Unveiling Earth's Hidden Magnetization

Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical research letters Ročník 45; číslo 22; s. 12,283 - 12,292
Hlavní autoři: Vervelidou, Foteini, Lesur, Vincent
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 28.11.2018
American Geophysical Union
Témata:
ISSN:0094-8276, 1944-8007
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global lithospheric magnetic field models of high spatial resolution, this path has not yet been very fruitful because of an important limitation: only part of the magnetization is visible, that is, produces an observable magnetic field signal. We refer to the remaining part of the magnetization as the hidden magnetization, and we recover it from a lithospheric magnetic field model under a few reasonable assumptions. We find that Earth's hidden magnetization at high and middle latitudes is very similar, both in intensity and shape, to Earth's visible magnetization. At low latitudes, the estimated hidden magnetization relies on a priori information and can be very different from the visible one. Plain Language Summary Earth's uppermost layer is abundant in magnetized rocks. Rocks' magnetization acts as a recorder of many processes taking place inside the Earth, from the crust down to the core, which lies almost 3,000 km far from the surface. Currently, the most common way to extract this information is through laboratory measurements of rock samples. An alternative way is to study the magnetic signal of magnetized rocks, which is known as the lithospheric magnetic field. This is measured by satellites orbiting around the Earth and airborne and marine missions. Inferring, however, the direction and the strength of the magnetization from magnetic field measurements is not straightforward. The reason is that a large part of a given magnetization generates no magnetic field. We call this part of the magnetization hidden as opposed to the remaining part, which we call visible. In this study, we show how the visible and the hidden parts of the magnetization are linked to each other. This link allows us to uniquely recover most of Earth's hidden magnetization. Recovering this part of Earth's magnetization enables a better link to the underlying processes, like crustal thickness contrasts, temperature gradients, hydrothermal activity, or deposits of highly magnetic minerals like magnetite. Key Points More than half of Earth's magnetization is hidden in the sense that it generates no observable magnetic field signal Under few reasonable assumptions, we uniquely recover most of Earth's hidden magnetization from a lithospheric magnetic field model Recovering the hidden part of Earth's magnetization enables a better link to the underlying internal processes
AbstractList Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global lithospheric magnetic field models of high spatial resolution, this path has not yet been very fruitful because of an important limitation: only part of the magnetization is visible , that is, produces an observable magnetic field signal. We refer to the remaining part of the magnetization as the hidden magnetization, and we recover it from a lithospheric magnetic field model under a few reasonable assumptions. We find that Earth's hidden magnetization at high and middle latitudes is very similar, both in intensity and shape, to Earth's visible magnetization. At low latitudes, the estimated hidden magnetization relies on a priori information and can be very different from the visible one. Earth's uppermost layer is abundant in magnetized rocks. Rocks' magnetization acts as a recorder of many processes taking place inside the Earth, from the crust down to the core, which lies almost 3,000 km far from the surface. Currently, the most common way to extract this information is through laboratory measurements of rock samples. An alternative way is to study the magnetic signal of magnetized rocks, which is known as the lithospheric magnetic field. This is measured by satellites orbiting around the Earth and airborne and marine missions. Inferring, however, the direction and the strength of the magnetization from magnetic field measurements is not straightforward. The reason is that a large part of a given magnetization generates no magnetic field. We call this part of the magnetization hidden as opposed to the remaining part, which we call visible . In this study, we show how the visible and the hidden parts of the magnetization are linked to each other. This link allows us to uniquely recover most of Earth's hidden magnetization. Recovering this part of Earth's magnetization enables a better link to the underlying processes, like crustal thickness contrasts, temperature gradients, hydrothermal activity, or deposits of highly magnetic minerals like magnetite. More than half of Earth's magnetization is hidden in the sense that it generates no observable magnetic field signal Under few reasonable assumptions, we uniquely recover most of Earth's hidden magnetization from a lithospheric magnetic field model Recovering the hidden part of Earth's magnetization enables a better link to the underlying internal processes
Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global lithospheric magnetic field models of high spatial resolution, this path has not yet been very fruitful because of an important limitation: only part of the magnetization is visible, that is, produces an observable magnetic field signal. We refer to the remaining part of the magnetization as the hidden magnetization, and we recover it from a lithospheric magnetic field model under a few reasonable assumptions. We find that Earth's hidden magnetization at high and middle latitudes is very similar, both in intensity and shape, to Earth's visible magnetization. At low latitudes, the estimated hidden magnetization relies on a priori information and can be very different from the visible one.
Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global lithospheric magnetic field models of high spatial resolution, this path has not yet been very fruitful because of an important limitation: only part of the magnetization is visible, that is, produces an observable magnetic field signal. We refer to the remaining part of the magnetization as the hidden magnetization, and we recover it from a lithospheric magnetic field model under a few reasonable assumptions. We find that Earth's hidden magnetization at high and middle latitudes is very similar, both in intensity and shape, to Earth's visible magnetization. At low latitudes, the estimated hidden magnetization relies on a priori information and can be very different from the visible one. Plain Language Summary Earth's uppermost layer is abundant in magnetized rocks. Rocks' magnetization acts as a recorder of many processes taking place inside the Earth, from the crust down to the core, which lies almost 3,000 km far from the surface. Currently, the most common way to extract this information is through laboratory measurements of rock samples. An alternative way is to study the magnetic signal of magnetized rocks, which is known as the lithospheric magnetic field. This is measured by satellites orbiting around the Earth and airborne and marine missions. Inferring, however, the direction and the strength of the magnetization from magnetic field measurements is not straightforward. The reason is that a large part of a given magnetization generates no magnetic field. We call this part of the magnetization hidden as opposed to the remaining part, which we call visible. In this study, we show how the visible and the hidden parts of the magnetization are linked to each other. This link allows us to uniquely recover most of Earth's hidden magnetization. Recovering this part of Earth's magnetization enables a better link to the underlying processes, like crustal thickness contrasts, temperature gradients, hydrothermal activity, or deposits of highly magnetic minerals like magnetite. Key Points More than half of Earth's magnetization is hidden in the sense that it generates no observable magnetic field signal Under few reasonable assumptions, we uniquely recover most of Earth's hidden magnetization from a lithospheric magnetic field model Recovering the hidden part of Earth's magnetization enables a better link to the underlying internal processes
Author Vervelidou, Foteini
Lesur, Vincent
Author_xml – sequence: 1
  givenname: Foteini
  orcidid: 0000-0002-6053-5758
  surname: Vervelidou
  fullname: Vervelidou, Foteini
  email: foteini@gfz-potsdam.de
  organization: Helmholtz Centre Potsdam‐GFZ German Research Centre for Geosciences, Geomagnetism
– sequence: 2
  givenname: Vincent
  surname: Lesur
  fullname: Lesur, Vincent
  organization: Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS
BackLink https://insu.hal.science/insu-03589318$$DView record in HAL
BookMark eNp9kFtLAzEQhYMo2Fbf_AEFQUFcnVw2l8dSaiusCGKfQ7qbbVPWbE22lfrrXW0FEfRp5uE7M-ecLjr0tbcInWG4wUDULQEsxxkIJQU_QB2sGEskgDhEHQDV7kTwY9SNcQkAFCjuoIup31hXOT_vj0xoFpexP3FFYX3_wcy9bdy7aVztT9BRaapoT_ezh6Z3o-fhJMkex_fDQZYYBoQlvMSpKAwvOOczkRplOSdQYjWjyvBSFDkhVjGSS2C5wjkRjPNCEMwoLUthaQ9d7e4uTKVXwb2YsNW1cXoyyLTzca2BplJRLDe4hc938CrUr2sbG72s18G3_jTBKaeYCiVaiuyoPNQxBlvq3DVfoZpgXKUx6M_y9M_yWtH1L9G3mT_w_Y83V9ntv6weP2WpJJLRD222fG0
CitedBy_id crossref_primary_10_1007_s13137_020_00161_z
crossref_primary_10_1007_s13137_020_0146_2
crossref_primary_10_1016_j_jat_2024_106124
crossref_primary_10_3390_geosciences10040147
crossref_primary_10_3390_min13050604
Cites_doi 10.1017/CBO9780511840302
10.1029/2005JB003837
10.1016/j.tecto.2014.01.004
10.1038/253701a0
10.1016/j.tecto.2008.11.027
10.1111/j.1365-246X.2011.05153.x
10.1029/2000JB000050
10.1088/0266-5611/29/1/015004
10.1088/0266-5611/32/1/015002
10.1016/0040-1951(92)90139-W
10.1186/s40623-016-0404-6
10.1046/j.1365-246x.1999.00860.x
10.1186/BF03351933
10.1111/j.1365-246X.2008.03724.x
10.1002/2017JE005410
10.1029/97JB02935
10.1093/gji/ggs063
10.1093/gji/ggx400
10.1186/s40623-015-0329-5
10.1111/j.1365-246X.2005.02833.x
10.1093/gji/ggu463
10.1038/199947a0
10.1016/j.pepi.2013.09.003
10.1080/17415977.2018.1438426
10.1046/j.1365-246x.2000.00046.x
10.1016/S0031-9201(96)03193-7
10.1016/j.epsl.2015.08.002
10.1186/s40623-016-0510-5
10.1126/science.1106888
10.1029/GL006i007p00541
10.1029/2001JE001760
10.1046/j.1365-246X.2003.02053.x
10.1007/s11214-010-9667-6
10.1029/JB090iB03p02655
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
Copyright
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
– notice: Copyright
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
1XC
VOOES
DOI 10.1029/2018GL079876
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 12,292
ExternalDocumentID oai:HAL:insu-03589318v1
10_1029_2018GL079876
GRL58284
Genre article
GrantInformation_xml – fundername: Centre National d’Etudes Spatiales (CNES)
  funderid: Travaux préparatoires et exploitation de la mission Swarm
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  funderid: SPP 1788 LE2477/7- 1
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
1XC
31~
6TJ
7XC
88I
8FE
8FG
8FH
8G5
AANHP
ABJCF
ABJNI
ABUWG
ACBWZ
ACCMX
ACRPL
ACYXJ
ADNMO
AEUYN
AFKRA
AFZJQ
AGQPQ
AI.
AIQQE
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BDRZF
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
DDYGU
DWQXO
FEDTE
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
K6-
L6V
LK5
M2O
M2P
M7R
M7S
MVM
P62
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
VOOES
ZCG
ID FETCH-LOGICAL-a4024-6f157da6d666b75a9e6620f19b39a6f7dc22e942c804c91c27466d721433ff7e3
IEDL.DBID WIN
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453250000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Tue Oct 14 20:36:14 EDT 2025
Fri Jul 25 10:37:57 EDT 2025
Sat Nov 29 02:57:34 EST 2025
Tue Nov 18 22:20:50 EST 2025
Wed Jan 22 16:28:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Earth
Swarm
magnetization
lithospheric magnetic field
WDMAM
inverse problems
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4024-6f157da6d666b75a9e6620f19b39a6f7dc22e942c804c91c27466d721433ff7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6053-5758
0000-0003-2568-320X
OpenAccessLink https://insu.hal.science/insu-03589318
PQID 2156313797
PQPubID 54723
PageCount 10
ParticipantIDs hal_primary_oai_HAL_insu_03589318v1
proquest_journals_2156313797
crossref_citationtrail_10_1029_2018GL079876
crossref_primary_10_1029_2018GL079876
wiley_primary_10_1029_2018GL079876_GRL58284
PublicationCentury 2000
PublicationDate 28 November 2018
PublicationDateYYYYMMDD 2018-11-28
PublicationDate_xml – month: 11
  year: 2018
  text: 28 November 2018
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2018
Publisher John Wiley & Sons, Inc
American Geophysical Union
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union
References 2015; 32(1)
1963; 199
2005; 110
2015; 201
2006; 58
1996
2007
2013; 224
2006
2004
1975; 253
2017; 211
2003; 155
1996; 98
2009; 478
2014; 624
2015; 67
2003; 108
2015; 430
1992; 212
1979; 6
2002; 107
2019; 27
2010; 155
2000; 140
1985; 90
2006; 164
2012; 29
2005; 309
1998; 103
2013; 192
2017; 122
1999; 138
2016; 68
2008; 173
2011; 187
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
Blakely R. J. (e_1_2_7_5_1) 1996
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
Lanza R. (e_1_2_7_18_1) 2006
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
Gerhards C. (e_1_2_7_10_1) 2015; 32
e_1_2_7_38_1
References_xml – volume: 430
  start-page: 54
  year: 2015
  end-page: 65
  article-title: Global equivalent magnetization of the oceanic lithosphere
  publication-title: Earth and Planetary Science Letters
– volume: 27
  start-page: 37
  issue: 1
  year: 2019
  end-page: 60
  article-title: On the reconstruction of inducing dipole directions and susceptibilities from knowledge of the magnetic field on a sphere
  publication-title: Inverse Problems in Science and Engineering
– volume: 199
  start-page: 947
  issue: 4897
  year: 1963
  end-page: 949
  article-title: Magnetic anomalies over oceanic ridges
  publication-title: Nature
– volume: 155
  start-page: 95
  year: 2010
  end-page: 127
  article-title: The magnetic field of the Earth's lithosphere
  publication-title: Space Science Reviews
– volume: 122
  start-page: 2294
  year: 2017
  end-page: 2311
  article-title: Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures
  publication-title: Geophysical Research: Planets
– year: 2007
– volume: 201
  start-page: 605
  year: 2015
  end-page: 620
  article-title: A statistical spatial power spectrum of the Earth's lithospheric magnetic field
  publication-title: Geophysical Journal International
– year: 1996
– volume: 173
  start-page: 382
  year: 2008
  end-page: 394
  article-title: GRIMM—The GFZ Reference Internal Magnetic Model based on vector satellite and observatory data
  publication-title: Geophysical Journal International
– volume: 224
  start-page: 11
  year: 2013
  end-page: 20
  article-title: Rock magnetic investigation of possible sources of the Bangui magnetic anomaly
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 140
  start-page: 453
  issue: 2
  year: 2000
  end-page: 459
  article-title: Exact solutions for internally induced magnetization in a shell
  publication-title: Geophysical Journal International
– volume: 155
  start-page: 509
  issue: 2
  year: 2003
  end-page: 513
  article-title: Magnetic field annihilators: Invisible magnetization at the magnetic equator
  publication-title: Geophysical Journal International
– volume: 187
  start-page: 99
  year: 2011
  end-page: 117
  article-title: Analysis of lithospheric magnetization in vector spherical harmonics
  publication-title: Geophysical Journal International
– volume: 624
  start-page: 3
  year: 2014
  end-page: 14
  article-title: Eight good reasons why the uppermost mantle could be magnetic
  publication-title: Tectonophysics
– volume: 6
  start-page: 541
  issue: 7
  year: 1979
  end-page: 544
  article-title: The Moho as a magnetic boundary
  publication-title: Geophysical Research Letters
– volume: 29
  start-page: 15004
  issue: 1
  year: 2012
  article-title: Characterizing kernels of operators related to thin‐plate magnetizations via generalizations of Hodge decompositions
  publication-title: Inverse Problems
– volume: 212
  start-page: 45
  year: 1992
  end-page: 58
  article-title: A possible impact origin for the Bangui magnetic anomaly (Central Africa)
  publication-title: Tectonophysics
– volume: 138
  start-page: 285
  issue: 1
  year: 1999
  end-page: 289
  article-title: Geomagnetic effects of the Earth's ellipticity
  publication-title: Geophysical Journal International
– volume: 478
  start-page: 111
  issue: 1‐2
  year: 2009
  end-page: 118
  article-title: Simple models for the Beattie Magnetic Anomaly in South Africa
  publication-title: Tectonophysics
– volume: 211
  start-page: 1669
  year: 2017
  end-page: 1678
  article-title: On the accuracy of paleopole estimations from magnetic field measurements
  publication-title: Geophysical Journal International
– volume: 192
  start-page: 951
  year: 2013
  end-page: 962
  article-title: Forward modelling of oceanic lithospheric magnetization
  publication-title: Geophysical Journal International
– volume: 110
  start-page: B12103
  year: 2005
  article-title: Geological modeling of the new CHAMP magnetic anomaly maps using a Geographical Information System (GIS) technique
  publication-title: Journal of Geophysical research
– volume: 68
  start-page: 27
  issue: 1
  year: 2016
  article-title: Building the second version of the World Digital Magnetic Anomaly Map (WDMAM)
  publication-title: Earth, Planets and Space
– year: 2006
– volume: 309
  start-page: 464
  year: 2005
  end-page: 467
  article-title: Heat flux anomalies in Antarctica revealed by satellite magnetic data
  publication-title: Science
– volume: 32(1)
  start-page: 15002
  year: 2015
  article-title: On the unique reconstruction of induced spherical magnetizations
  publication-title: Inverse Problems
– year: 2004
– volume: 108
  start-page: 5006
  issue: E1
  year: 2003
  article-title: Ideal bodies for Mars magnetics
  publication-title: Journal of Geophysical Research
– volume: 58
  start-page: 351
  year: 2006
  end-page: 358
  article-title: Swarm: A constellation to study the Earth's magnetic field
  publication-title: Earth Planets Space
– volume: 253
  start-page: 701
  year: 1975
  end-page: 703
  article-title: An ancient lunar magnetic dipole field
  publication-title: Nature
– volume: 98
  start-page: 303
  year: 1996
  end-page: 319
  article-title: Minimal crustal magnetizations from satellite data
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 67
  start-page: 173
  year: 2015
  article-title: Global maps of the magnetic thickness and magnetization of the Earth's lithosphere
  publication-title: Earth, Planets and Space
– volume: 107
  start-page: 2300
  issue: B11
  year: 2002
  article-title: Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr
  publication-title: Journal of Geophysical Research
– volume: 103
  start-page: 2563
  issue: B2
  year: 1998
  end-page: 2584
  article-title: Global magnetization models with a priori information
  publication-title: Journal of Geophysical Research
– volume: 90
  start-page: 2655
  year: 1985
  end-page: 2664
  article-title: Lateral variations of apparent magnetic susceptibility of lithosphere deduced from Magsat data
  publication-title: Journal of Geophysical Research
– volume: 164
  start-page: 319
  year: 2006
  end-page: 330
  article-title: Earth's lithospheric magnetic field determined to Spherical Harmonic degree 90 from CHAMP satellite measurements
  publication-title: Geophysical Journal International
– volume: 68
  start-page: 126
  year: 2016
  article-title: A Swarm lithospheric magnetic field model to SH degree 80
  publication-title: Earth, Planets and Space
– volume-title: The Earth's magnetism
  year: 2006
  ident: e_1_2_7_18_1
– ident: e_1_2_7_13_1
  doi: 10.1017/CBO9780511840302
– ident: e_1_2_7_15_1
  doi: 10.1029/2005JB003837
– ident: e_1_2_7_7_1
  doi: 10.1016/j.tecto.2014.01.004
– ident: e_1_2_7_29_1
  doi: 10.1038/253701a0
– ident: e_1_2_7_28_1
  doi: 10.1016/j.tecto.2008.11.027
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1365-246X.2011.05153.x
– ident: e_1_2_7_4_1
  doi: 10.1029/2000JB000050
– ident: e_1_2_7_3_1
  doi: 10.1088/0266-5611/29/1/015004
– volume-title: Potential theory in gravity and magnetic applications
  year: 1996
  ident: e_1_2_7_5_1
– volume: 32
  start-page: 15002
  year: 2015
  ident: e_1_2_7_10_1
  article-title: On the unique reconstruction of induced spherical magnetizations
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/32/1/015002
– ident: e_1_2_7_17_1
– ident: e_1_2_7_12_1
  doi: 10.1016/0040-1951(92)90139-W
– ident: e_1_2_7_19_1
  doi: 10.1186/s40623-016-0404-6
– ident: e_1_2_7_16_1
  doi: 10.1046/j.1365-246x.1999.00860.x
– ident: e_1_2_7_9_1
  doi: 10.1186/BF03351933
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-246X.2008.03724.x
– ident: e_1_2_7_33_1
  doi: 10.1002/2017JE005410
– ident: e_1_2_7_27_1
  doi: 10.1029/97JB02935
– ident: e_1_2_7_22_1
  doi: 10.1093/gji/ggs063
– ident: e_1_2_7_34_1
  doi: 10.1093/gji/ggx400
– ident: e_1_2_7_35_1
  doi: 10.1186/s40623-015-0329-5
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-246X.2005.02833.x
– ident: e_1_2_7_31_1
  doi: 10.1093/gji/ggu463
– ident: e_1_2_7_36_1
  doi: 10.1038/199947a0
– ident: e_1_2_7_25_1
  doi: 10.1016/j.pepi.2013.09.003
– ident: e_1_2_7_11_1
  doi: 10.1080/17415977.2018.1438426
– ident: e_1_2_7_20_1
  doi: 10.1046/j.1365-246x.2000.00046.x
– ident: e_1_2_7_38_1
  doi: 10.1016/S0031-9201(96)03193-7
– ident: e_1_2_7_6_1
  doi: 10.1016/j.epsl.2015.08.002
– ident: e_1_2_7_32_1
  doi: 10.1186/s40623-016-0510-5
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1106888
– ident: e_1_2_7_37_1
  doi: 10.1029/GL006i007p00541
– ident: e_1_2_7_26_1
  doi: 10.1029/2001JE001760
– ident: e_1_2_7_23_1
  doi: 10.1046/j.1365-246X.2003.02053.x
– ident: e_1_2_7_30_1
  doi: 10.1007/s11214-010-9667-6
– ident: e_1_2_7_2_1
  doi: 10.1029/JB090iB03p02655
SSID ssj0003031
Score 2.3285637
Snippet Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12,283
SubjectTerms Airborne sensing
Alliances
Crustal thickness
Earth
Earth crust
Earth orbits
Evolution
Hydrothermal activity
Information processing
inverse problems
Latitude
lithospheric magnetic field
Magnetic field
Magnetic fields
Magnetic properties
Magnetic signals
Magnetism
Magnetite
Magnetization
Minerals
Missions
Remote sensing
Rock
Rocks
Satellites
Sciences of the Universe
Sediment samples
Spaceborne remote sensing
Spatial resolution
Swarm
Tectonics
Temperature gradients
WDMAM
Title Unveiling Earth's Hidden Magnetization
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GL079876
https://www.proquest.com/docview/2156313797
https://insu.hal.science/insu-03589318
Volume 45
WOSCitedRecordID wos000453250000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231211
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aFbz4FuuLBV8HWdw8msexqG2FWkQsels22cQKsopbC_57J-la6kFBvC27EzZkZjIzycw3CB02cpUxTnGMjaMx09zEiiodJ3muwaRocIp1aDYhej358KBuqgM3XwszxoeYHLh5zQj7tVfwTJcV2IDHyATLJdvdREDQ7BG3MQt6eX_Vm2zEsDuPG-YpFksieJX3DsPPpgd_s0izA58POeVsTruswea0lv872xW0VHmbUXMsHqtoxhZraKEduvl-wFPI_zTlOjruFyP75EvTo0sQpsFJGXU8uEgRXWePhR1W1ZobqN-6vDvvxFULhTiDwJDF3OGGyDOeQ5SiRSNTlnOSOKw0VRl3IjeEWMWIkQkzChuIUTnPISpklDonLN1EteKlsFso0lYkysJ34hiziZMO08w4IXMlHdGqjk6_ljE1Fb64b3PxnIZ7bqLS6TWoo6MJ9esYV-MHugPgyITEg2F3mt3UJ-qnCW2At4XlCNfR7hfH0koHyxScGRBCKpSAqQXe_PqntH3b9XeIbPtP1Dto0b_35YlE7qLa8O3d7qF5Mxo-lW_7aO7ittXv7gfB_ASxjNuM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WdKN72Ue30WzdZlg_HoqZLcn6eCxdk4y5YZQE8iYsWVoLxRtJGth_v5OjhPShhbI3g8-W0N3p7qS73wEcFLWqGKd5mltPU2a4TRVVJs3q2qBJMegUm7bZhBgO5WSifsY-p6EWZokPsT5wC5rR7tdBwcOBdEQbCCCZaLpkv8wERs18C7ZxRFl0YPvbZW9crjdj3KGXTfMUSyURPOa-4x--bn5_xyptXYWcyA2Hc9Ntbe1O7-V_z_gVvIguZ3K6lJHX8MQ1u_Cs37b0_YtPbRKonb2Bo3GzcNehPj05R4m6Op4lg4Aw0iQX1a_GzWPJ5lsY985HZ4M09lFIK4wOWcp9Xoi64jWGKkYUlXKck8znylBVcS9qS4hTjFiZMatyi4Eq5zWGhoxS74Wj76DT_G7cHiTGiUw5fE88Yy7z0ue0sl7IWklPjOrCyWodtY0g46HXxY1uL7uJ0ptr0IXDNfWfJbjGPXRfkCVrkoCIPTgtdcjW1xkt0OXK5SLvwv6KZToq4kyjR4OSSIUSOLWWOQ-OpPuXZbhIZO8fRf0Zdgaji1KX34c_PsDzQBPqFYnch858eus-wlO7mF_Ppp-ifP4DRMzfOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7Ym_ii9iKuVg20tg8lmMxM5vJYbHdXTJdSutC3IXNzCxJLd13w33smO13WBwviWyAnyTDnnjnnOwCHlVMN47TMSxtozgy3uaLK5IVzBl2KwaDYdMMmxGgkb27UZZpzGnthFvgQyx9uUTM6ex0V3N-5kNAGIkgmui45qAuBWTNfgw1WKY6auXF21R_XS2OMFnoxNE-xXBLBU-07vuHT6vN_eKW1SayJXAk4V8PWzu_0X_z3il_C8xRyZqcLGdmGJ77dga1BN9L3F151RaB2ugtH43bub2N_enaOEjU5nmbDiDDSZhfNt9bPUsvmHoz759efh3mao5A3mB2ynIeyEq7hDlMVI6pGec5JEUplqGp4EM4S4hUjVhbMqtJiosq5w9SQURqC8PQVrLc_Wv8aMuNFoTzeJ4ExXwQZStrYIKRTMhCjenDysI_aJpDxOOviu-4Ou4nSq3vQg49L6rsFuMZf6A6QJUuSiIg9PK11rNbXBa0w5CrlvOzB_gPLdFLEqcaIBiWRCiVwaR1zHv2SHlzV8SCRvfkn6g_w9PKsr-svo69v4Vkkie2KRO7D-uz-p38Hm3Y-u53ev0_i-Rv8Md6z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+Earth%27s+Hidden+Magnetization&rft.jtitle=Geophysical+research+letters&rft.au=Vervelidou%2C+Foteini&rft.au=Lesur%2C+Vincent&rft.date=2018-11-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=45&rft.issue=22&rft_id=info:doi/10.1029%2F2018GL079876&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2018GL079876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon