Early-Stage Imaging of Nanocarrier-Enhanced Chemotherapy Response in Living Subjects by Scalable Photoacoustic Microscopy

Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranos...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano Vol. 8; no. 12; pp. 12141 - 12150
Main Authors: Nie, Liming, Huang, Peng, Li, Weitao, Yan, Xuefeng, Jin, Albert, Wang, Zhe, Tang, Yuxia, Wang, Shouju, Zhang, Xiaofen, Niu, Gang, Chen, Xiaoyuan
Format: Journal Article
Language:English
Published: United States American Chemical Society 23.12.2014
Subjects:
ISSN:1936-0851, 1936-086X, 1936-086X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way.
AbstractList Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way.
Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way.Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way.
Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications or dilatory to capture the rapid pathological changes. Here, a sensitive and resolution-scalable photoacoustic microscopy (PAM) with theranostic nanoformulation was developed to noninvasively monitor the therapy response in a timely manner. Ultrasmall graphene oxide nanosheets were designed as both drug-loading vehicle and photoacoustic signal amplifier to the tumor. With the signal enhancement by the injected contrast agents, the subtle microvascular changes of the chemotherapy response in tumor were advantagely revealed by our PAM system, which was much earlier than the morphological measurement by standard imaging techniques. High tumor uptake of the enhanced nanodrug with Cy5.5 labeling was validated by fluorescence imaging. At different observation scales, PAM offered unprecedented sensitivity of optical absorption and high spatial resolution over optical imaging. Our studies demonstrate the PAM system with synergistic theranostic strategy to be a multiplexing platform for tumor diagnosis, drug delivery, and chemotherapy response monitoring at a very early stage and in an effective way. Keywords: early prediction; chemotherapy response; nanocarrier; photoacoustic microscopy; scalable imaging; graphene oxide; signal amplification
Author Wang, Zhe
Nie, Liming
Tang, Yuxia
Wang, Shouju
Chen, Xiaoyuan
Li, Weitao
Zhang, Xiaofen
Niu, Gang
Yan, Xuefeng
Jin, Albert
Huang, Peng
AuthorAffiliation Nanjing University of Aeronautics and Astronautics
National Institutes of Health (NIH)
Department of Biomedical Engineering, College of Automation Engineering
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health
Xiamen University
Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB)
AuthorAffiliation_xml – name: Nanjing University of Aeronautics and Astronautics
– name: Department of Biomedical Engineering, College of Automation Engineering
– name: Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB)
– name: National Institutes of Health (NIH)
– name: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health
– name: Xiamen University
– name: Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Author_xml – sequence: 1
  givenname: Liming
  surname: Nie
  fullname: Nie, Liming
  email: nielm@xmu.edu.cn
– sequence: 2
  givenname: Peng
  surname: Huang
  fullname: Huang, Peng
– sequence: 3
  givenname: Weitao
  surname: Li
  fullname: Li, Weitao
– sequence: 4
  givenname: Xuefeng
  surname: Yan
  fullname: Yan, Xuefeng
– sequence: 5
  givenname: Albert
  surname: Jin
  fullname: Jin, Albert
– sequence: 6
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
– sequence: 7
  givenname: Yuxia
  surname: Tang
  fullname: Tang, Yuxia
– sequence: 8
  givenname: Shouju
  surname: Wang
  fullname: Wang, Shouju
– sequence: 9
  givenname: Xiaofen
  surname: Zhang
  fullname: Zhang, Xiaofen
– sequence: 10
  givenname: Gang
  surname: Niu
  fullname: Niu, Gang
– sequence: 11
  givenname: Xiaoyuan
  surname: Chen
  fullname: Chen, Xiaoyuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25406986$$D View this record in MEDLINE/PubMed
BookMark eNqNkd2L1DAUxYusuB_64D8geRH0oW4-2rR5EWQYdWH8wFHwLdymt9MMbVKTdqH_vR1md1DZB58Scn_ncG7OZXLmvMMkec7oG0Y5u3Yup7kqFT5KLpgSMqWl_Hl2uufsPLmMcU9pXpSFfJKc8zyjUpXyIpnXELo53Y6wQ3LTw866HfEN-QzOGwjBYkjXrgVnsCarFns_thhgmMk3jIN3EYl1ZGNvD7rtVO3RjJFUM9ka6KDqkHxt_ejB-CmO1pBP1gQfjR_mp8njBrqIz-7Oq-TH-_X31cd08-XDzerdJoWMijFVslACaqCNZChoacqyYBSyRqEClmHNqQAhmKgwlw3PpCrqpuJZvryYogRxlbw9-g5T1WNt0I0BOj0E20OYtQer_5442-qdv9UZL0qpxGLw6s4g-F8TxlH3NhrsOnC4bKVZITmVXPD_QOWyk6C8LBb0xZ-xTnnuq1mA6yNw-LAYsNHGjjBaf0hpO82oPpSvT-Uvitf_KO5NH2JfHlkwUe_9FNzSwQPcb5DEvRw
CitedBy_id crossref_primary_10_1038_s41598_017_00873_7
crossref_primary_10_3390_s21030836
crossref_primary_10_1002_smtd_201900506
crossref_primary_10_1007_s11356_023_29243_9
crossref_primary_10_1016_j_mtchem_2023_101750
crossref_primary_10_1002_adma_201801778
crossref_primary_10_1063_1_4913690
crossref_primary_10_1002_advs_201700277
crossref_primary_10_1039_D0RA06218A
crossref_primary_10_1016_j_apacoust_2023_109231
crossref_primary_10_1002_adfm_201808601
crossref_primary_10_1016_j_clbc_2024_01_006
crossref_primary_10_1016_j_addr_2016_05_013
crossref_primary_10_1002_adfm_201603758
crossref_primary_10_3390_s17061400
crossref_primary_10_1063_1_4934699
crossref_primary_10_1002_jbio_201800073
crossref_primary_10_1002_app_47571
crossref_primary_10_1002_adma_201805875
crossref_primary_10_1016_j_jconrel_2016_01_004
crossref_primary_10_1111_str_12289
crossref_primary_10_1002_adma_201502285
crossref_primary_10_1002_adma_201506460
crossref_primary_10_1021_acs_chemrev_7b00258
crossref_primary_10_1002_adma_201606129
crossref_primary_10_4103_1673_5374_357907
crossref_primary_10_1016_j_snb_2024_135792
crossref_primary_10_1186_s12951_022_01662_9
crossref_primary_10_3390_pharmaceutics10040282
crossref_primary_10_1016_j_jconrel_2015_04_021
crossref_primary_10_1007_s00339_022_06118_3
crossref_primary_10_3390_nano10081617
crossref_primary_10_1038_s41598_018_30848_1
crossref_primary_10_3389_fbioe_2025_1587178
crossref_primary_10_1016_j_flatc_2020_100184
crossref_primary_10_1002_adhm_202001240
crossref_primary_10_1002_cbic_201800818
crossref_primary_10_2147_IJN_S238679
crossref_primary_10_1016_j_tibtech_2016_02_001
crossref_primary_10_1088_1361_6528_ac1bdb
crossref_primary_10_1002_adma_201505681
Cites_doi 10.1021/nl100996u
10.1021/nn403429v
10.1016/j.pacs.2013.10.001
10.1117/1.JBO.17.11.110506
10.1038/nprot.2013.146
10.1016/j.addr.2008.03.016
10.1007/s002590050546
10.1021/nn201560b
10.1039/c3tb20986e
10.1007/s12274-008-8021-8
10.1016/j.cell.2011.02.013
10.1021/nn304739s
10.1038/nature06016
10.1021/cr300115g
10.1016/j.carbon.2007.02.034
10.1002/smll.201302924
10.1039/c3nr00627a
10.1126/science.1216210
10.1118/1.3466696
10.1039/C4CS00086B
10.1126/science.287.5454.783b
10.1016/j.biomaterials.2013.03.090
10.1038/nnano.2013.302
10.1002/smll.201101140
10.1016/j.actbio.2012.08.049
10.1021/ja01539a017
10.1093/annonc/mdq683
10.1200/JCO.2010.32.6082
10.2967/jnumed.112.109397
10.1364/BOE.5.002679
10.1002/hon.2040
10.1021/nn402111z
10.1016/j.carbon.2011.05.056
10.1039/C3NR05468C
10.1200/JCO.2007.15.4385
10.1021/nn700040t
10.1021/nl802929u
10.1103/PhysRevE.67.056605
10.2217/17435889.2.1.113
10.1021/ja803688x
10.1364/OL.33.001291
10.1118/1.3700401
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright © 2014 American Chemical Society 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society
DBID N~.
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
DOI 10.1021/nn505989e
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 12150
ExternalDocumentID PMC4278693
25406986
10_1021_nn505989e
c184670826
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
N~.
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
ID FETCH-LOGICAL-a403t-96793ada0f61e308c88710a4f9e9a14ed203a3313be56f24697dfb24513bc78a3
IEDL.DBID N~.
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347138000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Tue Sep 30 16:16:54 EDT 2025
Fri Jul 11 06:47:11 EDT 2025
Fri Jul 11 09:28:03 EDT 2025
Mon Jul 21 05:58:31 EDT 2025
Tue Nov 18 21:43:44 EST 2025
Sat Nov 29 07:53:45 EST 2025
Thu Aug 27 13:42:28 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords graphene oxide
early prediction
photoacoustic microscopy
signal amplification
nanocarrier
chemotherapy response
scalable imaging
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
https://pubs.acs.org/page/policy/authorchoice_termsofuse.html
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a403t-96793ada0f61e308c88710a4f9e9a14ed203a3313be56f24697dfb24513bc78a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/nn505989e
PMID 25406986
PQID 1640330287
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4278693
proquest_miscellaneous_1762062323
proquest_miscellaneous_1640330287
pubmed_primary_25406986
crossref_citationtrail_10_1021_nn505989e
crossref_primary_10_1021_nn505989e
acs_journals_10_1021_nn505989e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
PublicationCentury 2000
PublicationDate 2014-12-23
PublicationDateYYYYMMDD 2014-12-23
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Stankovich S. (ref34/cit34) 2007; 45
Nie L. (ref3/cit3) 2014; 10
Sun X. (ref35/cit35) 2008; 1
Zhang S. A. (ref29/cit29) 2011; 49
Li W. (ref31/cit31) 2014; 5
Yang K. (ref10/cit10) 2010; 10
Yang K. (ref9/cit9) 2013; 8
Nie L. (ref36/cit36) 2010; 37
Barinaga M. (ref44/cit44) 2000; 287
Azim H. (ref1/cit1) 2011; 22
Ghosh P. (ref4/cit4) 2008; 60
Nie L. (ref38/cit38) 2012; 17
Hanahan D. (ref43/cit43) 2011; 144
Tannock I. F. (ref41/cit41) 1989; 49
Dunnwald L. K. (ref16/cit16) 2008; 26
Sheng Z. (ref12/cit12) 2013; 34
Chen Y. S. (ref24/cit24) 2012; 8
Wang B. (ref25/cit25) 2012; 39
Benatar N. (ref17/cit17) 2000; 27
Park S. (ref39/cit39) 2008; 33
Wang Y.-W. (ref14/cit14) 2013; 1
Zha Z. (ref21/cit21) 2013; 5
Bartczak D. (ref7/cit7) 2013; 7
Patel M. A. (ref26/cit26) 2013; 7
Xu M. (ref32/cit32) 2003; 67
Han G. (ref6/cit6) 2007; 2
Song S. (ref15/cit15) 2013; 54
Cook J. R. (ref20/cit20) 2013; 7
Pu K. (ref22/cit22) 2014; 9
Wang L. V. (ref23/cit23) 2012; 335
Chen D. (ref28/cit28) 2012; 112
Liu Z. (ref27/cit27) 2008; 130
Liu Z. (ref37/cit37) 2007; 1
Nie L. (ref40/cit40) 2014; 6
Fellah S. (ref19/cit19) 2011; 29
Dikin D. A. (ref8/cit8) 2007; 448
Hummers W. S. (ref33/cit33) 1958; 80
Lalwani G. (ref13/cit13) 2013; 1
Mallidi S. (ref5/cit5) 2009; 9
Grohn O. H. (ref18/cit18) 2003; 63
ref30/cit30
Tian B. (ref11/cit11) 2011; 5
Nie L. (ref45/cit45) 2014; 43
Cajot S. (ref42/cit42) 2012; 8
Lynn J. J. (ref2/cit2) 2013; 31
References_xml – volume: 10
  start-page: 3318
  year: 2010
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl100996u
– volume: 7
  start-page: 8147
  year: 2013
  ident: ref26/cit26
  publication-title: ACS Nano
  doi: 10.1021/nn403429v
– volume: 1
  start-page: 62
  year: 2013
  ident: ref13/cit13
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2013.10.001
– volume: 17
  start-page: 110506
  year: 2012
  ident: ref38/cit38
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.17.11.110506
– volume: 8
  start-page: 2392
  year: 2013
  ident: ref9/cit9
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.146
– volume: 60
  start-page: 1307
  year: 2008
  ident: ref4/cit4
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2008.03.016
– volume: 27
  start-page: 583
  year: 2000
  ident: ref17/cit17
  publication-title: Eur. J. Nucl. Med.
  doi: 10.1007/s002590050546
– volume: 5
  start-page: 7000
  year: 2011
  ident: ref11/cit11
  publication-title: ACS Nano
  doi: 10.1021/nn201560b
– volume: 1
  start-page: 5762
  year: 2013
  ident: ref14/cit14
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20986e
– volume: 1
  start-page: 203
  year: 2008
  ident: ref35/cit35
  publication-title: Nano Res.
  doi: 10.1007/s12274-008-8021-8
– volume: 144
  start-page: 646
  year: 2011
  ident: ref43/cit43
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 7
  start-page: 1272
  year: 2013
  ident: ref20/cit20
  publication-title: ACS Nano
  doi: 10.1021/nn304739s
– volume: 448
  start-page: 457
  year: 2007
  ident: ref8/cit8
  publication-title: Nature
  doi: 10.1038/nature06016
– volume: 112
  start-page: 6027
  year: 2012
  ident: ref28/cit28
  publication-title: Chem. Rev.
  doi: 10.1021/cr300115g
– volume: 45
  start-page: 1558
  year: 2007
  ident: ref34/cit34
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 10
  start-page: 1585
  year: 2014
  ident: ref3/cit3
  publication-title: Small
  doi: 10.1002/smll.201302924
– volume: 49
  start-page: 4373
  year: 1989
  ident: ref41/cit41
  publication-title: Cancer Res.
– volume: 5
  start-page: 4462
  year: 2013
  ident: ref21/cit21
  publication-title: Nanoscale
  doi: 10.1039/c3nr00627a
– volume: 335
  start-page: 1458
  year: 2012
  ident: ref23/cit23
  publication-title: Science
  doi: 10.1126/science.1216210
– volume: 37
  start-page: 4193
  year: 2010
  ident: ref36/cit36
  publication-title: Med. Phys.
  doi: 10.1118/1.3466696
– volume: 43
  start-page: 7132
  year: 2014
  ident: ref45/cit45
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00086B
– volume: 287
  start-page: 783
  year: 2000
  ident: ref44/cit44
  publication-title: Science
  doi: 10.1126/science.287.5454.783b
– volume: 34
  start-page: 5236
  year: 2013
  ident: ref12/cit12
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.03.090
– volume: 9
  start-page: 233
  year: 2014
  ident: ref22/cit22
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.302
– volume: 8
  start-page: 47
  year: 2012
  ident: ref24/cit24
  publication-title: Small
  doi: 10.1002/smll.201101140
– volume: 8
  start-page: 4215
  year: 2012
  ident: ref42/cit42
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.08.049
– volume: 80
  start-page: 1339
  year: 1958
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 22
  start-page: 1939
  year: 2011
  ident: ref1/cit1
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdq683
– volume: 29
  start-page: e308
  year: 2011
  ident: ref19/cit19
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2010.32.6082
– volume: 54
  start-page: 104
  year: 2013
  ident: ref15/cit15
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.112.109397
– volume: 5
  start-page: 2679
  year: 2014
  ident: ref31/cit31
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.002679
– volume: 31
  start-page: 189
  year: 2013
  ident: ref2/cit2
  publication-title: Hematol. Oncol.
  doi: 10.1002/hon.2040
– volume: 7
  start-page: 5628
  year: 2013
  ident: ref7/cit7
  publication-title: ACS Nano
  doi: 10.1021/nn402111z
– volume: 49
  start-page: 4040
  year: 2011
  ident: ref29/cit29
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.05.056
– volume: 6
  start-page: 1271
  year: 2014
  ident: ref40/cit40
  publication-title: Nanoscale
  doi: 10.1039/C3NR05468C
– volume: 26
  start-page: 4449
  year: 2008
  ident: ref16/cit16
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.15.4385
– volume: 1
  start-page: 50
  year: 2007
  ident: ref37/cit37
  publication-title: ACS Nano
  doi: 10.1021/nn700040t
– volume: 9
  start-page: 2825
  year: 2009
  ident: ref5/cit5
  publication-title: Nano Lett.
  doi: 10.1021/nl802929u
– volume: 67
  start-page: 056605
  year: 2003
  ident: ref32/cit32
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.056605
– volume: 2
  start-page: 113
  year: 2007
  ident: ref6/cit6
  publication-title: Nanomedicine (London)
  doi: 10.2217/17435889.2.1.113
– volume: 63
  start-page: 7571
  year: 2003
  ident: ref18/cit18
  publication-title: Cancer Res.
– volume: 130
  start-page: 10876
  year: 2008
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803688x
– volume: 33
  start-page: 1291
  year: 2008
  ident: ref39/cit39
  publication-title: Opt. Lett.
  doi: 10.1364/OL.33.001291
– volume: 39
  start-page: 2512
  year: 2012
  ident: ref25/cit25
  publication-title: Med. Phys.
  doi: 10.1118/1.3700401
– ident: ref30/cit30
SSID ssj0057876
Score 2.4639618
Snippet Conventional evaluation methods of chemotherapeutic efficacy such as tissue biopsy and anatomical measurement are either invasive with potential complications...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12141
SubjectTerms Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Carbocyanines - chemistry
Cell Line, Tumor
Chemotherapy
Contrast agents
Doxorubicin - chemistry
Doxorubicin - pharmacology
Drug Carriers - chemistry
Female
Graphene
Graphite - chemistry
Humans
Imaging
Mice
Microscopy
Nanoparticles - chemistry
Nanostructure
Optical Imaging
Oxides
Oxides - chemistry
Photoacoustic microscopy
Photoacoustic Techniques
Time Factors
Treatment Outcome
Tumor Burden - drug effects
Tumors
Title Early-Stage Imaging of Nanocarrier-Enhanced Chemotherapy Response in Living Subjects by Scalable Photoacoustic Microscopy
URI http://dx.doi.org/10.1021/nn505989e
https://www.ncbi.nlm.nih.gov/pubmed/25406986
https://www.proquest.com/docview/1640330287
https://www.proquest.com/docview/1762062323
https://pubmed.ncbi.nlm.nih.gov/PMC4278693
Volume 8
WOSCitedRecordID wos000347138000027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61hQMcyhtSIDKPA5cFv9aPY1W1AqlEFQWU28q7sUkkcFASkHLpb-_Yu4kSKI_LHnZntSuPPfONZ_wNwMtGBgx8pCqcZKGQnPmiRlhU-FqOKOIPx3I7n8-nejAww6E924EXf8jgc_YmRnTS1li_C9e40ir1ZxhcvF6Z2zTjVJs6xtAY8cOKPmjz1eR6mvm26_kNT_5aFrnhZ05u_dcf3ob9DkaSw1bvd2DHx7twc4Nc8B4sM3dxgWjyiyfvvuVuRGQaCNpT9F-z1KmuOI7jXAFAEm9AdxZrST60dbOeTCI5naQdB4L2JW3YzEm9JOeo1nTgipyNp4spWtTcEIy8T6V96ZDL8j58Ojn-ePS26BotoIaoWBRW4Sp1I0eDYl5Q06DlYdTJYL11TPoRp8IJwUTtSxU4RtR6FGouS7zTaOPEA9iL0-gfATGisQHfD4E10hrhauNLDNh1Wapae92DPmqi6hbKvMo5cM6q9Rj24NVKSVXT0ZSnbhlfrxJ9vhb93nJzXCX0bKXpCldOSoe46HFkKgwUqRCIr_RfZNBXUESIXPTgYTs71p_C0Joqa1QP9Na8WQsk5u7tJ3Eyzgzeqb-JsuLgX4PxGG4gQMvEklw8gb3F7Id_Ctebn4vJfNaHXT00eD08Ou_nNXEJRBsFxg
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NhsR42BdsdIzOTHvgJcKOHSd-RBUIRKnQ-BBvkZPatBJzp6ab1P9-ZyctLaBNe03OiWWf737ns38H8K0UFgMfISMtmI1EzExUICyKTCH6FPGHZqGcz0037fWy21t10dDk-Lsw2IkKv1SFJP4DuwA7cA59tcqUWYGXCbpVr9OHncuZ1fWKJ-sMMkbICCNmLEKLTb0HKqtlD_QEVj4-Hbngbo7f_E9H38LrBlSSw1oL3sEL497DxgLV4CZMA5NxhNjyzpDTH6E2ERlZgtYVvdnY162LjtwgnAcgnkWguZk1Jd_rU7SGDB3pDv3-A0Fr47dvKlJMySVOsr9-RS4Go8kI7WsoD0bO_UE_f-VlugXXx0dXnZOoKbuA80X5JFIS16zua2olM5xmJdohRrWwyijNhOnHlGvOGS9MIm2M8XXat0UsEnxSppnmH2DVjZzZBpLxUllsby0rhcq4LjKTYPieJoksUpO2oI1DmDfLpspDRjxm-XwMW7A_m6u8bEjLfe2M--dEv85Ff9ZMHc8J7c0mPMd15JMj2hkcmRzDRso5oq30LzLoOSjixZi34GOtJPNfYaBNpcpkC9Il9ZkLeB7v5TduOAh83r7aiVT8078G4wusn1ydd_Puae9sB14hdAuUkzH_DKuT8S-zC2vl78mwGrfD0vgDDRYMCw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aG0LjYdyhDIZBPOwlwo4dJ36sulWbKFXFGNpb5CQ2rTTcqSlI_fccO2nVbtMmXpPjxLLP5Tu-fAfgcyksJj5CRlowG4mYmahAWBSZQlQU8YdmoZzPz0E6HGYXF2rUJor-Lgx2osYv1WET31v1VWVbhgH2xTmM1ypT5gHsJBjIvV53e2dLz-uVTza7yJglI5RYMgmtN_VRqKw3o9ANaHn9hORayOk_-d_OPoW9FlySbqMNz2DLuOfweI1y8AUsAqNxhBjzlyGnv0ONIjK1BL0sRrWZr18XHbtxOBdAPJtAe0NrQb43p2kNmTgymPh1CIJexy_j1KRYkDOcbH8Ni4zG0_kU_WwoE0a--QN__urL4iWc949_9E6itvwCzhvl80hJtF1daWolM5xmJfojRrWwyijNhKliyjXnjBcmkTbGPDutbBGLBJ-Uaab5K9h2U2feAMl4qSy2t5aVQmVcF5lJMI1Pk0QWqUk7cIDDmLfmU-dhZzxm-WoMO3C4nK-8bMnLfQ2Ny9tEP61ErxrGjtuEPi4nPUd78psk2hkcmRzTR8o5oq70DhmMIBRxY8w78LpRlNWvMOGmUmWyA-mGCq0EPJ_35hs3GQdeb1_1RCr-9r7B-ACPRkf9fHA6_LoPu4jgAvNkzN_B9nz2x7yHh-Xf-aSeHQTr-AeN4A6F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early-stage+imaging+of+nanocarrier-enhanced+chemotherapy+response+in+living+subjects+by+scalable+photoacoustic+microscopy&rft.jtitle=ACS+nano&rft.au=Nie%2C+Liming&rft.au=Huang%2C+Peng&rft.au=Li%2C+Weitao&rft.au=Yan%2C+Xuefeng&rft.date=2014-12-23&rft.eissn=1936-086X&rft.volume=8&rft.issue=12&rft.spage=12141&rft_id=info:doi/10.1021%2Fnn505989e&rft_id=info%3Apmid%2F25406986&rft.externalDocID=25406986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon