gji/ggz285
10.1016/j.cageo.2017.03.019
10.1016/j.parco.2005.07.004
10.1190/geo2018-0208.1
10.1046/j.1365-246X.2002.01705.x
10.1093/gji/ggt154
10.1186/BF03351724
10.1190/1.1441188
10.1190/1.2437105
10.1007/s10712-013-9238-y
10.1016/j.epsl.2012.04.018
10.1137/08073901X
10.1007/s10712-009-9087-x
10.1093/gji/ggv144
10.1016/j.jappgeo.2017.01.016
10.1190/1.2744234
10.1016/j.jappgeo.2011.09.025
10.1111/j.1365-246X.2008.03817.x
10.1007/BF01396415
10.1190/1.1442984
10.1016/j.cageo.2021.104750
10.1007/s10596-020-09976-z
10.1093/gji/ggv410
10.1190/1.1443066
10.1111/j.1365-246X.2011.05127.x
10.1080/12269328.2010.10541308
10.1186/s40623-019-1071-1
10.1016/j.pepi.2020.106585
10.1093/gji/ggt066
10.1016/S0926-9851(97)00013-X
10.1007/s11770-008-0024-4
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2021.105030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
ExternalDocumentID 10_1016_j_cageo_2021_105030
S0098300421003101
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a404t-4a93c2e5570b70872f926004ad6a6204f482c44d33ca9a6477b306e850e970cd3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747977100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Sun Sep 28 00:13:10 EDT 2025
Tue Nov 18 22:45:28 EST 2025
Sat Nov 29 07:28:12 EST 2025
Fri Feb 23 02:41:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Geophysical electromagnetics
High-order edge finite element
High-performance computing
Magnetotelluric method
Numerical solutions
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a404t-4a93c2e5570b70872f926004ad6a6204f482c44d33ca9a6477b306e850e970cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1548-1575
0000-0001-9540-8815
0000-0003-4271-5015
0000-0002-6123-4324
OpenAccessLink https://dx.doi.org/10.1016/j.cageo.2021.105030
PQID 2636765186
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636765186
crossref_primary_10_1016_j_cageo_2021_105030
crossref_citationtrail_10_1016_j_cageo_2021_105030
elsevier_sciencedirect_doi_10_1016_j_cageo_2021_105030
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Geuzaine, Remacle (b15) 2008
Rochlitz, Skibbe, Günther (b39) 2019; 84
Queralt, Jones, Ledo (b36) 2007; 72
Singh, Dehiya, Gupta, Israil (b42) 2017; 104
Nam, Kim (b30) 2010; 13
Franke, A., Börner, R., Spitzer, K., 2007. 3D finite element simulation of magnetotelluric fields using unstructured grids. In: Proceedings of The 22nd Colloquium Of Electromagnetic Depth Research. pp. 27–33.
Piña-Varas, Ledo, Queralt, Marcuello, Bellmunt, Ogaya, Pérez, Rodriguez-Losada (b34) 2015; 42
Kun, Hao, Jia-Yong, Qing-Tian, Wen-Bo, Yu-Xian (b24) 2013; 56
Wannamaker (b47) 1991; 56
Groom, Bailey (b17) 1991; 56
Key (b22) 2016; 207
Ting, Hohmann (b44) 1981; 46
conforming finite elements. 31, 4130–4151.
Jin (b20) 2015
Zhang, Liu, Feng, Guan, Liu (b49) 2021
Zhu, Liu, Cui, Gong (b51) 2021; 25
.
Schwarzbach, Börner, Spitzer (b41) 2011; 187
Kordy, Wannamaker, Maris, Cherkaev, Hill (b23) 2016; 204
Chave, Jones (b9) 2012
Balay, Abhyankar, Adams, Brown, Brune, Buschelman, Dalcin, Eijkhout, Gropp, Kaushik, Knepley, McInnes, Rupp, Smith, Zampini, Zhang, Zhang (b3) 2016
Mackie, Smith, Madden (b28) 1994; 29
Plessix, Darnet, Mulder (b35) 2007; 72
Colton, Kress (b10) 2013
Liu, Ren, Tang, Yan (b27) 2008; 5
Eymard, Gallouët, Herbin (b12) 2000
Zhdanov, Varentsov, Weaver, Golubev, Krylov (b50) 1997; 37
Castillo-Reyes, de la Puente, a Cela (b7) 2018; 119
Miensopust, Queralt, Jones, modellers (b29) 2013; 193
Kunz, Luebbers (b25) 1993
Nam, Kim, Song, Lee, Son, Suh (b31) 2007; 55
Ren, Kalscheuer, Greenhalgh, Maurer (b37) 2013; 194
Börner (b5) 2010; 31
Xiao, Liu, Wang, Fu (b48) 2018; 149
Avdeeva, Moorkamp, Avdeev, Jegen, Miensopust (b2) 2015; 202
Rivera-Rios, Zhou, Heinson, Krieger (b38) 2019; 71
Ledo, Queralt, Martí, Jones (b26) 2002; 150
URL
Du, Ren, Tang (b11) 2016; 60
Jahandari, Ansari, Farquharson (b19) 2017; 138
Varilsuha, Candansayar (b45) 2018; 83
and
Vilamajó, Queralt, Ledo, Marcuello (b46) 2013; 34
Rognes, M.E., Kirby, R.C., Logg, A., 2009. Efficient assembly of
Grayver, Kolev (b16) 2015; 80
Bondeson, Rylander, Ingelström (b4) 2012
Amestoy, Guermouche, L’Excellent, Pralet (b1) 2006; 32
Campanyà, Ledo, Queralt, Marcuello, Liesa, Muñoz (b6) 2012; 333
Nédélec, J.-C., 1980. Mixed finite elements in R3. 35 (3) 315–341.
Kelbert, Meqbel, Egbert, Tandon (b21) 2014; 66
Guo, Egbert, Dong, Wei (b18) 2020; 309
Nam, Kim, Song, Lee, Suh (b32) 2008; 174
Siripunvaraporn, Egbert, Lenbury (b43) 2002; 54
Farquharson, Miensopust (b13) 2011; 75
Castillo-Reyes, de la Puente, García-Castillo, Cela (b8) 2019; 219
Nam (10.1016/j.cageo.2021.105030_b32) 2008; 174
Grayver (10.1016/j.cageo.2021.105030_b16) 2015; 80
Ren (10.1016/j.cageo.2021.105030_b37) 2013; 194
Vilamajó (10.1016/j.cageo.2021.105030_b46) 2013; 34
Amestoy (10.1016/j.cageo.2021.105030_b1) 2006; 32
Rivera-Rios (10.1016/j.cageo.2021.105030_b38) 2019; 71
Zhu (10.1016/j.cageo.2021.105030_b51) 2021; 25
Schwarzbach (10.1016/j.cageo.2021.105030_b41) 2011; 187
Castillo-Reyes (10.1016/j.cageo.2021.105030_b7) 2018; 119
10.1016/j.cageo.2021.105030_b40
Piña-Varas (10.1016/j.cageo.2021.105030_b34) 2015; 42
Groom (10.1016/j.cageo.2021.105030_b17) 1991; 56
Guo (10.1016/j.cageo.2021.105030_b18) 2020; 309
Miensopust (10.1016/j.cageo.2021.105030_b29) 2013; 193
Kun (10.1016/j.cageo.2021.105030_b24) 2013; 56
Nam (10.1016/j.cageo.2021.105030_b31) 2007; 55
Kordy (10.1016/j.cageo.2021.105030_b23) 2016; 204
Ledo (10.1016/j.cageo.2021.105030_b26) 2002; 150
Mackie (10.1016/j.cageo.2021.105030_b28) 1994; 29
Siripunvaraporn (10.1016/j.cageo.2021.105030_b43) 2002; 54
Avdeeva (10.1016/j.cageo.2021.105030_b2) 2015; 202
Bondeson (10.1016/j.cageo.2021.105030_b4) 2012
10.1016/j.cageo.2021.105030_b33
Castillo-Reyes (10.1016/j.cageo.2021.105030_b8) 2019; 219
Singh (10.1016/j.cageo.2021.105030_b42) 2017; 104
Chave (10.1016/j.cageo.2021.105030_b9) 2012
Plessix (10.1016/j.cageo.2021.105030_b35) 2007; 72
Rochlitz (10.1016/j.cageo.2021.105030_b39) 2019; 84
Jahandari (10.1016/j.cageo.2021.105030_b19) 2017; 138
Colton (10.1016/j.cageo.2021.105030_b10) 2013
Geuzaine (10.1016/j.cageo.2021.105030_b15) 2008
Ting (10.1016/j.cageo.2021.105030_b44) 1981; 46
Du (10.1016/j.cageo.2021.105030_b11) 2016; 60
Farquharson (10.1016/j.cageo.2021.105030_b13) 2011; 75
Key (10.1016/j.cageo.2021.105030_b22) 2016; 207
Börner (10.1016/j.cageo.2021.105030_b5) 2010; 31
Kunz (10.1016/j.cageo.2021.105030_b25) 1993
Varilsuha (10.1016/j.cageo.2021.105030_b45) 2018; 83
Eymard (10.1016/j.cageo.2021.105030_b12) 2000
Wannamaker (10.1016/j.cageo.2021.105030_b47) 1991; 56
Zhang (10.1016/j.cageo.2021.105030_b49) 2021
Zhdanov (10.1016/j.cageo.2021.105030_b50) 1997; 37
Queralt (10.1016/j.cageo.2021.105030_b36) 2007; 72
Kelbert (10.1016/j.cageo.2021.105030_b21) 2014; 66
10.1016/j.cageo.2021.105030_b14
Liu (10.1016/j.cageo.2021.105030_b27) 2008; 5
Balay (10.1016/j.cageo.2021.105030_b3) 2016
Campanyà (10.1016/j.cageo.2021.105030_b6) 2012; 333
Xiao (10.1016/j.cageo.2021.105030_b48) 2018; 149
Nam (10.1016/j.cageo.2021.105030_b30) 2010; 13
Jin (10.1016/j.cageo.2021.105030_b20) 2015
References_xml – volume: 29
  start-page: 923
  year: 1994
  end-page: 935
  ident: b28
  article-title: Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example
  publication-title: Radio Sci.
– reference: and
– reference: Franke, A., Börner, R., Spitzer, K., 2007. 3D finite element simulation of magnetotelluric fields using unstructured grids. In: Proceedings of The 22nd Colloquium Of Electromagnetic Depth Research. pp. 27–33.
– volume: 13
  start-page: 43
  year: 2010
  end-page: 52
  ident: b30
  article-title: 3D MT inversion using an edge finite element modeling algorithm
  publication-title: Geosyst. Eng.
– volume: 72
  start-page: F85
  year: 2007
  end-page: F95
  ident: b36
  article-title: Electromagnetic imaging of a complex ore body: 3D forward modeling, sensitivity tests, and down-mine measurements
  publication-title: Geophysics
– volume: 149
  start-page: 1
  year: 2018
  end-page: 9
  ident: b48
  article-title: Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method
  publication-title: J. Appl. Geophys.
– volume: 32
  start-page: 136
  year: 2006
  end-page: 156
  ident: b1
  article-title: Hybrid scheduling for the parallel solution of linear systems
  publication-title: Parallel Comput.
– volume: 31
  start-page: 225
  year: 2010
  end-page: 245
  ident: b5
  article-title: Numerical modelling in geo-electromagnetics: Advances and challenges
  publication-title: Surv. Geophys.
– start-page: 224
  year: 2012
  end-page: 227
  ident: b4
  article-title: Computational Electromagnetics
– volume: 84
  start-page: F17
  year: 2019
  end-page: F33
  ident: b39
  article-title: custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data
  publication-title: Geophysics
– volume: 54
  start-page: 721
  year: 2002
  end-page: 725
  ident: b43
  article-title: Numerical accuracy of magnetotelluric modeling: a comparison of finite difference approximations
  publication-title: Earth Planets Space
– volume: 5
  start-page: 170
  year: 2008
  end-page: 180
  ident: b27
  article-title: Three-dimensional magnetotellurics modeling using edge based finite-element unstructured meshes
  publication-title: Appl. Geophys.
– volume: 309
  year: 2020
  ident: b18
  article-title: Modular finite volume approach for 3D magnetotelluric modeling of the Earth medium with general anisotropy
  publication-title: Phys. Earth Planet. Inter.
– volume: 119
  start-page: 126
  year: 2018
  end-page: 136
  ident: b7
  article-title: PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements
  publication-title: Comput. Geosci.
– volume: 150
  start-page: 127
  year: 2002
  end-page: 139
  ident: b26
  article-title: Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of limitations and resolution
  publication-title: Geophys. J. Int.
– volume: 104
  start-page: 1
  year: 2017
  end-page: 11
  ident: b42
  article-title: A MATLAB based 3D modeling and inversion code for MT data
  publication-title: Comput. Geosci.
– volume: 71
  start-page: 1
  year: 2019
  end-page: 25
  ident: b38
  article-title: Multi-order vector finite element modeling of 3D magnetotelluric data including complex geometry and anisotropy
  publication-title: Earth Planets Space
– volume: 56
  start-page: 496
  year: 1991
  end-page: 518
  ident: b17
  article-title: Analytic investigations of the effects of near-surface three-dimensional galvanic scatterers on MT tensor decompositions
  publication-title: Geophysics
– volume: 194
  start-page: 700
  year: 2013
  end-page: 718
  ident: b37
  article-title: A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling
  publication-title: Geophys. J. Int.
– volume: 219
  start-page: 39
  year: 2019
  end-page: 65
  ident: b8
  article-title: Parallel 3D marine controlled-source electromagnetic modeling using high-order tetrahedral Nédélec elements
  publication-title: Geophys. J. Int.
– volume: 46
  start-page: 182
  year: 1981
  end-page: 197
  ident: b44
  article-title: Integral equation modeling of three-dimensional magnetotelluric response
  publication-title: Geophysics
– volume: 80
  start-page: E277
  year: 2015
  end-page: E291
  ident: b16
  article-title: Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method
  publication-title: Geophysics
– reference: Rognes, M.E., Kirby, R.C., Logg, A., 2009. Efficient assembly of
– volume: 60
  start-page: 332
  year: 2016
  end-page: 347
  ident: b11
  article-title: A finite-volume approach for 2D magnetotellurics modeling with arbitrary topographies
  publication-title: Stud. Geophys. Geod.
– year: 2021
  ident: b49
  article-title: Three-dimensional magnetotelluric modeling using the finite element model reduction algorithm
  publication-title: Comput. Geosci.
– volume: 75
  start-page: 699
  year: 2011
  end-page: 710
  ident: b13
  article-title: Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction
  publication-title: J. Appl. Geophys.
– volume: 207
  start-page: 571
  year: 2016
  end-page: 588
  ident: b22
  article-title: MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
  publication-title: Geophys. J. Int.
– volume: 187
  start-page: 63
  year: 2011
  end-page: 74
  ident: b41
  article-title: Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example
  publication-title: Geophys. J. Int.
– volume: 333
  start-page: 112
  year: 2012
  end-page: 121
  ident: b6
  article-title: New geoelectrical characterisation of a continental collision zone in the West-Central Pyrenees: Constraints from long period and broadband magnetotellurics
  publication-title: Earth Planet. Sci. Lett.
– start-page: 108
  year: 2013
  end-page: 136
  ident: b10
  article-title: Integral Equation Methods in Scattering Theory
– volume: 174
  start-page: 464
  year: 2008
  end-page: 474
  ident: b32
  article-title: Three-dimensional topography corrections of magnetotelluric data
  publication-title: Geophys. J. Int.
– reference: conforming finite elements. 31, 4130–4151.
– start-page: 19
  year: 2015
  end-page: 26
  ident: b20
  article-title: The Finite Element Method in Electromagnetics
– start-page: 20
  year: 2012
  ident: b9
  article-title: The Magnetotelluric Method: Theory and Practice
– year: 2008
  ident: b15
  article-title: Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities (2008)
– volume: 56
  start-page: 754
  year: 2013
  end-page: 765
  ident: b24
  article-title: A NLCG 3-D inversion method of magnetotellurics with parallel structure
  publication-title: Chin. J. Geophys.
– volume: 72
  start-page: SM177
  year: 2007
  end-page: SM184
  ident: b35
  article-title: An approach for 3D multisource, multifrequency CSEM modeling
  publication-title: Geophysics
– volume: 202
  start-page: 464
  year: 2015
  end-page: 481
  ident: b2
  article-title: Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix
  publication-title: Geophys. J. Int.
– volume: 42
  start-page: 1710
  year: 2015
  end-page: 1716
  ident: b34
  article-title: Vertical collapse origin of Las Cañadas caldera (Tenerife, Canary Islands) revealed by 3-D magnetotelluric inversion
  publication-title: Geophys. Res. Lett.
– volume: 66
  start-page: 40
  year: 2014
  end-page: 53
  ident: b21
  article-title: ModEM: A modular system for inversion of electromagnetic geophysical data
  publication-title: Comput. Geosci.
– start-page: 11
  year: 1993
  end-page: 27
  ident: b25
  article-title: The Finite Difference Time Domain Method for Electromagnetics
– year: 2016
  ident: b3
  article-title: PETSc Web site
– volume: 56
  start-page: 1716
  year: 1991
  end-page: 1728
  ident: b47
  article-title: Advances in three-dimensional magnetotelluric modeling using integral equations
  publication-title: Geophysics
– volume: 204
  start-page: 74
  year: 2016
  end-page: 93
  ident: b23
  article-title: 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers-Part I: forward problem and parameter Jacobians
  publication-title: Geophys. J. Int.
– reference: .
– volume: 138
  start-page: 185
  year: 2017
  end-page: 197
  ident: b19
  article-title: Comparison between staggered grid finite–volume and edge–based finite–element modelling of geophysical electromagnetic data on unstructured grids
  publication-title: J. Appl. Geophys.
– volume: 193
  start-page: 1216
  year: 2013
  end-page: 1238
  ident: b29
  article-title: Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison
  publication-title: Geophys. J. Int.
– reference: Nédélec, J.-C., 1980. Mixed finite elements in R3. 35 (3) 315–341.
– volume: 83
  start-page: WB51
  year: 2018
  end-page: WB60
  ident: b45
  article-title: 3D magnetotelluric modeling by using finite-difference method: Comparison study of different forward modeling approaches
  publication-title: Geophysics
– volume: 37
  start-page: 133
  year: 1997
  end-page: 271
  ident: b50
  article-title: Methods for modelling electromagnetic fields results from COMMEMI-the international project on the comparison of modelling methods for electromagnetic induction
  publication-title: J. Appl. Geophys.
– volume: 25
  start-page: 1
  year: 2021
  end-page: 16
  ident: b51
  article-title: An efficient parallel algorithm for 3D magnetotelluric modeling with edge-based finite element
  publication-title: Comput. Geosci.
– volume: 55
  start-page: 277
  year: 2007
  end-page: 287
  ident: b31
  article-title: 3D magnetotelluric modelling including surface topography
  publication-title: Geophys. Prospect.
– volume: 34
  start-page: 441
  year: 2013
  end-page: 461
  ident: b46
  article-title: Feasibility of monitoring the Hontomín (Burgos, Spain) CO
  publication-title: Surv. Geophys.
– start-page: 713
  year: 2000
  end-page: 1018
  ident: b12
  article-title: Finite volume methods
  publication-title: Handbook of Numerical Analysis, Vol. 7
– reference: . URL:
– volume: 29
  start-page: 923
  issue: 4
  year: 1994
  ident: 10.1016/j.cageo.2021.105030_b28
  article-title: Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example
  publication-title: Radio Sci.
  doi: 10.1029/94RS00326
– volume: 119
  start-page: 126
  year: 2018
  ident: 10.1016/j.cageo.2021.105030_b7
  article-title: PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2018.07.005
– volume: 55
  start-page: 277
  issue: 2
  year: 2007
  ident: 10.1016/j.cageo.2021.105030_b31
  article-title: 3D magnetotelluric modelling including surface topography
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2007.00614.x
– volume: 60
  start-page: 332
  issue: 2
  year: 2016
  ident: 10.1016/j.cageo.2021.105030_b11
  article-title: A finite-volume approach for 2D magnetotellurics modeling with arbitrary topographies
  publication-title: Stud. Geophys. Geod.
  doi: 10.1007/s11200-014-1041-9
– start-page: 713
  year: 2000
  ident: 10.1016/j.cageo.2021.105030_b12
  article-title: Finite volume methods
  doi: 10.1016/S1570-8659(00)07005-8
– volume: 42
  start-page: 1710
  issue: 6
  year: 2015
  ident: 10.1016/j.cageo.2021.105030_b34
  article-title: Vertical collapse origin of Las Cañadas caldera (Tenerife, Canary Islands) revealed by 3-D magnetotelluric inversion
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL063042
– start-page: 224
  year: 2012
  ident: 10.1016/j.cageo.2021.105030_b4
– volume: 66
  start-page: 40
  year: 2014
  ident: 10.1016/j.cageo.2021.105030_b21
  article-title: ModEM: A modular system for inversion of electromagnetic geophysical data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.01.010
– volume: 56
  start-page: 754
  issue: 6
  year: 2013
  ident: 10.1016/j.cageo.2021.105030_b24
  article-title: A NLCG 3-D inversion method of magnetotellurics with parallel structure
  publication-title: Chin. J. Geophys.
  doi: 10.1002/cjg2.20068
– volume: 149
  start-page: 1
  year: 2018
  ident: 10.1016/j.cageo.2021.105030_b48
  article-title: Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2017.12.009
– volume: 207
  start-page: 571
  issue: 1
  year: 2016
  ident: 10.1016/j.cageo.2021.105030_b22
  article-title: MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggw290
– volume: 83
  start-page: WB51
  issue: 2
  year: 2018
  ident: 10.1016/j.cageo.2021.105030_b45
  article-title: 3D magnetotelluric modeling by using finite-difference method: Comparison study of different forward modeling approaches
  publication-title: Geophysics
  doi: 10.1190/geo2017-0406.1
– volume: 80
  start-page: E277
  issue: 6
  year: 2015
  ident: 10.1016/j.cageo.2021.105030_b16
  article-title: Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method
  publication-title: Geophysics
  doi: 10.1190/geo2015-0013.1
– start-page: 11
  year: 1993
  ident: 10.1016/j.cageo.2021.105030_b25
– volume: 219
  start-page: 39
  year: 2019
  ident: 10.1016/j.cageo.2021.105030_b8
  article-title: Parallel 3D marine controlled-source electromagnetic modeling using high-order tetrahedral Nédélec elements
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz285
– start-page: 108
  year: 2013
  ident: 10.1016/j.cageo.2021.105030_b10
– volume: 104
  start-page: 1
  year: 2017
  ident: 10.1016/j.cageo.2021.105030_b42
  article-title: A MATLAB based 3D modeling and inversion code for MT data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.03.019
– volume: 32
  start-page: 136
  issue: 2
  year: 2006
  ident: 10.1016/j.cageo.2021.105030_b1
  article-title: Hybrid scheduling for the parallel solution of linear systems
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2005.07.004
– volume: 84
  start-page: F17
  issue: 2
  year: 2019
  ident: 10.1016/j.cageo.2021.105030_b39
  article-title: custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data
  publication-title: Geophysics
  doi: 10.1190/geo2018-0208.1
– volume: 150
  start-page: 127
  issue: 1
  year: 2002
  ident: 10.1016/j.cageo.2021.105030_b26
  article-title: Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of limitations and resolution
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2002.01705.x
– volume: 194
  start-page: 700
  issue: 2
  year: 2013
  ident: 10.1016/j.cageo.2021.105030_b37
  article-title: A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt154
– volume: 54
  start-page: 721
  issue: 6
  year: 2002
  ident: 10.1016/j.cageo.2021.105030_b43
  article-title: Numerical accuracy of magnetotelluric modeling: a comparison of finite difference approximations
  publication-title: Earth Planets Space
  doi: 10.1186/BF03351724
– volume: 46
  start-page: 182
  issue: 2
  year: 1981
  ident: 10.1016/j.cageo.2021.105030_b44
  article-title: Integral equation modeling of three-dimensional magnetotelluric response
  publication-title: Geophysics
  doi: 10.1190/1.1441188
– volume: 72
  start-page: F85
  issue: 2
  year: 2007
  ident: 10.1016/j.cageo.2021.105030_b36
  article-title: Electromagnetic imaging of a complex ore body: 3D forward modeling, sensitivity tests, and down-mine measurements
  publication-title: Geophysics
  doi: 10.1190/1.2437105
– volume: 34
  start-page: 441
  issue: 4
  year: 2013
  ident: 10.1016/j.cageo.2021.105030_b46
  article-title: Feasibility of monitoring the Hontomín (Burgos, Spain) CO2 storage site using a deep EM source
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-013-9238-y
– ident: 10.1016/j.cageo.2021.105030_b14
– start-page: 19
  year: 2015
  ident: 10.1016/j.cageo.2021.105030_b20
– volume: 333
  start-page: 112
  year: 2012
  ident: 10.1016/j.cageo.2021.105030_b6
  article-title: New geoelectrical characterisation of a continental collision zone in the West-Central Pyrenees: Constraints from long period and broadband magnetotellurics
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2012.04.018
– ident: 10.1016/j.cageo.2021.105030_b40
  doi: 10.1137/08073901X
– volume: 31
  start-page: 225
  issue: 2
  year: 2010
  ident: 10.1016/j.cageo.2021.105030_b5
  article-title: Numerical modelling in geo-electromagnetics: Advances and challenges
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-009-9087-x
– volume: 202
  start-page: 464
  issue: 1
  year: 2015
  ident: 10.1016/j.cageo.2021.105030_b2
  article-title: Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv144
– volume: 138
  start-page: 185
  year: 2017
  ident: 10.1016/j.cageo.2021.105030_b19
  article-title: Comparison between staggered grid finite–volume and edge–based finite–element modelling of geophysical electromagnetic data on unstructured grids
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2017.01.016
– start-page: 20
  year: 2012
  ident: 10.1016/j.cageo.2021.105030_b9
– volume: 72
  start-page: SM177
  issue: 5
  year: 2007
  ident: 10.1016/j.cageo.2021.105030_b35
  article-title: An approach for 3D multisource, multifrequency CSEM modeling
  publication-title: Geophysics
  doi: 10.1190/1.2744234
– volume: 75
  start-page: 699
  issue: 4
  year: 2011
  ident: 10.1016/j.cageo.2021.105030_b13
  article-title: Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2011.09.025
– volume: 174
  start-page: 464
  issue: 2
  year: 2008
  ident: 10.1016/j.cageo.2021.105030_b32
  article-title: Three-dimensional topography corrections of magnetotelluric data
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2008.03817.x
– ident: 10.1016/j.cageo.2021.105030_b33
  doi: 10.1007/BF01396415
– volume: 56
  start-page: 1716
  issue: 11
  year: 1991
  ident: 10.1016/j.cageo.2021.105030_b47
  article-title: Advances in three-dimensional magnetotelluric modeling using integral equations
  publication-title: Geophysics
  doi: 10.1190/1.1442984
– year: 2021
  ident: 10.1016/j.cageo.2021.105030_b49
  article-title: Three-dimensional magnetotelluric modeling using the finite element model reduction algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104750
– volume: 25
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.cageo.2021.105030_b51
  article-title: An efficient parallel algorithm for 3D magnetotelluric modeling with edge-based finite element
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-09976-z
– volume: 204
  start-page: 74
  issue: 1
  year: 2016
  ident: 10.1016/j.cageo.2021.105030_b23
  article-title: 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers-Part I: forward problem and parameter Jacobians
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv410
– volume: 56
  start-page: 496
  issue: 4
  year: 1991
  ident: 10.1016/j.cageo.2021.105030_b17
  article-title: Analytic investigations of the effects of near-surface three-dimensional galvanic scatterers on MT tensor decompositions
  publication-title: Geophysics
  doi: 10.1190/1.1443066
– volume: 187
  start-page: 63
  issue: 1
  year: 2011
  ident: 10.1016/j.cageo.2021.105030_b41
  article-title: Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2011.05127.x
– volume: 13
  start-page: 43
  issue: 2
  year: 2010
  ident: 10.1016/j.cageo.2021.105030_b30
  article-title: 3D MT inversion using an edge finite element modeling algorithm
  publication-title: Geosyst. Eng.
  doi: 10.1080/12269328.2010.10541308
– volume: 71
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.cageo.2021.105030_b38
  article-title: Multi-order vector finite element modeling of 3D magnetotelluric data including complex geometry and anisotropy
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-019-1071-1
– year: 2008
  ident: 10.1016/j.cageo.2021.105030_b15
– volume: 309
  year: 2020
  ident: 10.1016/j.cageo.2021.105030_b18
  article-title: Modular finite volume approach for 3D magnetotelluric modeling of the Earth medium with general anisotropy
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2020.106585
– volume: 193
  start-page: 1216
  issue: 3
  year: 2013
  ident: 10.1016/j.cageo.2021.105030_b29
  article-title: Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt066
– year: 2016
  ident: 10.1016/j.cageo.2021.105030_b3
– volume: 37
  start-page: 133
  issue: 3–4
  year: 1997
  ident: 10.1016/j.cageo.2021.105030_b50
  article-title: Methods for modelling electromagnetic fields results from COMMEMI-the international project on the comparison of modelling methods for electromagnetic induction
  publication-title: J. Appl. Geophys.
  doi: 10.1016/S0926-9851(97)00013-X
– volume: 5
  start-page: 170
  issue: 3
  year: 2008
  ident: 10.1016/j.cageo.2021.105030_b27
  article-title: Three-dimensional magnetotellurics modeling using edge based finite-element unstructured meshes
  publication-title: Appl. Geophys.
  doi: 10.1007/s11770-008-0024-4
SSID ssj0002285
Score 2.4798555
Snippet We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105030
SubjectTerms algorithms
finite element analysis
Geophysical electromagnetics
geophysics
High-order edge finite element
High-performance computing
Magnetotelluric method
Numerical solutions
Title 3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms
URI https://dx.doi.org/10.1016/j.cageo.2021.105030
https://www.proquest.com/docview/2636765186
Volume 160
WOSCitedRecordID wos000747977100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZL0kIvpU-a9IEKvW0Fjizb0jEk6Qu6LW0KezOyrF0SHO-ya4fk5_SY35E_1hnJ8m4SGtpCL97FWJbRfB7PjGa-IeSNtTI1qiiYTZRggmcpK7JYMxA3nyDBk9LaNZvIRiM5Hquvg8HPUAtzWmV1Lc_O1Py_ihrOgbCxdPYvxN3fFE7AfxA6HEHscPwjwcf7wxM9rW0zwwIRJA3y7W4wJtC6yABSFDPHuTlsbAPaxpZYpj_ym-al_6msGVqfW-52FE7AygbNiMEQvcAGLJVLR29d2vS80g1av8t1Wzc0jFg6eE1tR5u5Slrc06BfqmrGvtlzr62-mAZJA3oUwHMvXZ-n9dx7F6WFR_D5xUeV7vOLP4Mo27CbhKU76zENcIf7pC4faAvFNqvMJqe8lWRIEOY_XV5fyyxmmYziKwrddyi48XHwcYpjcPynru6T72CX46jbF7rKuv0dZ8PJwCVG9lRwsDd5lijQ_Zu7Hw_Gn_rPPecyCcSsOCBQW7kkwhtT_c78uWYIOOvm8AG537kldNfD6SEZ2PoRufvetX0-f0zaeJ9eAxUNoKIOVHQFKroGKjq6vCgvLwBMNICJzmrag4kGMNEeTLQH0xPy493B4d4H1jXsYFpEomFCq9hwi6xuRRbJjE8U9j8Qukw19j2YCMmNEGUcG600lkAX4LFamURWZZEp46dko57V9hmhYDinJi40F1oIU2A6FFZRgz8Po8CK3SI8rGNuOjZ7bKpS5SFt8Th3i5_j4ud-8bfI237Q3JO53H55GgSUd2-ItzNzQNTtA18HceagrXELTtd21i5zniJDYrIj0-1_vflzcm_1yrwgG82itS_JHXPaHC0Xrzp0_gLpDr6y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+magnetotelluric+modeling+using+high-order+tetrahedral+N%C3%A9d%C3%A9lec+elements+on+massively+parallel+computing+platforms&rft.jtitle=Computers+%26+geosciences&rft.au=Castillo-Reyes%2C+Octavio&rft.au=Modesto%2C+David&rft.au=Queralt%2C+Pilar&rft.au=Marcuello%2C+Alex&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.eissn=1873-7803&rft.volume=160&rft_id=info:doi/10.1016%2Fj.cageo.2021.105030&rft.externalDocID=S0098300421003101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon