Higher Lenses

We show that total, very well-behaved lenses are not very well-behaved when treated proof-relevantly in the setting of homotopy type theory/univalent foundations. In their place we propose something more well-behaved: higher lenses. Such a lens contains an equivalence between the lens's source...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings - Symposium on Logic in Computer Science Vol. 2021-June; pp. 1 - 13
Main Authors: Capriotti, Paolo, Danielsson, Nils Anders, Vezzosi, Andrea
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
ISSN:1043-6871
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We show that total, very well-behaved lenses are not very well-behaved when treated proof-relevantly in the setting of homotopy type theory/univalent foundations. In their place we propose something more well-behaved: higher lenses. Such a lens contains an equivalence between the lens's source type and the product of its view type and a remainder type, plus a function from the remainder type to the propositional truncation of the view type. It can equivalently be formulated as a getter function and a proof that its family of fibres is coherently constant, i.e. factors through propositional truncation.We explore the properties of higher lenses. For instance, we prove that higher lenses are equivalent to traditional ones for types that satisfy the principle of uniqueness of identity proofs. We also prove that higher lenses are n-truncated for n-truncated types, using a coinductive characterisation of coherently constant functions.
AbstractList We show that total, very well-behaved lenses are not very well-behaved when treated proof-relevantly in the setting of homotopy type theory/univalent foundations. In their place we propose something more well-behaved: higher lenses. Such a lens contains an equivalence between the lens's source type and the product of its view type and a remainder type, plus a function from the remainder type to the propositional truncation of the view type. It can equivalently be formulated as a getter function and a proof that its family of fibres is coherently constant, i.e. factors through propositional truncation.We explore the properties of higher lenses. For instance, we prove that higher lenses are equivalent to traditional ones for types that satisfy the principle of uniqueness of identity proofs. We also prove that higher lenses are n-truncated for n-truncated types, using a coinductive characterisation of coherently constant functions.
Author Capriotti, Paolo
Vezzosi, Andrea
Danielsson, Nils Anders
Author_xml – sequence: 1
  givenname: Paolo
  surname: Capriotti
  fullname: Capriotti, Paolo
  organization: TU Darmstadt
– sequence: 2
  givenname: Nils Anders
  surname: Danielsson
  fullname: Danielsson, Nils Anders
  organization: University of Gothenburg
– sequence: 3
  givenname: Andrea
  surname: Vezzosi
  fullname: Vezzosi, Andrea
  organization: IT University Copenhagen
BackLink https://research.chalmers.se/publication/549468$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNo90M9Kw0AQBvAVKlhrnkAQXyB1Znd2kz1KUFsIeKiel00yYyP9R1YR395ISy_zfXOY32Gu1WS337FSdwhzRPAP9bJaWa0dzTVonHsqwKG5UJkvSnTOEpXeuomaIpDJXVnglcpS-gQAPS5AfqqyRf-x5uG-5l3idKMuJW4SZ6ecqffnp7dqkdevL8vqsc4jgfnK2Re2HZUWuwKjOF8SjwUK1zZEVhrjIkojnUHNLUUg7CJLJ140owYzU6ujm3748N2Ew9Bv4_Ab9rEPAyeOQ7sO7TputjykkDiY8Vgj2EDs_0fjQiMCQcQCaoFYdnZUb49qz8xn8_QW8weD2Vds
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
ADTPV
BNKNJ
F1S
DOI 10.1109/LICS52264.2021.9470613
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
SwePub
SwePub Conference
SWEPUB Chalmers tekniska högskola
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID oai_research_chalmers_se_3fdf2105_4e95_4eb6_bff0_ff5012f0a8d5
9470613
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
--Z
23M
29P
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADTPV
ADZIZ
BEFXN
BFFAM
BGNUA
BKEBE
BNKNJ
BPEOZ
CHZPO
F1S
IEGSK
IJVOP
IPLJI
M43
OCL
RIL
RNS
ID FETCH-LOGICAL-a403t-e975c000c1d71af6984e71a076cb445fb36a1fbfd312ec4a041daefdf9f2e1203
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1043-6871
IngestDate Fri Nov 28 03:14:27 EST 2025
Wed Aug 27 02:26:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a403t-e975c000c1d71af6984e71a076cb445fb36a1fbfd312ec4a041daefdf9f2e1203
OpenAccessLink https://gup.ub.gu.se/publication/304854
PageCount 13
ParticipantIDs ieee_primary_9470613
swepub_primary_oai_research_chalmers_se_3fdf2105_4e95_4eb6_bff0_ff5012f0a8d5
PublicationCentury 2000
PublicationDate 2021-June-29
2021
PublicationDateYYYYMMDD 2021-06-29
2021-01-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings - Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
ssj0002640
Score 2.1482968
Snippet We show that total, very well-behaved lenses are not very well-behaved when treated proof-relevantly in the setting of homotopy type theory/univalent...
SourceID swepub
ieee
SourceType Open Access Repository
Publisher
StartPage 1
SubjectTerms Computer circuits
Computer science
Constant functions
Functions
Gettering
Homotopy types
Lenses
Optical fibers
Optics
Source types
Title Higher Lenses
URI https://ieeexplore.ieee.org/document/9470613
https://research.chalmers.se/publication/549468
Volume 2021-June
WOSCitedRecordID wos000947350400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YMgTN3E-UUffLRb0iZN8zwcCmMMVNhbSdM75ssm6-bfb9LWCuKLEEIghHzzu1zu7gdwn1udkymikITBUDgICVNuXeYOsxO3LZNWVGQTarFIVyu97MBD6wuDiJXxGY59sfrLL7b24FVlEy2Uh58udJVKal-tVp_iJX8n7TZOwJzpyfx5-uKlC685ifi4adywqPyKDFqhyaz_v3GcwvDHLS9YtoBzBh3cnEP_m5chaK7pAE5q441g7p6oWA7hbfb4On0KG9qD0AgW70PUyq0RY5YXihtKdCrQFZhKbC6EpDxODKeciphHaIVhghcGqSBNEfKIxRfQ22w3eAkBkzIWnonGxFoYrl3ipCSaSJKymo9g4GeXfdSRLbJmYiOY14vTVvgg1E30oXVm1xW1S5mVmMWuX_dqlJlA7bM8yXIilhFJB33ETFrIq797uYZjvzHe7irSN9Db7w54C0f2c_9e7u6q3f0CF2Sj9g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFBSEqZs4P_vgo92SNmmbZ3FsWMfACXsLaXphvmyybv79Jm2tIL4IIQRCyDe_y-XufgD3mRaZUXngG6bQZxZC_IRqm9nDbMVtTbhmJdlEPJ0mi4WYteCh8YVBxNL4DAeuWP7l52u9c6qyoWCxg5892HfMWbzy1mo0Kk72t_Ju7QZMiRimk8dXJ1843UlAB3XzmkflV2zQEk9Gnf-N5AR6P4553qyBnFNo4eoMOt_MDF59UbtwXJlveKl9pGLRg7fR0_xx7NfEB75iJNz6KGK7SoRomsdUmUgkDG2BxJHOGOMmCyNFTWbykAaomSKM5gpNboQJkAYkPIf2ar3CC_AI5yFzXDQqFExRYRM1MUcVcBNrQfvQdbOTH1VsC1lPrA9ptThNhQtDXccfWkq9LMldClmgDG2_9t3IJUPhsiySmTFEGsMt-Bmikpxf_t3LHRyO5y-pTCfT5ys4cpvkrLACcQ3t7WaHN3CgP7fvxea23Okv1penQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+Symposium+on+Logic+in+Computer+Science&rft.atitle=Higher+Lenses&rft.au=Capriotti%2C+Paolo&rft.au=Danielsson%2C+Nils+Anders&rft.au=Vezzosi%2C+Andrea&rft.date=2021-01-01&rft.issn=1043-6871&rft.volume=2021-June&rft_id=info:doi/10.1109%2FLICS52264.2021.9470613&rft.externalDocID=oai_research_chalmers_se_3fdf2105_4e95_4eb6_bff0_ff5012f0a8d5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-6871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-6871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-6871&client=summon