Early-Stage Imaging of Nanocarrier-Enhanced Chemotherapy Response in Living Subjects by Scalable Photoacoustic Microscopy
Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranos...
Saved in:
| Published in: | ACS nano Vol. 8; no. 12; pp. 12141 - 12150 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Chemical Society
23.12.2014
|
| Subjects: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way. |
|---|---|
| AbstractList | Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way. Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way.Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way. Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way. Keywords: early prediction; chemotherapy response; nanocarrier; photoacoustic microscopy; scalable imaging; graphene oxide; signal amplification |
| Author | Wang, Zhe Nie, Liming Tang, Yuxia Wang, Shouju Chen, Xiaoyuan Li, Weitao Zhang, Xiaofen Niu, Gang Yan, Xuefeng Jin, Albert Huang, Peng |
| AuthorAffiliation | Nanjing University of Aeronautics and Astronautics National Institutes of Health (NIH) Department of Biomedical Engineering, College of Automation Engineering State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen University Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB) Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) |
| AuthorAffiliation_xml | – name: Nanjing University of Aeronautics and Astronautics – name: Department of Biomedical Engineering, College of Automation Engineering – name: Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB) – name: National Institutes of Health (NIH) – name: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health – name: Xiamen University – name: Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) |
| Author_xml | – sequence: 1 givenname: Liming surname: Nie fullname: Nie, Liming email: nielm@xmu.edu.cn – sequence: 2 givenname: Peng surname: Huang fullname: Huang, Peng – sequence: 3 givenname: Weitao surname: Li fullname: Li, Weitao – sequence: 4 givenname: Xuefeng surname: Yan fullname: Yan, Xuefeng – sequence: 5 givenname: Albert surname: Jin fullname: Jin, Albert – sequence: 6 givenname: Zhe surname: Wang fullname: Wang, Zhe – sequence: 7 givenname: Yuxia surname: Tang fullname: Tang, Yuxia – sequence: 8 givenname: Shouju surname: Wang fullname: Wang, Shouju – sequence: 9 givenname: Xiaofen surname: Zhang fullname: Zhang, Xiaofen – sequence: 10 givenname: Gang surname: Niu fullname: Niu, Gang – sequence: 11 givenname: Xiaoyuan surname: Chen fullname: Chen, Xiaoyuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25406986$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkd2L1DAUxYusuB_64D8geRH0oW4-2rR5EWQYdWH8wFHwLdymt9MMbVKTdqH_vR1md1DZB58Scn_ncG7OZXLmvMMkec7oG0Y5u3Yup7kqFT5KLpgSMqWl_Hl2uufsPLmMcU9pXpSFfJKc8zyjUpXyIpnXELo53Y6wQ3LTw866HfEN-QzOGwjBYkjXrgVnsCarFns_thhgmMk3jIN3EYl1ZGNvD7rtVO3RjJFUM9ka6KDqkHxt_ejB-CmO1pBP1gQfjR_mp8njBrqIz-7Oq-TH-_X31cd08-XDzerdJoWMijFVslACaqCNZChoacqyYBSyRqEClmHNqQAhmKgwlw3PpCrqpuJZvryYogRxlbw9-g5T1WNt0I0BOj0E20OYtQer_5442-qdv9UZL0qpxGLw6s4g-F8TxlH3NhrsOnC4bKVZITmVXPD_QOWyk6C8LBb0xZ-xTnnuq1mA6yNw-LAYsNHGjjBaf0hpO82oPpSvT-Uvitf_KO5NH2JfHlkwUe_9FNzSwQPcb5DEvRw |
| CitedBy_id | crossref_primary_10_1038_s41598_017_00873_7 crossref_primary_10_3390_s21030836 crossref_primary_10_1002_smtd_201900506 crossref_primary_10_1007_s11356_023_29243_9 crossref_primary_10_1016_j_mtchem_2023_101750 crossref_primary_10_1002_adma_201801778 crossref_primary_10_1063_1_4913690 crossref_primary_10_1002_advs_201700277 crossref_primary_10_1039_D0RA06218A crossref_primary_10_1016_j_apacoust_2023_109231 crossref_primary_10_1002_adfm_201808601 crossref_primary_10_1016_j_clbc_2024_01_006 crossref_primary_10_1016_j_addr_2016_05_013 crossref_primary_10_1002_adfm_201603758 crossref_primary_10_3390_s17061400 crossref_primary_10_1063_1_4934699 crossref_primary_10_1002_jbio_201800073 crossref_primary_10_1002_app_47571 crossref_primary_10_1002_adma_201805875 crossref_primary_10_1016_j_jconrel_2016_01_004 crossref_primary_10_1111_str_12289 crossref_primary_10_1002_adma_201502285 crossref_primary_10_1002_adma_201506460 crossref_primary_10_1021_acs_chemrev_7b00258 crossref_primary_10_1002_adma_201606129 crossref_primary_10_4103_1673_5374_357907 crossref_primary_10_1016_j_snb_2024_135792 crossref_primary_10_1186_s12951_022_01662_9 crossref_primary_10_3390_pharmaceutics10040282 crossref_primary_10_1016_j_jconrel_2015_04_021 crossref_primary_10_1007_s00339_022_06118_3 crossref_primary_10_3390_nano10081617 crossref_primary_10_1038_s41598_018_30848_1 crossref_primary_10_3389_fbioe_2025_1587178 crossref_primary_10_1016_j_flatc_2020_100184 crossref_primary_10_1002_adhm_202001240 crossref_primary_10_1002_cbic_201800818 crossref_primary_10_2147_IJN_S238679 crossref_primary_10_1016_j_tibtech_2016_02_001 crossref_primary_10_1088_1361_6528_ac1bdb crossref_primary_10_1002_adma_201505681 |
| Cites_doi | 10.1021/nl100996u 10.1021/nn403429v 10.1016/j.pacs.2013.10.001 10.1117/1.JBO.17.11.110506 10.1038/nprot.2013.146 10.1016/j.addr.2008.03.016 10.1007/s002590050546 10.1021/nn201560b 10.1039/c3tb20986e 10.1007/s12274-008-8021-8 10.1016/j.cell.2011.02.013 10.1021/nn304739s 10.1038/nature06016 10.1021/cr300115g 10.1016/j.carbon.2007.02.034 10.1002/smll.201302924 10.1039/c3nr00627a 10.1126/science.1216210 10.1118/1.3466696 10.1039/C4CS00086B 10.1126/science.287.5454.783b 10.1016/j.biomaterials.2013.03.090 10.1038/nnano.2013.302 10.1002/smll.201101140 10.1016/j.actbio.2012.08.049 10.1021/ja01539a017 10.1093/annonc/mdq683 10.1200/JCO.2010.32.6082 10.2967/jnumed.112.109397 10.1364/BOE.5.002679 10.1002/hon.2040 10.1021/nn402111z 10.1016/j.carbon.2011.05.056 10.1039/C3NR05468C 10.1200/JCO.2007.15.4385 10.1021/nn700040t 10.1021/nl802929u 10.1103/PhysRevE.67.056605 10.2217/17435889.2.1.113 10.1021/ja803688x 10.1364/OL.33.001291 10.1118/1.3700401 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 American Chemical Society Copyright © 2014 American Chemical Society 2014 American Chemical Society |
| Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society |
| DBID | N~. AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
| DOI | 10.1021/nn505989e |
| DatabaseName | American Chemical Society (ACS) Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 12150 |
| ExternalDocumentID | PMC4278693 25406986 10_1021_nn505989e c184670826 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
| GrantInformation_xml | – fundername: Intramural NIH HHS |
| GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 N~. P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
| ID | FETCH-LOGICAL-a403t-96793ada0f61e308c88710a4f9e9a14ed203a3313be56f24697dfb24513bc78a3 |
| IEDL.DBID | N~. |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347138000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Tue Sep 30 16:16:54 EDT 2025 Fri Jul 11 06:47:11 EDT 2025 Fri Jul 11 09:28:03 EDT 2025 Mon Jul 21 05:58:31 EDT 2025 Tue Nov 18 21:43:44 EST 2025 Sat Nov 29 07:53:45 EST 2025 Thu Aug 27 13:42:28 EDT 2020 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | graphene oxide early prediction photoacoustic microscopy signal amplification nanocarrier chemotherapy response scalable imaging |
| Language | English |
| License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html https://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a403t-96793ada0f61e308c88710a4f9e9a14ed203a3313be56f24697dfb24513bc78a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1021/nn505989e |
| PMID | 25406986 |
| PQID | 1640330287 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4278693 proquest_miscellaneous_1762062323 proquest_miscellaneous_1640330287 pubmed_primary_25406986 crossref_citationtrail_10_1021_nn505989e crossref_primary_10_1021_nn505989e acs_journals_10_1021_nn505989e |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ N~. UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-23 |
| PublicationDateYYYYMMDD | 2014-12-23 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2014 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Stankovich S. (ref34/cit34) 2007; 45 Nie L. (ref3/cit3) 2014; 10 Sun X. (ref35/cit35) 2008; 1 Zhang S. A. (ref29/cit29) 2011; 49 Li W. (ref31/cit31) 2014; 5 Yang K. (ref10/cit10) 2010; 10 Yang K. (ref9/cit9) 2013; 8 Nie L. (ref36/cit36) 2010; 37 Barinaga M. (ref44/cit44) 2000; 287 Azim H. (ref1/cit1) 2011; 22 Ghosh P. (ref4/cit4) 2008; 60 Nie L. (ref38/cit38) 2012; 17 Hanahan D. (ref43/cit43) 2011; 144 Tannock I. F. (ref41/cit41) 1989; 49 Dunnwald L. K. (ref16/cit16) 2008; 26 Sheng Z. (ref12/cit12) 2013; 34 Chen Y. S. (ref24/cit24) 2012; 8 Wang B. (ref25/cit25) 2012; 39 Benatar N. (ref17/cit17) 2000; 27 Park S. (ref39/cit39) 2008; 33 Wang Y.-W. (ref14/cit14) 2013; 1 Zha Z. (ref21/cit21) 2013; 5 Bartczak D. (ref7/cit7) 2013; 7 Patel M. A. (ref26/cit26) 2013; 7 Xu M. (ref32/cit32) 2003; 67 Han G. (ref6/cit6) 2007; 2 Song S. (ref15/cit15) 2013; 54 Cook J. R. (ref20/cit20) 2013; 7 Pu K. (ref22/cit22) 2014; 9 Wang L. V. (ref23/cit23) 2012; 335 Chen D. (ref28/cit28) 2012; 112 Liu Z. (ref27/cit27) 2008; 130 Liu Z. (ref37/cit37) 2007; 1 Nie L. (ref40/cit40) 2014; 6 Fellah S. (ref19/cit19) 2011; 29 Dikin D. A. (ref8/cit8) 2007; 448 Hummers W. S. (ref33/cit33) 1958; 80 Lalwani G. (ref13/cit13) 2013; 1 Mallidi S. (ref5/cit5) 2009; 9 Grohn O. H. (ref18/cit18) 2003; 63 ref30/cit30 Tian B. (ref11/cit11) 2011; 5 Nie L. (ref45/cit45) 2014; 43 Cajot S. (ref42/cit42) 2012; 8 Lynn J. J. (ref2/cit2) 2013; 31 |
| References_xml | – volume: 10 start-page: 3318 year: 2010 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl100996u – volume: 7 start-page: 8147 year: 2013 ident: ref26/cit26 publication-title: ACS Nano doi: 10.1021/nn403429v – volume: 1 start-page: 62 year: 2013 ident: ref13/cit13 publication-title: Photoacoustics doi: 10.1016/j.pacs.2013.10.001 – volume: 17 start-page: 110506 year: 2012 ident: ref38/cit38 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.17.11.110506 – volume: 8 start-page: 2392 year: 2013 ident: ref9/cit9 publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.146 – volume: 60 start-page: 1307 year: 2008 ident: ref4/cit4 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2008.03.016 – volume: 27 start-page: 583 year: 2000 ident: ref17/cit17 publication-title: Eur. J. Nucl. Med. doi: 10.1007/s002590050546 – volume: 5 start-page: 7000 year: 2011 ident: ref11/cit11 publication-title: ACS Nano doi: 10.1021/nn201560b – volume: 1 start-page: 5762 year: 2013 ident: ref14/cit14 publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20986e – volume: 1 start-page: 203 year: 2008 ident: ref35/cit35 publication-title: Nano Res. doi: 10.1007/s12274-008-8021-8 – volume: 144 start-page: 646 year: 2011 ident: ref43/cit43 publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 7 start-page: 1272 year: 2013 ident: ref20/cit20 publication-title: ACS Nano doi: 10.1021/nn304739s – volume: 448 start-page: 457 year: 2007 ident: ref8/cit8 publication-title: Nature doi: 10.1038/nature06016 – volume: 112 start-page: 6027 year: 2012 ident: ref28/cit28 publication-title: Chem. Rev. doi: 10.1021/cr300115g – volume: 45 start-page: 1558 year: 2007 ident: ref34/cit34 publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 10 start-page: 1585 year: 2014 ident: ref3/cit3 publication-title: Small doi: 10.1002/smll.201302924 – volume: 49 start-page: 4373 year: 1989 ident: ref41/cit41 publication-title: Cancer Res. – volume: 5 start-page: 4462 year: 2013 ident: ref21/cit21 publication-title: Nanoscale doi: 10.1039/c3nr00627a – volume: 335 start-page: 1458 year: 2012 ident: ref23/cit23 publication-title: Science doi: 10.1126/science.1216210 – volume: 37 start-page: 4193 year: 2010 ident: ref36/cit36 publication-title: Med. Phys. doi: 10.1118/1.3466696 – volume: 43 start-page: 7132 year: 2014 ident: ref45/cit45 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00086B – volume: 287 start-page: 783 year: 2000 ident: ref44/cit44 publication-title: Science doi: 10.1126/science.287.5454.783b – volume: 34 start-page: 5236 year: 2013 ident: ref12/cit12 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.090 – volume: 9 start-page: 233 year: 2014 ident: ref22/cit22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.302 – volume: 8 start-page: 47 year: 2012 ident: ref24/cit24 publication-title: Small doi: 10.1002/smll.201101140 – volume: 8 start-page: 4215 year: 2012 ident: ref42/cit42 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.08.049 – volume: 80 start-page: 1339 year: 1958 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 22 start-page: 1939 year: 2011 ident: ref1/cit1 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdq683 – volume: 29 start-page: e308 year: 2011 ident: ref19/cit19 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2010.32.6082 – volume: 54 start-page: 104 year: 2013 ident: ref15/cit15 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.112.109397 – volume: 5 start-page: 2679 year: 2014 ident: ref31/cit31 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.002679 – volume: 31 start-page: 189 year: 2013 ident: ref2/cit2 publication-title: Hematol. Oncol. doi: 10.1002/hon.2040 – volume: 7 start-page: 5628 year: 2013 ident: ref7/cit7 publication-title: ACS Nano doi: 10.1021/nn402111z – volume: 49 start-page: 4040 year: 2011 ident: ref29/cit29 publication-title: Carbon doi: 10.1016/j.carbon.2011.05.056 – volume: 6 start-page: 1271 year: 2014 ident: ref40/cit40 publication-title: Nanoscale doi: 10.1039/C3NR05468C – volume: 26 start-page: 4449 year: 2008 ident: ref16/cit16 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2007.15.4385 – volume: 1 start-page: 50 year: 2007 ident: ref37/cit37 publication-title: ACS Nano doi: 10.1021/nn700040t – volume: 9 start-page: 2825 year: 2009 ident: ref5/cit5 publication-title: Nano Lett. doi: 10.1021/nl802929u – volume: 67 start-page: 056605 year: 2003 ident: ref32/cit32 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.056605 – volume: 2 start-page: 113 year: 2007 ident: ref6/cit6 publication-title: Nanomedicine (London) doi: 10.2217/17435889.2.1.113 – volume: 63 start-page: 7571 year: 2003 ident: ref18/cit18 publication-title: Cancer Res. – volume: 130 start-page: 10876 year: 2008 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja803688x – volume: 33 start-page: 1291 year: 2008 ident: ref39/cit39 publication-title: Opt. Lett. doi: 10.1364/OL.33.001291 – volume: 39 start-page: 2512 year: 2012 ident: ref25/cit25 publication-title: Med. Phys. doi: 10.1118/1.3700401 – ident: ref30/cit30 |
| SSID | ssj0057876 |
| Score | 2.4639618 |
| Snippet | Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications... |
| SourceID | pubmedcentral proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12141 |
| SubjectTerms | Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Carbocyanines - chemistry Cell Line, Tumor Chemotherapy Contrast agents Doxorubicin - chemistry Doxorubicin - pharmacology Drug Carriers - chemistry Female Graphene Graphite - chemistry Humans Imaging Mice Microscopy Nanoparticles - chemistry Nanostructure Optical Imaging Oxides Oxides - chemistry Photoacoustic microscopy Photoacoustic Techniques Time Factors Treatment Outcome Tumor Burden - drug effects Tumors |
| Title | Early-Stage Imaging of Nanocarrier-Enhanced Chemotherapy Response in Living Subjects by Scalable Photoacoustic Microscopy |
| URI | http://dx.doi.org/10.1021/nn505989e https://www.ncbi.nlm.nih.gov/pubmed/25406986 https://www.proquest.com/docview/1640330287 https://www.proquest.com/docview/1762062323 https://pubmed.ncbi.nlm.nih.gov/PMC4278693 |
| Volume | 8 |
| WOSCitedRecordID | wos000347138000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61hQMcyhtSIDKPA5cFv9aPY1W1AqlEFQWU28q7sUkkcFASkHLpb-_Yu4kSKI_LHnZntSuPPfONZ_wNwMtGBgx8pCqcZKGQnPmiRlhU-FqOKOIPx3I7n8-nejAww6E924EXf8jgc_YmRnTS1li_C9e40ir1ZxhcvF6Z2zTjVJs6xtAY8cOKPmjz1eR6mvm26_kNT_5aFrnhZ05u_dcf3ob9DkaSw1bvd2DHx7twc4Nc8B4sM3dxgWjyiyfvvuVuRGQaCNpT9F-z1KmuOI7jXAFAEm9AdxZrST60dbOeTCI5naQdB4L2JW3YzEm9JOeo1nTgipyNp4spWtTcEIy8T6V96ZDL8j58Ojn-ePS26BotoIaoWBRW4Sp1I0eDYl5Q06DlYdTJYL11TPoRp8IJwUTtSxU4RtR6FGouS7zTaOPEA9iL0-gfATGisQHfD4E10hrhauNLDNh1Wapae92DPmqi6hbKvMo5cM6q9Rj24NVKSVXT0ZSnbhlfrxJ9vhb93nJzXCX0bKXpCldOSoe46HFkKgwUqRCIr_RfZNBXUESIXPTgYTs71p_C0Joqa1QP9Na8WQsk5u7tJ3Eyzgzeqb-JsuLgX4PxGG4gQMvEklw8gb3F7Id_Ctebn4vJfNaHXT00eD08Ou_nNXEJRBsFxg |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NhsR42BdsdIzOTHvgJcKOHSd-RBUIRKnQ-BBvkZPatBJzp6ab1P9-ZyctLaBNe03OiWWf737ns38H8K0UFgMfISMtmI1EzExUICyKTCH6FPGHZqGcz0037fWy21t10dDk-Lsw2IkKv1SFJP4DuwA7cA59tcqUWYGXCbpVr9OHncuZ1fWKJ-sMMkbICCNmLEKLTb0HKqtlD_QEVj4-Hbngbo7f_E9H38LrBlSSw1oL3sEL497DxgLV4CZMA5NxhNjyzpDTH6E2ERlZgtYVvdnY162LjtwgnAcgnkWguZk1Jd_rU7SGDB3pDv3-A0Fr47dvKlJMySVOsr9-RS4Go8kI7WsoD0bO_UE_f-VlugXXx0dXnZOoKbuA80X5JFIS16zua2olM5xmJdohRrWwyijNhOnHlGvOGS9MIm2M8XXat0UsEnxSppnmH2DVjZzZBpLxUllsby0rhcq4LjKTYPieJoksUpO2oI1DmDfLpspDRjxm-XwMW7A_m6u8bEjLfe2M--dEv85Ff9ZMHc8J7c0mPMd15JMj2hkcmRzDRso5oq30LzLoOSjixZi34GOtJPNfYaBNpcpkC9Il9ZkLeB7v5TduOAh83r7aiVT8078G4wusn1ydd_Puae9sB14hdAuUkzH_DKuT8S-zC2vl78mwGrfD0vgDDRYMCw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aG0LjYdyhDIZBPOwlwo4dJ36sulWbKFXFGNpb5CQ2rTTcqSlI_fccO2nVbtMmXpPjxLLP5Tu-fAfgcyksJj5CRlowG4mYmahAWBSZQlQU8YdmoZzPz0E6HGYXF2rUJor-Lgx2osYv1WET31v1VWVbhgH2xTmM1ypT5gHsJBjIvV53e2dLz-uVTza7yJglI5RYMgmtN_VRqKw3o9ANaHn9hORayOk_-d_OPoW9FlySbqMNz2DLuOfweI1y8AUsAqNxhBjzlyGnv0ONIjK1BL0sRrWZr18XHbtxOBdAPJtAe0NrQb43p2kNmTgymPh1CIJexy_j1KRYkDOcbH8Ni4zG0_kU_WwoE0a--QN__urL4iWc949_9E6itvwCzhvl80hJtF1daWolM5xmJfojRrWwyijNhKliyjXnjBcmkTbGPDutbBGLBJ-Uaab5K9h2U2feAMl4qSy2t5aVQmVcF5lJMI1Pk0QWqUk7cIDDmLfmU-dhZzxm-WoMO3C4nK-8bMnLfQ2Ny9tEP61ErxrGjtuEPi4nPUd78psk2hkcmRzTR8o5oq70DhmMIBRxY8w78LpRlNWvMOGmUmWyA-mGCq0EPJ_35hs3GQdeb1_1RCr-9r7B-ACPRkf9fHA6_LoPu4jgAvNkzN_B9nz2x7yHh-Xf-aSeHQTr-AeN4A6F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early-stage+imaging+of+nanocarrier-enhanced+chemotherapy+response+in+living+subjects+by+scalable+photoacoustic+microscopy&rft.jtitle=ACS+nano&rft.au=Nie%2C+Liming&rft.au=Huang%2C+Peng&rft.au=Li%2C+Weitao&rft.au=Yan%2C+Xuefeng&rft.date=2014-12-23&rft.eissn=1936-086X&rft.volume=8&rft.issue=12&rft.spage=12141&rft_id=info:doi/10.1021%2Fnn505989e&rft_id=info%3Apmid%2F25406986&rft.externalDocID=25406986 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |