Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects

Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of chemical theory and computation Ročník 12; číslo 5; s. 2191
Hlavní autori: Mussard, Bastien, Rocca, Dario, Jansen, Georg, Ángyán, János G
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 10.05.2016
ISSN:1549-9626, 1549-9626
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.
AbstractList Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.
Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.
Author Mussard, Bastien
Ángyán, János G
Rocca, Dario
Jansen, Georg
Author_xml – sequence: 1
  givenname: Bastien
  surname: Mussard
  fullname: Mussard, Bastien
– sequence: 2
  givenname: Dario
  surname: Rocca
  fullname: Rocca, Dario
– sequence: 3
  givenname: Georg
  surname: Jansen
  fullname: Jansen, Georg
  organization: Fakultät für Chemie, Universität Duisburg-Essen , D-45117 Essen, Germany
– sequence: 4
  givenname: János G
  surname: Ángyán
  fullname: Ángyán, János G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26986444$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB9w54R85JISO44dc6tKCkhFIATnyHHWbarELnaCyr8ngiJxml3p0-zOTNHIOgsIXZJ4TmJKbpQO853u9DwtY0KoPEETkjIZSU756N88RtMQdnGcJIwmZ2hMucw4Y2yCPu9qaEB3vtb4SQ1ywCvn275RXe0sdgYvnfdwXHMLflNDwLXF3Rbwq7KVa_HLVgXAi_3eu0Pd_qC3-NHqpg9Hk_ygt8puAOfGDNfCOTo1qglwcdQZel_lb8uHaP18_7hcrCPF4qSLjOGgEkFSMCItaawgK3lFJWGVkEQakkAisiFLmnIpCa8gE0QYPXQhuCKKztD1r-_w2kcPoSvaOmhoGmXB9aEgIssoZYyzAb06on3ZQlXs_RDFfxV_XdFv07lvTA
CitedBy_id crossref_primary_10_1002_jcc_26149
crossref_primary_10_1063_5_0142348
crossref_primary_10_1007_s00214_018_2358_1
crossref_primary_10_1103_PhysRevResearch_3_033263
crossref_primary_10_1016_j_chemphys_2016_09_030
crossref_primary_10_1021_acs_jctc_6b01146
crossref_primary_10_1063_5_0007045
crossref_primary_10_1007_s00214_018_2369_y
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.jctc.5b01129
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
ExternalDocumentID 26986444
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
J9A
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a403t-ff6ea3715ef75b20ae8b6d2914d7919f13e3789865569916de8717fc11276a1a2
IEDL.DBID 7X8
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375810000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-9626
IngestDate Fri Jul 11 14:10:09 EDT 2025
Thu Jan 02 23:09:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a403t-ff6ea3715ef75b20ae8b6d2914d7919f13e3789865569916de8717fc11276a1a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hal.sorbonne-universite.fr/hal-01304895
PMID 26986444
PQID 1788224464
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1788224464
pubmed_primary_26986444
PublicationCentury 2000
PublicationDate 2016-05-10
PublicationDateYYYYMMDD 2016-05-10
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J Chem Theory Comput
PublicationYear 2016
SSID ssj0033423
Score 2.3635526
Snippet Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2191
Title Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects
URI https://www.ncbi.nlm.nih.gov/pubmed/26986444
https://www.proquest.com/docview/1788224464
Volume 12
WOSCitedRecordID wos000375810000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvC6bZ67WS8itcWLpYhCb2WzD4xoUk2V_nxnklRPguAlkENCmMzOfLOz832EXGiI-dzIkAVORAzwv2QqMSnzhZXgIX7IQ12JTYjhMBmP5ajZcCubY5WLmFgFalNo3CPv-lCrQbqJeHQ1fWOoGoXd1UZCY5m0QoAyeKRLjL-7CCGy21V8qRGyUAaLNiWkta7SZedZz3QnTj2EHL8DzCrRDDb_-4lbZKOBmPS69oltsmTzHbLWWyi77ZLPm6xWv8k0vUOK_jkdAHRthLxo4WgPNTua2z5OB0I9TbOcAlqk9yo3xSsdPUH-o9dIST7P6vnHSwrR5uWjbF7Sn9dTxbRmSC73yOOg_9C7ZY3-AlORF86Yc9yqUPixdSJOA0_ZJOUmkH5khPSlww1UkUgcbeUIM42F6ks4DfYUXPkq2CcreZHbQ0IBRnlG8pRzgJs8dir1ZRoIDAc6Np5uk_OFSSdgDGxaqNwWH-Xkx6htclD_l8m0JuKYBBzJ5aPo6A9PH5N1wDqcVcSrJ6TlYHXbU7KqP2dZ-X5WOQ5ch6O7Lyx1zcA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dielectric+Matrix+Formulation+of+Correlation+Energies+in+the+Random+Phase+Approximation%3A+Inclusion+of+Exchange+Effects&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Mussard%2C+Bastien&rft.au=Rocca%2C+Dario&rft.au=Jansen%2C+Georg&rft.au=%C3%81ngy%C3%A1n%2C+J%C3%A1nos+G&rft.date=2016-05-10&rft.eissn=1549-9626&rft.volume=12&rft.issue=5&rft.spage=2191&rft_id=info:doi/10.1021%2Facs.jctc.5b01129&rft_id=info%3Apmid%2F26986444&rft_id=info%3Apmid%2F26986444&rft.externalDocID=26986444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon