3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms
We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source...
Uložené v:
| Vydané v: | Computers & geosciences Ročník 160; s. 105030 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.03.2022
|
| Predmet: | |
| ISSN: | 0098-3004, 1873-7803 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general.
•Adaptive mesh design can be beneficial for the solution of the 3D MT problem.•High-order discretizations can offer excellent accuracy.•High-order basis achieve better parallel efficiency ratios than low-order basis.•Tailored meshes, HEFEM, and HPC can be extremely competitive for 3D MT modeling.•PETGEM is well suited to solve both active-source and passive-source EM methods |
|---|---|
| AbstractList | We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general.
•Adaptive mesh design can be beneficial for the solution of the 3D MT problem.•High-order discretizations can offer excellent accuracy.•High-order basis achieve better parallel efficiency ratios than low-order basis.•Tailored meshes, HEFEM, and HPC can be extremely competitive for 3D MT modeling.•PETGEM is well suited to solve both active-source and passive-source EM methods We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general. |
| ArticleNumber | 105030 |
| Author | Castillo-Reyes, Octavio Marcuello, Alex Ledo, Juanjo Modesto, David Queralt, Pilar García-Castillo, Luis Emilio Amor-Martin, Adrian de la Puente, Josep |
| Author_xml | – sequence: 1 givenname: Octavio orcidid: 0000-0003-4271-5015 surname: Castillo-Reyes fullname: Castillo-Reyes, Octavio email: octavio.castillo@bsc.es organization: Barcelona Supercomputing Center (BSC), c/Jordi Girona, 29. 08034, Barcelona, Spain – sequence: 2 givenname: David orcidid: 0000-0001-9540-8815 surname: Modesto fullname: Modesto, David organization: Barcelona Supercomputing Center (BSC), c/Jordi Girona, 29. 08034, Barcelona, Spain – sequence: 3 givenname: Pilar surname: Queralt fullname: Queralt, Pilar organization: Institut Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, University of Barcelona, c/Martíi Franqués s/n. 08028, Barcelona, Spain – sequence: 4 givenname: Alex surname: Marcuello fullname: Marcuello, Alex organization: Institut Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, University of Barcelona, c/Martíi Franqués s/n. 08028, Barcelona, Spain – sequence: 5 givenname: Juanjo orcidid: 0000-0003-1548-1575 surname: Ledo fullname: Ledo, Juanjo organization: Institut Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, University of Barcelona, c/Martíi Franqués s/n. 08028, Barcelona, Spain – sequence: 6 givenname: Adrian orcidid: 0000-0002-6123-4324 surname: Amor-Martin fullname: Amor-Martin, Adrian organization: Department of Signal Theory and Communications, University Carlos III of Madrid, c/de la Universidad, 30. 28903, Madrid, Spain – sequence: 7 givenname: Josep surname: de la Puente fullname: de la Puente, Josep organization: Barcelona Supercomputing Center (BSC), c/Jordi Girona, 29. 08034, Barcelona, Spain – sequence: 8 givenname: Luis Emilio surname: García-Castillo fullname: García-Castillo, Luis Emilio organization: Department of Signal Theory and Communications, University Carlos III of Madrid, c/de la Universidad, 30. 28903, Madrid, Spain |
| BookMark | eNqFkLFuFDEQhi2USFwSnoDGJc0es7bX3i0oUCCAFEGT1JZjz9755F0vtjdSHinPkRfDx1FRQDMjjf7vl-a7IGdznJGQty1sW2jl-8PWmh3GLQPW1ksHHF6RTdsr3qge-BnZAAx9wwHEa3KR8wEAGOu7DVn5JzqZ3YwlFgxhTd7SKToMft7RNR_n3u_2TUwOEy1YktmjSybQ7y_P7uU5oKUYcMK5ZBrn2pWzf8TwRBdTUwEDtXFa1nJsWoIpY0xTviLnowkZ3_zZl-T-5vPd9dfm9seXb9cfbxsjQJRGmIFbhl2n4EFBr9g4MFl_ME4ayUCMomdWCMe5NYORQqkHDhL7DnBQYB2_JO9OvUuKP1fMRU8-2_qnmTGuWTPJpZJd28sa5aeoTTHnhKNekp9MetIt6KNkfdC_JeujZH2SXKnhL8r6YoqPcxXlw3_YDycWq4FHj0ln63G26HxCW7SL_p_8L2ljnbo |
| CitedBy_id | crossref_primary_10_1016_j_pepi_2024_107158 crossref_primary_10_3389_feart_2023_1206784 crossref_primary_10_1007_s10712_025_09879_7 crossref_primary_10_1109_TGRS_2025_3600408 crossref_primary_10_1016_j_pepi_2023_107029 crossref_primary_10_1190_geo2023_0726_1 crossref_primary_10_1016_j_jocs_2022_101813 crossref_primary_10_1190_geo2024_0725_1 crossref_primary_10_1109_TGRS_2022_3231921 crossref_primary_10_1109_TGRS_2022_3232488 crossref_primary_10_1007_s12665_024_11802_z crossref_primary_10_1186_s40517_024_00314_5 crossref_primary_10_1109_TGRS_2024_3506739 crossref_primary_10_1016_j_cageo_2024_105557 crossref_primary_10_1016_j_cageo_2025_106019 crossref_primary_10_1038_s41598_023_27758_2 crossref_primary_10_1190_geo2023_0365_1 crossref_primary_10_1007_s10596_023_10247_w crossref_primary_10_3390_app15105307 crossref_primary_10_1016_j_jappgeo_2023_105050 crossref_primary_10_3390_jmse12101750 crossref_primary_10_3390_rs15245636 crossref_primary_10_1007_s10712_024_09855_7 crossref_primary_10_3390_rs15020537 |
| Cites_doi | 10.1029/94RS00326 10.1016/j.cageo.2018.07.005 10.1111/j.1365-2478.2007.00614.x 10.1007/s11200-014-1041-9 10.1016/S1570-8659(00)07005-8 10.1002/2015GL063042 10.1016/j.cageo.2014.01.010 10.1002/cjg2.20068 10.1016/j.jappgeo.2017.12.009 10.1093/gji/ggw290 10.1190/geo2017-0406.1 10.1190/geo2015-0013.1 10.1093/gji/ggz285 10.1016/j.cageo.2017.03.019 10.1016/j.parco.2005.07.004 10.1190/geo2018-0208.1 10.1046/j.1365-246X.2002.01705.x 10.1093/gji/ggt154 10.1186/BF03351724 10.1190/1.1441188 10.1190/1.2437105 10.1007/s10712-013-9238-y 10.1016/j.epsl.2012.04.018 10.1137/08073901X 10.1007/s10712-009-9087-x 10.1093/gji/ggv144 10.1016/j.jappgeo.2017.01.016 10.1190/1.2744234 10.1016/j.jappgeo.2011.09.025 10.1111/j.1365-246X.2008.03817.x 10.1007/BF01396415 10.1190/1.1442984 10.1016/j.cageo.2021.104750 10.1007/s10596-020-09976-z 10.1093/gji/ggv410 10.1190/1.1443066 10.1111/j.1365-246X.2011.05127.x 10.1080/12269328.2010.10541308 10.1186/s40623-019-1071-1 10.1016/j.pepi.2020.106585 10.1093/gji/ggt066 10.1016/S0926-9851(97)00013-X 10.1007/s11770-008-0024-4 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.cageo.2021.105030 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1873-7803 |
| ExternalDocumentID | 10_1016_j_cageo_2021_105030 S0098300421003101 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a404t-4a93c2e5570b70872f926004ad6a6204f482c44d33ca9a6477b306e850e970cd3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747977100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-3004 |
| IngestDate | Sun Sep 28 00:13:10 EDT 2025 Tue Nov 18 22:45:28 EST 2025 Sat Nov 29 07:28:12 EST 2025 Fri Feb 23 02:41:16 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Geophysical electromagnetics High-order edge finite element High-performance computing Magnetotelluric method Numerical solutions |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a404t-4a93c2e5570b70872f926004ad6a6204f482c44d33ca9a6477b306e850e970cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1548-1575 0000-0001-9540-8815 0000-0003-4271-5015 0000-0002-6123-4324 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cageo.2021.105030 |
| PQID | 2636765186 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636765186 crossref_primary_10_1016_j_cageo_2021_105030 crossref_citationtrail_10_1016_j_cageo_2021_105030 elsevier_sciencedirect_doi_10_1016_j_cageo_2021_105030 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & geosciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Geuzaine, Remacle (b15) 2008 Rochlitz, Skibbe, Günther (b39) 2019; 84 Queralt, Jones, Ledo (b36) 2007; 72 Singh, Dehiya, Gupta, Israil (b42) 2017; 104 Nam, Kim (b30) 2010; 13 Franke, A., Börner, R., Spitzer, K., 2007. 3D finite element simulation of magnetotelluric fields using unstructured grids. In: Proceedings of The 22nd Colloquium Of Electromagnetic Depth Research. pp. 27–33. Piña-Varas, Ledo, Queralt, Marcuello, Bellmunt, Ogaya, Pérez, Rodriguez-Losada (b34) 2015; 42 Kun, Hao, Jia-Yong, Qing-Tian, Wen-Bo, Yu-Xian (b24) 2013; 56 Wannamaker (b47) 1991; 56 Groom, Bailey (b17) 1991; 56 Key (b22) 2016; 207 Ting, Hohmann (b44) 1981; 46 conforming finite elements. 31, 4130–4151. Jin (b20) 2015 Zhang, Liu, Feng, Guan, Liu (b49) 2021 Zhu, Liu, Cui, Gong (b51) 2021; 25 . Schwarzbach, Börner, Spitzer (b41) 2011; 187 Kordy, Wannamaker, Maris, Cherkaev, Hill (b23) 2016; 204 Chave, Jones (b9) 2012 Balay, Abhyankar, Adams, Brown, Brune, Buschelman, Dalcin, Eijkhout, Gropp, Kaushik, Knepley, McInnes, Rupp, Smith, Zampini, Zhang, Zhang (b3) 2016 Mackie, Smith, Madden (b28) 1994; 29 Plessix, Darnet, Mulder (b35) 2007; 72 Colton, Kress (b10) 2013 Liu, Ren, Tang, Yan (b27) 2008; 5 Eymard, Gallouët, Herbin (b12) 2000 Zhdanov, Varentsov, Weaver, Golubev, Krylov (b50) 1997; 37 Castillo-Reyes, de la Puente, a Cela (b7) 2018; 119 Miensopust, Queralt, Jones, modellers (b29) 2013; 193 Kunz, Luebbers (b25) 1993 Nam, Kim, Song, Lee, Son, Suh (b31) 2007; 55 Ren, Kalscheuer, Greenhalgh, Maurer (b37) 2013; 194 Börner (b5) 2010; 31 Xiao, Liu, Wang, Fu (b48) 2018; 149 Avdeeva, Moorkamp, Avdeev, Jegen, Miensopust (b2) 2015; 202 Rivera-Rios, Zhou, Heinson, Krieger (b38) 2019; 71 Ledo, Queralt, Martí, Jones (b26) 2002; 150 URL Du, Ren, Tang (b11) 2016; 60 Jahandari, Ansari, Farquharson (b19) 2017; 138 Varilsuha, Candansayar (b45) 2018; 83 and Vilamajó, Queralt, Ledo, Marcuello (b46) 2013; 34 Rognes, M.E., Kirby, R.C., Logg, A., 2009. Efficient assembly of Grayver, Kolev (b16) 2015; 80 Bondeson, Rylander, Ingelström (b4) 2012 Amestoy, Guermouche, L’Excellent, Pralet (b1) 2006; 32 Campanyà, Ledo, Queralt, Marcuello, Liesa, Muñoz (b6) 2012; 333 Nédélec, J.-C., 1980. Mixed finite elements in R3. 35 (3) 315–341. Kelbert, Meqbel, Egbert, Tandon (b21) 2014; 66 Guo, Egbert, Dong, Wei (b18) 2020; 309 Nam, Kim, Song, Lee, Suh (b32) 2008; 174 Siripunvaraporn, Egbert, Lenbury (b43) 2002; 54 Farquharson, Miensopust (b13) 2011; 75 Castillo-Reyes, de la Puente, García-Castillo, Cela (b8) 2019; 219 Nam (10.1016/j.cageo.2021.105030_b32) 2008; 174 Grayver (10.1016/j.cageo.2021.105030_b16) 2015; 80 Ren (10.1016/j.cageo.2021.105030_b37) 2013; 194 Vilamajó (10.1016/j.cageo.2021.105030_b46) 2013; 34 Amestoy (10.1016/j.cageo.2021.105030_b1) 2006; 32 Rivera-Rios (10.1016/j.cageo.2021.105030_b38) 2019; 71 Zhu (10.1016/j.cageo.2021.105030_b51) 2021; 25 Schwarzbach (10.1016/j.cageo.2021.105030_b41) 2011; 187 Castillo-Reyes (10.1016/j.cageo.2021.105030_b7) 2018; 119 10.1016/j.cageo.2021.105030_b40 Piña-Varas (10.1016/j.cageo.2021.105030_b34) 2015; 42 Groom (10.1016/j.cageo.2021.105030_b17) 1991; 56 Guo (10.1016/j.cageo.2021.105030_b18) 2020; 309 Miensopust (10.1016/j.cageo.2021.105030_b29) 2013; 193 Kun (10.1016/j.cageo.2021.105030_b24) 2013; 56 Nam (10.1016/j.cageo.2021.105030_b31) 2007; 55 Kordy (10.1016/j.cageo.2021.105030_b23) 2016; 204 Ledo (10.1016/j.cageo.2021.105030_b26) 2002; 150 Mackie (10.1016/j.cageo.2021.105030_b28) 1994; 29 Siripunvaraporn (10.1016/j.cageo.2021.105030_b43) 2002; 54 Avdeeva (10.1016/j.cageo.2021.105030_b2) 2015; 202 Bondeson (10.1016/j.cageo.2021.105030_b4) 2012 10.1016/j.cageo.2021.105030_b33 Castillo-Reyes (10.1016/j.cageo.2021.105030_b8) 2019; 219 Singh (10.1016/j.cageo.2021.105030_b42) 2017; 104 Chave (10.1016/j.cageo.2021.105030_b9) 2012 Plessix (10.1016/j.cageo.2021.105030_b35) 2007; 72 Rochlitz (10.1016/j.cageo.2021.105030_b39) 2019; 84 Jahandari (10.1016/j.cageo.2021.105030_b19) 2017; 138 Colton (10.1016/j.cageo.2021.105030_b10) 2013 Geuzaine (10.1016/j.cageo.2021.105030_b15) 2008 Ting (10.1016/j.cageo.2021.105030_b44) 1981; 46 Du (10.1016/j.cageo.2021.105030_b11) 2016; 60 Farquharson (10.1016/j.cageo.2021.105030_b13) 2011; 75 Key (10.1016/j.cageo.2021.105030_b22) 2016; 207 Börner (10.1016/j.cageo.2021.105030_b5) 2010; 31 Kunz (10.1016/j.cageo.2021.105030_b25) 1993 Varilsuha (10.1016/j.cageo.2021.105030_b45) 2018; 83 Eymard (10.1016/j.cageo.2021.105030_b12) 2000 Wannamaker (10.1016/j.cageo.2021.105030_b47) 1991; 56 Zhang (10.1016/j.cageo.2021.105030_b49) 2021 Zhdanov (10.1016/j.cageo.2021.105030_b50) 1997; 37 Queralt (10.1016/j.cageo.2021.105030_b36) 2007; 72 Kelbert (10.1016/j.cageo.2021.105030_b21) 2014; 66 10.1016/j.cageo.2021.105030_b14 Liu (10.1016/j.cageo.2021.105030_b27) 2008; 5 Balay (10.1016/j.cageo.2021.105030_b3) 2016 Campanyà (10.1016/j.cageo.2021.105030_b6) 2012; 333 Xiao (10.1016/j.cageo.2021.105030_b48) 2018; 149 Nam (10.1016/j.cageo.2021.105030_b30) 2010; 13 Jin (10.1016/j.cageo.2021.105030_b20) 2015 |
| References_xml | – volume: 29 start-page: 923 year: 1994 end-page: 935 ident: b28 article-title: Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example publication-title: Radio Sci. – reference: and – reference: Franke, A., Börner, R., Spitzer, K., 2007. 3D finite element simulation of magnetotelluric fields using unstructured grids. In: Proceedings of The 22nd Colloquium Of Electromagnetic Depth Research. pp. 27–33. – volume: 13 start-page: 43 year: 2010 end-page: 52 ident: b30 article-title: 3D MT inversion using an edge finite element modeling algorithm publication-title: Geosyst. Eng. – volume: 72 start-page: F85 year: 2007 end-page: F95 ident: b36 article-title: Electromagnetic imaging of a complex ore body: 3D forward modeling, sensitivity tests, and down-mine measurements publication-title: Geophysics – volume: 149 start-page: 1 year: 2018 end-page: 9 ident: b48 article-title: Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method publication-title: J. Appl. Geophys. – volume: 32 start-page: 136 year: 2006 end-page: 156 ident: b1 article-title: Hybrid scheduling for the parallel solution of linear systems publication-title: Parallel Comput. – volume: 31 start-page: 225 year: 2010 end-page: 245 ident: b5 article-title: Numerical modelling in geo-electromagnetics: Advances and challenges publication-title: Surv. Geophys. – start-page: 224 year: 2012 end-page: 227 ident: b4 article-title: Computational Electromagnetics – volume: 84 start-page: F17 year: 2019 end-page: F33 ident: b39 article-title: custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data publication-title: Geophysics – volume: 54 start-page: 721 year: 2002 end-page: 725 ident: b43 article-title: Numerical accuracy of magnetotelluric modeling: a comparison of finite difference approximations publication-title: Earth Planets Space – volume: 5 start-page: 170 year: 2008 end-page: 180 ident: b27 article-title: Three-dimensional magnetotellurics modeling using edge based finite-element unstructured meshes publication-title: Appl. Geophys. – volume: 309 year: 2020 ident: b18 article-title: Modular finite volume approach for 3D magnetotelluric modeling of the Earth medium with general anisotropy publication-title: Phys. Earth Planet. Inter. – volume: 119 start-page: 126 year: 2018 end-page: 136 ident: b7 article-title: PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements publication-title: Comput. Geosci. – volume: 150 start-page: 127 year: 2002 end-page: 139 ident: b26 article-title: Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of limitations and resolution publication-title: Geophys. J. Int. – volume: 104 start-page: 1 year: 2017 end-page: 11 ident: b42 article-title: A MATLAB based 3D modeling and inversion code for MT data publication-title: Comput. Geosci. – volume: 71 start-page: 1 year: 2019 end-page: 25 ident: b38 article-title: Multi-order vector finite element modeling of 3D magnetotelluric data including complex geometry and anisotropy publication-title: Earth Planets Space – volume: 56 start-page: 496 year: 1991 end-page: 518 ident: b17 article-title: Analytic investigations of the effects of near-surface three-dimensional galvanic scatterers on MT tensor decompositions publication-title: Geophysics – volume: 194 start-page: 700 year: 2013 end-page: 718 ident: b37 article-title: A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling publication-title: Geophys. J. Int. – volume: 219 start-page: 39 year: 2019 end-page: 65 ident: b8 article-title: Parallel 3D marine controlled-source electromagnetic modeling using high-order tetrahedral Nédélec elements publication-title: Geophys. J. Int. – volume: 46 start-page: 182 year: 1981 end-page: 197 ident: b44 article-title: Integral equation modeling of three-dimensional magnetotelluric response publication-title: Geophysics – volume: 80 start-page: E277 year: 2015 end-page: E291 ident: b16 article-title: Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method publication-title: Geophysics – reference: Rognes, M.E., Kirby, R.C., Logg, A., 2009. Efficient assembly of – volume: 60 start-page: 332 year: 2016 end-page: 347 ident: b11 article-title: A finite-volume approach for 2D magnetotellurics modeling with arbitrary topographies publication-title: Stud. Geophys. Geod. – year: 2021 ident: b49 article-title: Three-dimensional magnetotelluric modeling using the finite element model reduction algorithm publication-title: Comput. Geosci. – volume: 75 start-page: 699 year: 2011 end-page: 710 ident: b13 article-title: Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction publication-title: J. Appl. Geophys. – volume: 207 start-page: 571 year: 2016 end-page: 588 ident: b22 article-title: MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data publication-title: Geophys. J. Int. – volume: 187 start-page: 63 year: 2011 end-page: 74 ident: b41 article-title: Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example publication-title: Geophys. J. Int. – volume: 333 start-page: 112 year: 2012 end-page: 121 ident: b6 article-title: New geoelectrical characterisation of a continental collision zone in the West-Central Pyrenees: Constraints from long period and broadband magnetotellurics publication-title: Earth Planet. Sci. Lett. – start-page: 108 year: 2013 end-page: 136 ident: b10 article-title: Integral Equation Methods in Scattering Theory – volume: 174 start-page: 464 year: 2008 end-page: 474 ident: b32 article-title: Three-dimensional topography corrections of magnetotelluric data publication-title: Geophys. J. Int. – reference: conforming finite elements. 31, 4130–4151. – start-page: 19 year: 2015 end-page: 26 ident: b20 article-title: The Finite Element Method in Electromagnetics – start-page: 20 year: 2012 ident: b9 article-title: The Magnetotelluric Method: Theory and Practice – year: 2008 ident: b15 article-title: Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities (2008) – volume: 56 start-page: 754 year: 2013 end-page: 765 ident: b24 article-title: A NLCG 3-D inversion method of magnetotellurics with parallel structure publication-title: Chin. J. Geophys. – volume: 72 start-page: SM177 year: 2007 end-page: SM184 ident: b35 article-title: An approach for 3D multisource, multifrequency CSEM modeling publication-title: Geophysics – volume: 202 start-page: 464 year: 2015 end-page: 481 ident: b2 article-title: Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix publication-title: Geophys. J. Int. – volume: 42 start-page: 1710 year: 2015 end-page: 1716 ident: b34 article-title: Vertical collapse origin of Las Cañadas caldera (Tenerife, Canary Islands) revealed by 3-D magnetotelluric inversion publication-title: Geophys. Res. Lett. – volume: 66 start-page: 40 year: 2014 end-page: 53 ident: b21 article-title: ModEM: A modular system for inversion of electromagnetic geophysical data publication-title: Comput. Geosci. – start-page: 11 year: 1993 end-page: 27 ident: b25 article-title: The Finite Difference Time Domain Method for Electromagnetics – year: 2016 ident: b3 article-title: PETSc Web site – volume: 56 start-page: 1716 year: 1991 end-page: 1728 ident: b47 article-title: Advances in three-dimensional magnetotelluric modeling using integral equations publication-title: Geophysics – volume: 204 start-page: 74 year: 2016 end-page: 93 ident: b23 article-title: 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers-Part I: forward problem and parameter Jacobians publication-title: Geophys. J. Int. – reference: . – volume: 138 start-page: 185 year: 2017 end-page: 197 ident: b19 article-title: Comparison between staggered grid finite–volume and edge–based finite–element modelling of geophysical electromagnetic data on unstructured grids publication-title: J. Appl. Geophys. – volume: 193 start-page: 1216 year: 2013 end-page: 1238 ident: b29 article-title: Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison publication-title: Geophys. J. Int. – reference: Nédélec, J.-C., 1980. Mixed finite elements in R3. 35 (3) 315–341. – volume: 83 start-page: WB51 year: 2018 end-page: WB60 ident: b45 article-title: 3D magnetotelluric modeling by using finite-difference method: Comparison study of different forward modeling approaches publication-title: Geophysics – volume: 37 start-page: 133 year: 1997 end-page: 271 ident: b50 article-title: Methods for modelling electromagnetic fields results from COMMEMI-the international project on the comparison of modelling methods for electromagnetic induction publication-title: J. Appl. Geophys. – volume: 25 start-page: 1 year: 2021 end-page: 16 ident: b51 article-title: An efficient parallel algorithm for 3D magnetotelluric modeling with edge-based finite element publication-title: Comput. Geosci. – volume: 55 start-page: 277 year: 2007 end-page: 287 ident: b31 article-title: 3D magnetotelluric modelling including surface topography publication-title: Geophys. Prospect. – volume: 34 start-page: 441 year: 2013 end-page: 461 ident: b46 article-title: Feasibility of monitoring the Hontomín (Burgos, Spain) CO publication-title: Surv. Geophys. – start-page: 713 year: 2000 end-page: 1018 ident: b12 article-title: Finite volume methods publication-title: Handbook of Numerical Analysis, Vol. 7 – reference: . URL: – volume: 29 start-page: 923 issue: 4 year: 1994 ident: 10.1016/j.cageo.2021.105030_b28 article-title: Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example publication-title: Radio Sci. doi: 10.1029/94RS00326 – volume: 119 start-page: 126 year: 2018 ident: 10.1016/j.cageo.2021.105030_b7 article-title: PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2018.07.005 – volume: 55 start-page: 277 issue: 2 year: 2007 ident: 10.1016/j.cageo.2021.105030_b31 article-title: 3D magnetotelluric modelling including surface topography publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2007.00614.x – volume: 60 start-page: 332 issue: 2 year: 2016 ident: 10.1016/j.cageo.2021.105030_b11 article-title: A finite-volume approach for 2D magnetotellurics modeling with arbitrary topographies publication-title: Stud. Geophys. Geod. doi: 10.1007/s11200-014-1041-9 – start-page: 713 year: 2000 ident: 10.1016/j.cageo.2021.105030_b12 article-title: Finite volume methods doi: 10.1016/S1570-8659(00)07005-8 – volume: 42 start-page: 1710 issue: 6 year: 2015 ident: 10.1016/j.cageo.2021.105030_b34 article-title: Vertical collapse origin of Las Cañadas caldera (Tenerife, Canary Islands) revealed by 3-D magnetotelluric inversion publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL063042 – start-page: 224 year: 2012 ident: 10.1016/j.cageo.2021.105030_b4 – volume: 66 start-page: 40 year: 2014 ident: 10.1016/j.cageo.2021.105030_b21 article-title: ModEM: A modular system for inversion of electromagnetic geophysical data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.01.010 – volume: 56 start-page: 754 issue: 6 year: 2013 ident: 10.1016/j.cageo.2021.105030_b24 article-title: A NLCG 3-D inversion method of magnetotellurics with parallel structure publication-title: Chin. J. Geophys. doi: 10.1002/cjg2.20068 – volume: 149 start-page: 1 year: 2018 ident: 10.1016/j.cageo.2021.105030_b48 article-title: Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2017.12.009 – volume: 207 start-page: 571 issue: 1 year: 2016 ident: 10.1016/j.cageo.2021.105030_b22 article-title: MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data publication-title: Geophys. J. Int. doi: 10.1093/gji/ggw290 – volume: 83 start-page: WB51 issue: 2 year: 2018 ident: 10.1016/j.cageo.2021.105030_b45 article-title: 3D magnetotelluric modeling by using finite-difference method: Comparison study of different forward modeling approaches publication-title: Geophysics doi: 10.1190/geo2017-0406.1 – volume: 80 start-page: E277 issue: 6 year: 2015 ident: 10.1016/j.cageo.2021.105030_b16 article-title: Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method publication-title: Geophysics doi: 10.1190/geo2015-0013.1 – start-page: 11 year: 1993 ident: 10.1016/j.cageo.2021.105030_b25 – volume: 219 start-page: 39 year: 2019 ident: 10.1016/j.cageo.2021.105030_b8 article-title: Parallel 3D marine controlled-source electromagnetic modeling using high-order tetrahedral Nédélec elements publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz285 – start-page: 108 year: 2013 ident: 10.1016/j.cageo.2021.105030_b10 – volume: 104 start-page: 1 year: 2017 ident: 10.1016/j.cageo.2021.105030_b42 article-title: A MATLAB based 3D modeling and inversion code for MT data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.03.019 – volume: 32 start-page: 136 issue: 2 year: 2006 ident: 10.1016/j.cageo.2021.105030_b1 article-title: Hybrid scheduling for the parallel solution of linear systems publication-title: Parallel Comput. doi: 10.1016/j.parco.2005.07.004 – volume: 84 start-page: F17 issue: 2 year: 2019 ident: 10.1016/j.cageo.2021.105030_b39 article-title: custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data publication-title: Geophysics doi: 10.1190/geo2018-0208.1 – volume: 150 start-page: 127 issue: 1 year: 2002 ident: 10.1016/j.cageo.2021.105030_b26 article-title: Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of limitations and resolution publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2002.01705.x – volume: 194 start-page: 700 issue: 2 year: 2013 ident: 10.1016/j.cageo.2021.105030_b37 article-title: A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt154 – volume: 54 start-page: 721 issue: 6 year: 2002 ident: 10.1016/j.cageo.2021.105030_b43 article-title: Numerical accuracy of magnetotelluric modeling: a comparison of finite difference approximations publication-title: Earth Planets Space doi: 10.1186/BF03351724 – volume: 46 start-page: 182 issue: 2 year: 1981 ident: 10.1016/j.cageo.2021.105030_b44 article-title: Integral equation modeling of three-dimensional magnetotelluric response publication-title: Geophysics doi: 10.1190/1.1441188 – volume: 72 start-page: F85 issue: 2 year: 2007 ident: 10.1016/j.cageo.2021.105030_b36 article-title: Electromagnetic imaging of a complex ore body: 3D forward modeling, sensitivity tests, and down-mine measurements publication-title: Geophysics doi: 10.1190/1.2437105 – volume: 34 start-page: 441 issue: 4 year: 2013 ident: 10.1016/j.cageo.2021.105030_b46 article-title: Feasibility of monitoring the Hontomín (Burgos, Spain) CO2 storage site using a deep EM source publication-title: Surv. Geophys. doi: 10.1007/s10712-013-9238-y – ident: 10.1016/j.cageo.2021.105030_b14 – start-page: 19 year: 2015 ident: 10.1016/j.cageo.2021.105030_b20 – volume: 333 start-page: 112 year: 2012 ident: 10.1016/j.cageo.2021.105030_b6 article-title: New geoelectrical characterisation of a continental collision zone in the West-Central Pyrenees: Constraints from long period and broadband magnetotellurics publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2012.04.018 – ident: 10.1016/j.cageo.2021.105030_b40 doi: 10.1137/08073901X – volume: 31 start-page: 225 issue: 2 year: 2010 ident: 10.1016/j.cageo.2021.105030_b5 article-title: Numerical modelling in geo-electromagnetics: Advances and challenges publication-title: Surv. Geophys. doi: 10.1007/s10712-009-9087-x – volume: 202 start-page: 464 issue: 1 year: 2015 ident: 10.1016/j.cageo.2021.105030_b2 article-title: Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv144 – volume: 138 start-page: 185 year: 2017 ident: 10.1016/j.cageo.2021.105030_b19 article-title: Comparison between staggered grid finite–volume and edge–based finite–element modelling of geophysical electromagnetic data on unstructured grids publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2017.01.016 – start-page: 20 year: 2012 ident: 10.1016/j.cageo.2021.105030_b9 – volume: 72 start-page: SM177 issue: 5 year: 2007 ident: 10.1016/j.cageo.2021.105030_b35 article-title: An approach for 3D multisource, multifrequency CSEM modeling publication-title: Geophysics doi: 10.1190/1.2744234 – volume: 75 start-page: 699 issue: 4 year: 2011 ident: 10.1016/j.cageo.2021.105030_b13 article-title: Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2011.09.025 – volume: 174 start-page: 464 issue: 2 year: 2008 ident: 10.1016/j.cageo.2021.105030_b32 article-title: Three-dimensional topography corrections of magnetotelluric data publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2008.03817.x – ident: 10.1016/j.cageo.2021.105030_b33 doi: 10.1007/BF01396415 – volume: 56 start-page: 1716 issue: 11 year: 1991 ident: 10.1016/j.cageo.2021.105030_b47 article-title: Advances in three-dimensional magnetotelluric modeling using integral equations publication-title: Geophysics doi: 10.1190/1.1442984 – year: 2021 ident: 10.1016/j.cageo.2021.105030_b49 article-title: Three-dimensional magnetotelluric modeling using the finite element model reduction algorithm publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104750 – volume: 25 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cageo.2021.105030_b51 article-title: An efficient parallel algorithm for 3D magnetotelluric modeling with edge-based finite element publication-title: Comput. Geosci. doi: 10.1007/s10596-020-09976-z – volume: 204 start-page: 74 issue: 1 year: 2016 ident: 10.1016/j.cageo.2021.105030_b23 article-title: 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers-Part I: forward problem and parameter Jacobians publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv410 – volume: 56 start-page: 496 issue: 4 year: 1991 ident: 10.1016/j.cageo.2021.105030_b17 article-title: Analytic investigations of the effects of near-surface three-dimensional galvanic scatterers on MT tensor decompositions publication-title: Geophysics doi: 10.1190/1.1443066 – volume: 187 start-page: 63 issue: 1 year: 2011 ident: 10.1016/j.cageo.2021.105030_b41 article-title: Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2011.05127.x – volume: 13 start-page: 43 issue: 2 year: 2010 ident: 10.1016/j.cageo.2021.105030_b30 article-title: 3D MT inversion using an edge finite element modeling algorithm publication-title: Geosyst. Eng. doi: 10.1080/12269328.2010.10541308 – volume: 71 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.cageo.2021.105030_b38 article-title: Multi-order vector finite element modeling of 3D magnetotelluric data including complex geometry and anisotropy publication-title: Earth Planets Space doi: 10.1186/s40623-019-1071-1 – year: 2008 ident: 10.1016/j.cageo.2021.105030_b15 – volume: 309 year: 2020 ident: 10.1016/j.cageo.2021.105030_b18 article-title: Modular finite volume approach for 3D magnetotelluric modeling of the Earth medium with general anisotropy publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2020.106585 – volume: 193 start-page: 1216 issue: 3 year: 2013 ident: 10.1016/j.cageo.2021.105030_b29 article-title: Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt066 – year: 2016 ident: 10.1016/j.cageo.2021.105030_b3 – volume: 37 start-page: 133 issue: 3–4 year: 1997 ident: 10.1016/j.cageo.2021.105030_b50 article-title: Methods for modelling electromagnetic fields results from COMMEMI-the international project on the comparison of modelling methods for electromagnetic induction publication-title: J. Appl. Geophys. doi: 10.1016/S0926-9851(97)00013-X – volume: 5 start-page: 170 issue: 3 year: 2008 ident: 10.1016/j.cageo.2021.105030_b27 article-title: Three-dimensional magnetotellurics modeling using edge based finite-element unstructured meshes publication-title: Appl. Geophys. doi: 10.1007/s11770-008-0024-4 |
| SSID | ssj0002285 |
| Score | 2.4798555 |
| Snippet | We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105030 |
| SubjectTerms | algorithms finite element analysis Geophysical electromagnetics geophysics High-order edge finite element High-performance computing Magnetotelluric method Numerical solutions |
| Title | 3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms |
| URI | https://dx.doi.org/10.1016/j.cageo.2021.105030 https://www.proquest.com/docview/2636765186 |
| Volume | 160 |
| WOSCitedRecordID | wos000747977100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZL0kIvpU-a9IEKvW0Fjizb0jEk6Qu6LW0KezOyrF0SHO-ya4fk5_SY35E_1hnJ8m4SGtpCL97FWJbRfB7PjGa-IeSNtTI1qiiYTZRggmcpK7JYMxA3nyDBk9LaNZvIRiM5Hquvg8HPUAtzWmV1Lc_O1Py_ihrOgbCxdPYvxN3fFE7AfxA6HEHscPwjwcf7wxM9rW0zwwIRJA3y7W4wJtC6yABSFDPHuTlsbAPaxpZYpj_ym-al_6msGVqfW-52FE7AygbNiMEQvcAGLJVLR29d2vS80g1av8t1Wzc0jFg6eE1tR5u5Slrc06BfqmrGvtlzr62-mAZJA3oUwHMvXZ-n9dx7F6WFR_D5xUeV7vOLP4Mo27CbhKU76zENcIf7pC4faAvFNqvMJqe8lWRIEOY_XV5fyyxmmYziKwrddyi48XHwcYpjcPynru6T72CX46jbF7rKuv0dZ8PJwCVG9lRwsDd5lijQ_Zu7Hw_Gn_rPPecyCcSsOCBQW7kkwhtT_c78uWYIOOvm8AG537kldNfD6SEZ2PoRufvetX0-f0zaeJ9eAxUNoKIOVHQFKroGKjq6vCgvLwBMNICJzmrag4kGMNEeTLQH0xPy493B4d4H1jXsYFpEomFCq9hwi6xuRRbJjE8U9j8Qukw19j2YCMmNEGUcG600lkAX4LFamURWZZEp46dko57V9hmhYDinJi40F1oIU2A6FFZRgz8Po8CK3SI8rGNuOjZ7bKpS5SFt8Th3i5_j4ud-8bfI237Q3JO53H55GgSUd2-ItzNzQNTtA18HceagrXELTtd21i5zniJDYrIj0-1_vflzcm_1yrwgG82itS_JHXPaHC0Xrzp0_gLpDr6y |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+magnetotelluric+modeling+using+high-order+tetrahedral+N%C3%A9d%C3%A9lec+elements+on+massively+parallel+computing+platforms&rft.jtitle=Computers+%26+geosciences&rft.au=Castillo-Reyes%2C+Octavio&rft.au=Modesto%2C+David&rft.au=Queralt%2C+Pilar&rft.au=Marcuello%2C+Alex&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.eissn=1873-7803&rft.volume=160&rft_id=info:doi/10.1016%2Fj.cageo.2021.105030&rft.externalDocID=S0098300421003101 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |