Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results
In this work, a set of experimental electrophoretic mobility (μe) data was used to show how inappropriate selection of the electrokinetic model used to calculate the zeta potential (ζ-potential) can compromise the interpretation of the results for nanoparticles (NPs). The main consequences of using...
Uloženo v:
| Vydáno v: | Langmuir Ročník 37; číslo 45; s. 13379 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
16.11.2021
|
| ISSN: | 1520-5827, 1520-5827 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, a set of experimental electrophoretic mobility (μe) data was used to show how inappropriate selection of the electrokinetic model used to calculate the zeta potential (ζ-potential) can compromise the interpretation of the results for nanoparticles (NPs). The main consequences of using ζ-potential values as criteria to indicate the colloidal stability of NP dispersions are discussed based on DLVO interaction energy predictions. For this, magnetite (Fe3O4) NPs were synthesized and characterized as a model system for performing electrokinetic experiments. The results showed that the Fe3O4 NPs formed mass fractal aggregates in solution, so the ζ-potential could not be determined under ideal conditions when μe depends on the NP radius. In addition, the Dukhin number (Du) estimated from potentiometric titration results indicated that stagnant layer conduction (SLC) could not be neglected for this system. The electrokinetic models that do not consider SLC grossly underestimated the ζ-potential values for the Fe3O4 NPs. The DLVO interaction energy predictions for the colloidal stability of the Fe3O4 NP dispersions also depended on the electrokinetic model used to calculate the ζ-potential. The results obtained for the Fe3O4 NP dispersions also suggested that, contrary to many reports in the literature, high ζ-potential values do not necessarily reflect high colloidal stability for charge-stabilized NP dispersions.In this work, a set of experimental electrophoretic mobility (μe) data was used to show how inappropriate selection of the electrokinetic model used to calculate the zeta potential (ζ-potential) can compromise the interpretation of the results for nanoparticles (NPs). The main consequences of using ζ-potential values as criteria to indicate the colloidal stability of NP dispersions are discussed based on DLVO interaction energy predictions. For this, magnetite (Fe3O4) NPs were synthesized and characterized as a model system for performing electrokinetic experiments. The results showed that the Fe3O4 NPs formed mass fractal aggregates in solution, so the ζ-potential could not be determined under ideal conditions when μe depends on the NP radius. In addition, the Dukhin number (Du) estimated from potentiometric titration results indicated that stagnant layer conduction (SLC) could not be neglected for this system. The electrokinetic models that do not consider SLC grossly underestimated the ζ-potential values for the Fe3O4 NPs. The DLVO interaction energy predictions for the colloidal stability of the Fe3O4 NP dispersions also depended on the electrokinetic model used to calculate the ζ-potential. The results obtained for the Fe3O4 NP dispersions also suggested that, contrary to many reports in the literature, high ζ-potential values do not necessarily reflect high colloidal stability for charge-stabilized NP dispersions. |
|---|---|
| AbstractList | In this work, a set of experimental electrophoretic mobility (μe) data was used to show how inappropriate selection of the electrokinetic model used to calculate the zeta potential (ζ-potential) can compromise the interpretation of the results for nanoparticles (NPs). The main consequences of using ζ-potential values as criteria to indicate the colloidal stability of NP dispersions are discussed based on DLVO interaction energy predictions. For this, magnetite (Fe3O4) NPs were synthesized and characterized as a model system for performing electrokinetic experiments. The results showed that the Fe3O4 NPs formed mass fractal aggregates in solution, so the ζ-potential could not be determined under ideal conditions when μe depends on the NP radius. In addition, the Dukhin number (Du) estimated from potentiometric titration results indicated that stagnant layer conduction (SLC) could not be neglected for this system. The electrokinetic models that do not consider SLC grossly underestimated the ζ-potential values for the Fe3O4 NPs. The DLVO interaction energy predictions for the colloidal stability of the Fe3O4 NP dispersions also depended on the electrokinetic model used to calculate the ζ-potential. The results obtained for the Fe3O4 NP dispersions also suggested that, contrary to many reports in the literature, high ζ-potential values do not necessarily reflect high colloidal stability for charge-stabilized NP dispersions.In this work, a set of experimental electrophoretic mobility (μe) data was used to show how inappropriate selection of the electrokinetic model used to calculate the zeta potential (ζ-potential) can compromise the interpretation of the results for nanoparticles (NPs). The main consequences of using ζ-potential values as criteria to indicate the colloidal stability of NP dispersions are discussed based on DLVO interaction energy predictions. For this, magnetite (Fe3O4) NPs were synthesized and characterized as a model system for performing electrokinetic experiments. The results showed that the Fe3O4 NPs formed mass fractal aggregates in solution, so the ζ-potential could not be determined under ideal conditions when μe depends on the NP radius. In addition, the Dukhin number (Du) estimated from potentiometric titration results indicated that stagnant layer conduction (SLC) could not be neglected for this system. The electrokinetic models that do not consider SLC grossly underestimated the ζ-potential values for the Fe3O4 NPs. The DLVO interaction energy predictions for the colloidal stability of the Fe3O4 NP dispersions also depended on the electrokinetic model used to calculate the ζ-potential. The results obtained for the Fe3O4 NP dispersions also suggested that, contrary to many reports in the literature, high ζ-potential values do not necessarily reflect high colloidal stability for charge-stabilized NP dispersions. |
| Author | Santilli, Celso Valentim Carvalho Dos Santos, Caio Leite, Gabriel Wosiak Pulcinelli, Sandra Helena Pochapski, Daniel José |
| Author_xml | – sequence: 1 givenname: Daniel José surname: Pochapski fullname: Pochapski, Daniel José – sequence: 2 givenname: Caio surname: Carvalho Dos Santos fullname: Carvalho Dos Santos, Caio – sequence: 3 givenname: Gabriel Wosiak surname: Leite fullname: Leite, Gabriel Wosiak – sequence: 4 givenname: Sandra Helena surname: Pulcinelli fullname: Pulcinelli, Sandra Helena – sequence: 5 givenname: Celso Valentim surname: Santilli fullname: Santilli, Celso Valentim |
| BookMark | eNpNkMtOAyEUhompiW31DVywdNMKzDAXd2YctUnVxsvGTUPhTEUpVKCJvpmPJ5O6cHUu-f_vPzkjNLDOAkKnlEwpYfRcyDA1wq43O-2nVBJGeHGAhpQzMuEVKwf_-iM0CuGdEFJneT1EP68QBV64CDZqYbCwCjfOGKdVmp6iWGmj4zdeeFBaRu1swJ3zeGadXwurJb4X1m2Fj1oawFc6bMGHXnaB264DGQN2HW6_0lpvUkiiNs4qvUf1ca1JKu8-tIUEwXdOgUkmi-MbpJwIfuvTkb2hRz1C2JkYjtFhJ0yAk786Ri_X7XNzO5k_3Myay_lE5CSPE1bx9KGSd0oWGeTAKGVQ1x2DkuZEKaoqruqsWhUFZCTjnaSKVDSnlSpKKDkbo7M9d-vd5w5CXG50kGDSv8HtwpLxilYsLwhjv4U9fqo |
| CitedBy_id | crossref_primary_10_1016_j_molliq_2022_118560 crossref_primary_10_3390_pharmaceutics14030479 crossref_primary_10_1007_s12668_025_02151_7 crossref_primary_10_1016_j_envres_2024_118632 crossref_primary_10_1016_j_polymer_2024_127616 crossref_primary_10_1002_ppsc_202200118 crossref_primary_10_1016_j_jenvman_2024_122587 crossref_primary_10_1016_j_seppur_2025_132255 crossref_primary_10_1002_anie_202505855 crossref_primary_10_1016_j_nxnano_2025_100263 crossref_primary_10_1039_D4RA06614F crossref_primary_10_1016_j_nxnano_2025_100141 crossref_primary_10_3390_antibiotics13121199 crossref_primary_10_1111_1750_3841_70563 crossref_primary_10_1016_j_colsurfa_2025_137697 crossref_primary_10_3390_pharmaceutics17020140 crossref_primary_10_1002_aoc_70227 crossref_primary_10_1016_j_jece_2024_114190 crossref_primary_10_1016_j_cscm_2025_e05239 crossref_primary_10_1016_j_sajb_2024_04_005 crossref_primary_10_1016_j_cej_2025_164237 crossref_primary_10_1039_D5TC01636C crossref_primary_10_1002_jbm_b_35633 crossref_primary_10_1186_s43094_025_00851_1 crossref_primary_10_1016_j_foodhyd_2024_110602 crossref_primary_10_3390_futurepharmacol5030044 crossref_primary_10_2174_0122103155292898240902065307 crossref_primary_10_1016_j_porgcoat_2022_107333 crossref_primary_10_1007_s11696_025_04072_x crossref_primary_10_3390_ijms24010869 crossref_primary_10_1016_j_inoche_2022_109828 crossref_primary_10_1007_s13399_025_06859_0 crossref_primary_10_1016_j_seppur_2024_128494 crossref_primary_10_1016_j_watres_2025_124133 crossref_primary_10_1016_j_mtsust_2025_101195 crossref_primary_10_3390_antibiotics13080686 crossref_primary_10_1016_j_jcis_2023_11_047 crossref_primary_10_1021_acs_molpharmaceut_5c00276 crossref_primary_10_1016_j_biteb_2025_102284 crossref_primary_10_1016_j_fbio_2023_103318 crossref_primary_10_1515_opag_2025_0452 crossref_primary_10_1016_j_nxsust_2024_100094 crossref_primary_10_1016_j_mtchem_2024_102004 crossref_primary_10_1007_s12668_023_01160_8 crossref_primary_10_1016_j_porgcoat_2023_108173 crossref_primary_10_2147_IJN_S448578 crossref_primary_10_3390_catal14070427 crossref_primary_10_1016_j_nantod_2024_102466 crossref_primary_10_3390_nano14060516 crossref_primary_10_1016_j_carbpol_2025_124369 crossref_primary_10_3390_pharmaceutics17020167 crossref_primary_10_3390_ma15228050 crossref_primary_10_3390_polym16131829 crossref_primary_10_3390_antiox13070826 crossref_primary_10_1016_j_mtcomm_2023_107260 crossref_primary_10_1002_jev2_12353 crossref_primary_10_1002_aelm_202500073 crossref_primary_10_1002_jsde_12621 crossref_primary_10_1016_j_rineng_2024_102516 crossref_primary_10_1021_acs_langmuir_5c01263 crossref_primary_10_1021_acs_langmuir_5c01147 crossref_primary_10_1016_j_jddst_2024_106041 crossref_primary_10_1002_smll_202500748 crossref_primary_10_1016_j_carbpol_2024_122456 crossref_primary_10_1007_s42452_025_06654_6 crossref_primary_10_1016_j_envpol_2022_120315 crossref_primary_10_1016_j_rineng_2025_107156 crossref_primary_10_1016_j_cej_2025_161501 crossref_primary_10_1016_j_pmatsci_2022_100945 crossref_primary_10_2147_IJN_S512524 crossref_primary_10_1016_j_bbii_2025_100133 crossref_primary_10_1016_j_micromeso_2022_112008 crossref_primary_10_1016_j_ceramint_2025_05_161 crossref_primary_10_1016_j_ijbiomac_2025_147204 crossref_primary_10_1021_acs_iecr_5c00944 crossref_primary_10_1038_s41598_025_96758_1 crossref_primary_10_1007_s00396_025_05477_6 crossref_primary_10_1007_s11696_025_04315_x crossref_primary_10_1063_5_0225268 crossref_primary_10_1093_jpp_rgaf072 crossref_primary_10_1016_j_ceramint_2024_06_221 crossref_primary_10_3390_nano13091543 crossref_primary_10_3390_magnetochemistry9040106 crossref_primary_10_1007_s12247_025_09922_5 crossref_primary_10_1134_S1087659624601059 crossref_primary_10_1038_s41598_025_03421_w crossref_primary_10_1039_D5NJ01870F crossref_primary_10_2147_IJN_S387681 crossref_primary_10_1016_j_ijbiomac_2024_136929 crossref_primary_10_1016_j_inoche_2023_111969 crossref_primary_10_1021_acs_est_5c04935 crossref_primary_10_1002_ange_202505855 crossref_primary_10_1016_j_ajps_2025_101093 crossref_primary_10_3390_molecules29112495 crossref_primary_10_1016_j_cej_2025_167705 crossref_primary_10_1016_j_colsurfa_2025_137094 crossref_primary_10_1186_s12951_025_03560_2 crossref_primary_10_3390_ijms26189203 crossref_primary_10_1002_adfm_202508939 crossref_primary_10_1016_j_colsurfb_2025_114949 crossref_primary_10_3390_molecules28041711 crossref_primary_10_1007_s42452_025_07458_4 crossref_primary_10_1002_chem_202203764 crossref_primary_10_1002_aic_17897 crossref_primary_10_1016_j_carbon_2025_120538 crossref_primary_10_1016_j_jhazmat_2025_137194 crossref_primary_10_1016_j_jddst_2024_105662 crossref_primary_10_1016_j_inoche_2024_112790 crossref_primary_10_1016_j_cemconres_2024_107574 crossref_primary_10_3390_molecules28083320 crossref_primary_10_1016_j_molliq_2025_126924 crossref_primary_10_1080_20565623_2024_2367849 crossref_primary_10_1016_j_clay_2025_107917 crossref_primary_10_2147_IJN_S480592 crossref_primary_10_26599_JAC_2023_9220780 crossref_primary_10_1016_j_mseb_2025_118172 crossref_primary_10_1016_j_colsurfa_2025_137553 crossref_primary_10_3390_separations12050107 crossref_primary_10_1016_j_colsurfa_2025_137677 crossref_primary_10_1016_j_jhazmat_2025_138722 crossref_primary_10_1016_j_colsurfb_2025_115002 crossref_primary_10_1007_s12668_024_01573_z crossref_primary_10_1016_j_jconhyd_2024_104387 crossref_primary_10_1007_s00210_025_04296_4 crossref_primary_10_1016_j_ijbiomac_2025_147634 crossref_primary_10_3389_fphar_2025_1611507 crossref_primary_10_1016_j_chemosphere_2025_144666 crossref_primary_10_1039_D2PY00331G crossref_primary_10_1016_j_jconrel_2025_114146 crossref_primary_10_3390_gels10120796 crossref_primary_10_1039_D5NJ01836F crossref_primary_10_1016_j_saa_2022_121372 crossref_primary_10_3390_nano12010028 crossref_primary_10_1515_gps_2025_0007 crossref_primary_10_2217_nnm_2022_0198 crossref_primary_10_1016_j_jwpe_2023_103903 crossref_primary_10_3390_plants12091832 crossref_primary_10_1016_j_ultras_2025_107751 crossref_primary_10_1007_s11033_025_10241_8 crossref_primary_10_1016_j_mtcomm_2025_113805 crossref_primary_10_3390_jfb14090440 crossref_primary_10_1038_s41598_025_01101_3 crossref_primary_10_1007_s10876_025_02782_6 crossref_primary_10_1080_1061186X_2025_2549579 crossref_primary_10_3390_polym16192805 crossref_primary_10_1002_cnma_202500186 crossref_primary_10_1016_j_micromeso_2024_113032 crossref_primary_10_1016_j_ijpharm_2025_125683 crossref_primary_10_1080_02652048_2025_2480597 crossref_primary_10_1002_aoc_7638 crossref_primary_10_3390_magnetochemistry10070044 crossref_primary_10_1016_j_molliq_2025_127953 crossref_primary_10_1016_j_inoche_2025_115161 crossref_primary_10_3390_biom15081157 crossref_primary_10_1016_j_colsurfa_2025_137179 crossref_primary_10_1007_s12033_025_01454_0 crossref_primary_10_1016_j_jddst_2022_103749 crossref_primary_10_1016_j_microc_2023_108864 crossref_primary_10_1016_j_molliq_2025_128251 crossref_primary_10_1002_smll_202504031 crossref_primary_10_1088_2632_959X_adc757 crossref_primary_10_3390_pharmaceutics16101305 crossref_primary_10_1016_j_cej_2025_160385 crossref_primary_10_61554_ijnrph_v3i1_2025_140 crossref_primary_10_1016_j_ijbiomac_2024_133608 crossref_primary_10_1002_app_56243 crossref_primary_10_1016_j_ijbiomac_2025_144363 crossref_primary_10_1007_s00284_024_03790_x crossref_primary_10_1016_j_colsurfa_2022_130831 crossref_primary_10_3390_chemengineering8060119 crossref_primary_10_3390_pharmaceutics14030640 crossref_primary_10_3390_w16010180 crossref_primary_10_1016_j_microc_2025_115149 crossref_primary_10_1002_adfm_202508062 crossref_primary_10_1016_j_chemphys_2024_112399 crossref_primary_10_1515_biol_2025_1121 crossref_primary_10_1088_1361_6528_ace6a5 crossref_primary_10_1080_00986445_2025_2556139 crossref_primary_10_3390_nano13152250 crossref_primary_10_1016_j_idairyj_2025_106355 crossref_primary_10_1016_j_jconrel_2024_09_017 crossref_primary_10_1016_j_chemosphere_2023_138887 crossref_primary_10_1016_j_ijbiomac_2025_146775 crossref_primary_10_1016_j_jddst_2023_104789 crossref_primary_10_3390_pharmaceutics17050633 crossref_primary_10_1016_j_csite_2025_106594 crossref_primary_10_1039_D4NR05271D crossref_primary_10_1080_1536383X_2024_2367577 crossref_primary_10_1186_s44331_025_00003_5 crossref_primary_10_1039_D4TC05145A crossref_primary_10_1016_j_mser_2025_100933 crossref_primary_10_1016_j_jece_2025_115745 crossref_primary_10_1016_j_jconrel_2024_09_029 crossref_primary_10_1007_s12666_023_02957_7 crossref_primary_10_1007_s12668_024_01483_0 crossref_primary_10_1016_j_jphotochem_2022_114471 crossref_primary_10_1016_j_ijbiomac_2025_142264 crossref_primary_10_1007_s12668_024_01593_9 crossref_primary_10_1016_j_biopha_2023_115041 crossref_primary_10_3390_pharmaceutics17010072 crossref_primary_10_1016_j_cej_2024_151933 crossref_primary_10_1016_j_diamond_2025_112593 crossref_primary_10_1016_j_eti_2024_103564 crossref_primary_10_1016_j_arabjc_2024_106029 crossref_primary_10_1002_adma_202419496 crossref_primary_10_1016_j_bioorg_2024_107459 crossref_primary_10_1016_j_ceja_2025_100806 crossref_primary_10_1016_j_xphs_2025_103897 crossref_primary_10_1016_j_porgcoat_2024_108929 crossref_primary_10_1680_jgrma_24_00127 crossref_primary_10_1016_j_colsurfa_2024_135822 crossref_primary_10_1021_acsomega_5c03575 crossref_primary_10_22159_ijap_2025v17i5_54215 crossref_primary_10_1039_D4EN00572D crossref_primary_10_3389_fbioe_2023_1220336 crossref_primary_10_3390_ma17112666 crossref_primary_10_1007_s13346_025_01959_w crossref_primary_10_1002_smll_202301884 crossref_primary_10_1016_j_envres_2024_119527 crossref_primary_10_1016_j_jphotochem_2023_115424 crossref_primary_10_1002_adma_202510140 crossref_primary_10_3390_polym14142965 crossref_primary_10_1016_j_molliq_2023_121251 crossref_primary_10_1007_s13399_025_06804_1 crossref_primary_10_1016_j_scitotenv_2023_166458 crossref_primary_10_1016_j_ijhydene_2024_04_036 crossref_primary_10_1016_j_btre_2025_e00916 crossref_primary_10_1021_acsomega_5c03224 crossref_primary_10_3390_cryst15020132 crossref_primary_10_1002_aic_18237 crossref_primary_10_1016_j_jlumin_2025_121186 crossref_primary_10_1039_D5EN00188A crossref_primary_10_1016_j_inoche_2025_114782 crossref_primary_10_3389_fonc_2024_1296091 crossref_primary_10_1007_s11696_024_03528_w crossref_primary_10_1016_S1003_6326_23_66203_X crossref_primary_10_1016_j_ijbiomac_2025_147274 crossref_primary_10_1016_j_xphs_2023_06_006 crossref_primary_10_3390_molecules27010168 crossref_primary_10_1007_s10787_023_01274_1 crossref_primary_10_3390_magnetochemistry9090211 crossref_primary_10_1016_j_nantod_2023_101998 crossref_primary_10_1016_j_cej_2024_155700 crossref_primary_10_1016_j_rechem_2025_102717 crossref_primary_10_3390_cosmetics12040141 crossref_primary_10_1016_j_triboint_2024_109506 crossref_primary_10_1088_2043_6262_adb55f crossref_primary_10_1016_j_foodchem_2025_145004 crossref_primary_10_1016_j_ijbiomac_2023_125779 crossref_primary_10_1038_s41598_025_93496_2 crossref_primary_10_1002_jbm_b_35409 crossref_primary_10_3390_app13042182 crossref_primary_10_1016_j_pestbp_2025_106543 crossref_primary_10_1016_j_ijbiomac_2024_138802 crossref_primary_10_1016_j_bbagen_2025_130777 crossref_primary_10_3390_gels11080641 crossref_primary_10_3390_mi16020130 crossref_primary_10_1016_j_jphotochem_2024_116253 crossref_primary_10_3390_pharmaceutics16121536 crossref_primary_10_1002_jrs_70039 crossref_primary_10_1016_j_ces_2024_121094 crossref_primary_10_1080_03639045_2025_2525952 crossref_primary_10_1021_acs_langmuir_4c03490 crossref_primary_10_1111_ijac_14844 crossref_primary_10_3390_ijms251910519 crossref_primary_10_3390_nano13071209 crossref_primary_10_1007_s10971_025_06741_5 crossref_primary_10_1007_s12011_025_04682_2 crossref_primary_10_1016_j_dci_2025_105409 crossref_primary_10_1016_j_ijbiomac_2024_138236 crossref_primary_10_1038_s41598_025_12096_2 crossref_primary_10_1016_j_jhazmat_2024_136775 crossref_primary_10_1080_01932691_2023_2295024 crossref_primary_10_1016_j_jddst_2024_106368 crossref_primary_10_1063_5_0219098 |
| ContentType | Journal Article |
| DBID | 7X8 |
| DOI | 10.1021/acs.langmuir.1c02056 |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5827 |
| GroupedDBID | --- -~X .K2 4.4 53G 55A 5GY 5VS 7X8 7~N AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 UPT VF5 VG9 W1F YQT ~02 |
| ID | FETCH-LOGICAL-a404t-28502175fdc63e4e2112e99f2e7140dd1d85d938b66e3035fc1d081418d67e752 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 335 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721132300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5827 |
| IngestDate | Thu Jul 10 18:02:49 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 45 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a404t-28502175fdc63e4e2112e99f2e7140dd1d85d938b66e3035fc1d081418d67e752 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://hdl.handle.net/11449/233753 |
| PQID | 2581824602 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2581824602 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-16 |
| PublicationDateYYYYMMDD | 2021-11-16 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Langmuir |
| PublicationYear | 2021 |
| SSID | ssj0009349 |
| Score | 2.7161195 |
| Snippet | In this work, a set of experimental electrophoretic mobility (μe) data was used to show how inappropriate selection of the electrokinetic model used to... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 13379 |
| Title | Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results |
| URI | https://www.proquest.com/docview/2581824602 |
| Volume | 37 |
| WOSCitedRecordID | wos000721132300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrxLb6J4DXaps3Li8i6oiCyiMriRbJNCotrq9uu4D_z5znTdlHxIngspNPSDN98mZnOR8iB6WuRchWyVAWOxSY1zFqjmQPo4zbiJq6m899fqetr3euZbpNwK5q2ygkmVkDt8gRz5EdcQGjhsQz4ycsrQ9UorK42EhrTpBUhlQF_Vr2vaeEmqugvhKiACc3V5Nc5Hh7ZpDjEjODzeDA6DBMgTUL-guMqxpwv_vftlshCwy7pae0Oy2TKZytkrj0RdVslHw--tLSbl9gkBCtt5ijmDvKBgytgnlWv7DvtjrCAU_kkBVpLL7Na_imhAMdwzq4fQM8GOGgcE27FMa0HIRc0T2nnm24A2MeyeGUKH9ephXeegN6CEYpibEO4KaNARenPHkg0deOL8bAs1sjdeee2fcEa8QZm4yAuGdcCjzsidYmMfOzhoMm9MSn3OCLQudBp4Uyk-1J6CKMiTUIH9CQOtZPKK8HXyUyWZ36DUBxbp_p9qaWSsbaBDYX3gDXWqAisB5tkf7Ipj_A5seJhM5-Pi8evbdn6w5ptMs-xYwWb_OQOaaUAAH6XzCZv5aAY7VW-9Ql04t0k |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zeta+Potential+and+Colloidal+Stability+Predictions+for+Inorganic+Nanoparticle+Dispersions%3A+Effects+of+Experimental+Conditions+and+Electrokinetic+Models+on+the+Interpretation+of+Results&rft.jtitle=Langmuir&rft.au=Pochapski%2C+Daniel+Jos%C3%A9&rft.au=Carvalho+Dos+Santos%2C+Caio&rft.au=Leite%2C+Gabriel+Wosiak&rft.au=Pulcinelli%2C+Sandra+Helena&rft.date=2021-11-16&rft.issn=1520-5827&rft.eissn=1520-5827&rft.volume=37&rft.issue=45&rft.spage=13379&rft_id=info:doi/10.1021%2Facs.langmuir.1c02056&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5827&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5827&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5827&client=summon |