Unveiling Earth's Hidden Magnetization
Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global...
Uloženo v:
| Vydáno v: | Geophysical research letters Ročník 45; číslo 22; s. 12,283 - 12,292 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
28.11.2018
American Geophysical Union |
| Témata: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global lithospheric magnetic field models of high spatial resolution, this path has not yet been very fruitful because of an important limitation: only part of the magnetization is visible, that is, produces an observable magnetic field signal. We refer to the remaining part of the magnetization as the hidden magnetization, and we recover it from a lithospheric magnetic field model under a few reasonable assumptions. We find that Earth's hidden magnetization at high and middle latitudes is very similar, both in intensity and shape, to Earth's visible magnetization. At low latitudes, the estimated hidden magnetization relies on a priori information and can be very different from the visible one.
Plain Language Summary
Earth's uppermost layer is abundant in magnetized rocks. Rocks' magnetization acts as a recorder of many processes taking place inside the Earth, from the crust down to the core, which lies almost 3,000 km far from the surface. Currently, the most common way to extract this information is through laboratory measurements of rock samples. An alternative way is to study the magnetic signal of magnetized rocks, which is known as the lithospheric magnetic field. This is measured by satellites orbiting around the Earth and airborne and marine missions. Inferring, however, the direction and the strength of the magnetization from magnetic field measurements is not straightforward. The reason is that a large part of a given magnetization generates no magnetic field. We call this part of the magnetization hidden as opposed to the remaining part, which we call visible. In this study, we show how the visible and the hidden parts of the magnetization are linked to each other. This link allows us to uniquely recover most of Earth's hidden magnetization. Recovering this part of Earth's magnetization enables a better link to the underlying processes, like crustal thickness contrasts, temperature gradients, hydrothermal activity, or deposits of highly magnetic minerals like magnetite.
Key Points
More than half of Earth's magnetization is hidden in the sense that it generates no observable magnetic field signal
Under few reasonable assumptions, we uniquely recover most of Earth's hidden magnetization from a lithospheric magnetic field model
Recovering the hidden part of Earth's magnetization enables a better link to the underlying internal processes |
|---|---|
| AbstractList | Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global lithospheric magnetic field models of high spatial resolution, this path has not yet been very fruitful because of an important limitation: only part of the magnetization is
visible
, that is, produces an observable magnetic field signal. We refer to the remaining part of the magnetization as the
hidden
magnetization, and we recover it from a lithospheric magnetic field model under a few reasonable assumptions. We find that Earth's hidden magnetization at high and middle latitudes is very similar, both in intensity and shape, to Earth's visible magnetization. At low latitudes, the estimated hidden magnetization relies on a priori information and can be very different from the visible one.
Earth's uppermost layer is abundant in magnetized rocks. Rocks' magnetization acts as a recorder of many processes taking place inside the Earth, from the crust down to the core, which lies almost 3,000 km far from the surface. Currently, the most common way to extract this information is through laboratory measurements of rock samples. An alternative way is to study the magnetic signal of magnetized rocks, which is known as the lithospheric magnetic field. This is measured by satellites orbiting around the Earth and airborne and marine missions. Inferring, however, the direction and the strength of the magnetization from magnetic field measurements is not straightforward. The reason is that a large part of a given magnetization generates no magnetic field. We call this part of the magnetization
hidden
as opposed to the remaining part, which we call
visible
. In this study, we show how the visible and the hidden parts of the magnetization are linked to each other. This link allows us to uniquely recover most of Earth's hidden magnetization. Recovering this part of Earth's magnetization enables a better link to the underlying processes, like crustal thickness contrasts, temperature gradients, hydrothermal activity, or deposits of highly magnetic minerals like magnetite.
More than half of Earth's magnetization is hidden in the sense that it generates no observable magnetic field signal
Under few reasonable assumptions, we uniquely recover most of Earth's hidden magnetization from a lithospheric magnetic field model
Recovering the hidden part of Earth's magnetization enables a better link to the underlying internal processes Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global lithospheric magnetic field models of high spatial resolution, this path has not yet been very fruitful because of an important limitation: only part of the magnetization is visible, that is, produces an observable magnetic field signal. We refer to the remaining part of the magnetization as the hidden magnetization, and we recover it from a lithospheric magnetic field model under a few reasonable assumptions. We find that Earth's hidden magnetization at high and middle latitudes is very similar, both in intensity and shape, to Earth's visible magnetization. At low latitudes, the estimated hidden magnetization relies on a priori information and can be very different from the visible one. Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's magnetization is through the magnetic signal it generates, known as the lithospheric magnetic field. Although there exist global lithospheric magnetic field models of high spatial resolution, this path has not yet been very fruitful because of an important limitation: only part of the magnetization is visible, that is, produces an observable magnetic field signal. We refer to the remaining part of the magnetization as the hidden magnetization, and we recover it from a lithospheric magnetic field model under a few reasonable assumptions. We find that Earth's hidden magnetization at high and middle latitudes is very similar, both in intensity and shape, to Earth's visible magnetization. At low latitudes, the estimated hidden magnetization relies on a priori information and can be very different from the visible one. Plain Language Summary Earth's uppermost layer is abundant in magnetized rocks. Rocks' magnetization acts as a recorder of many processes taking place inside the Earth, from the crust down to the core, which lies almost 3,000 km far from the surface. Currently, the most common way to extract this information is through laboratory measurements of rock samples. An alternative way is to study the magnetic signal of magnetized rocks, which is known as the lithospheric magnetic field. This is measured by satellites orbiting around the Earth and airborne and marine missions. Inferring, however, the direction and the strength of the magnetization from magnetic field measurements is not straightforward. The reason is that a large part of a given magnetization generates no magnetic field. We call this part of the magnetization hidden as opposed to the remaining part, which we call visible. In this study, we show how the visible and the hidden parts of the magnetization are linked to each other. This link allows us to uniquely recover most of Earth's hidden magnetization. Recovering this part of Earth's magnetization enables a better link to the underlying processes, like crustal thickness contrasts, temperature gradients, hydrothermal activity, or deposits of highly magnetic minerals like magnetite. Key Points More than half of Earth's magnetization is hidden in the sense that it generates no observable magnetic field signal Under few reasonable assumptions, we uniquely recover most of Earth's hidden magnetization from a lithospheric magnetic field model Recovering the hidden part of Earth's magnetization enables a better link to the underlying internal processes |
| Author | Vervelidou, Foteini Lesur, Vincent |
| Author_xml | – sequence: 1 givenname: Foteini orcidid: 0000-0002-6053-5758 surname: Vervelidou fullname: Vervelidou, Foteini email: foteini@gfz-potsdam.de organization: Helmholtz Centre Potsdam‐GFZ German Research Centre for Geosciences, Geomagnetism – sequence: 2 givenname: Vincent surname: Lesur fullname: Lesur, Vincent organization: Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS |
| BackLink | https://insu.hal.science/insu-03589318$$DView record in HAL |
| BookMark | eNp9kFtLAzEQhYMo2Fbf_AEFQUFcnVw2l8dSaiusCGKfQ7qbbVPWbE22lfrrXW0FEfRp5uE7M-ecLjr0tbcInWG4wUDULQEsxxkIJQU_QB2sGEskgDhEHQDV7kTwY9SNcQkAFCjuoIup31hXOT_vj0xoFpexP3FFYX3_wcy9bdy7aVztT9BRaapoT_ezh6Z3o-fhJMkex_fDQZYYBoQlvMSpKAwvOOczkRplOSdQYjWjyvBSFDkhVjGSS2C5wjkRjPNCEMwoLUthaQ9d7e4uTKVXwb2YsNW1cXoyyLTzca2BplJRLDe4hc938CrUr2sbG72s18G3_jTBKaeYCiVaiuyoPNQxBlvq3DVfoZpgXKUx6M_y9M_yWtH1L9G3mT_w_Y83V9ntv6weP2WpJJLRD222fG0 |
| CitedBy_id | crossref_primary_10_1007_s13137_020_00161_z crossref_primary_10_1007_s13137_020_0146_2 crossref_primary_10_1016_j_jat_2024_106124 crossref_primary_10_3390_geosciences10040147 crossref_primary_10_3390_min13050604 |
| Cites_doi | 10.1017/CBO9780511840302 10.1029/2005JB003837 10.1016/j.tecto.2014.01.004 10.1038/253701a0 10.1016/j.tecto.2008.11.027 10.1111/j.1365-246X.2011.05153.x 10.1029/2000JB000050 10.1088/0266-5611/29/1/015004 10.1088/0266-5611/32/1/015002 10.1016/0040-1951(92)90139-W 10.1186/s40623-016-0404-6 10.1046/j.1365-246x.1999.00860.x 10.1186/BF03351933 10.1111/j.1365-246X.2008.03724.x 10.1002/2017JE005410 10.1029/97JB02935 10.1093/gji/ggs063 10.1093/gji/ggx400 10.1186/s40623-015-0329-5 10.1111/j.1365-246X.2005.02833.x 10.1093/gji/ggu463 10.1038/199947a0 10.1016/j.pepi.2013.09.003 10.1080/17415977.2018.1438426 10.1046/j.1365-246x.2000.00046.x 10.1016/S0031-9201(96)03193-7 10.1016/j.epsl.2015.08.002 10.1186/s40623-016-0510-5 10.1126/science.1106888 10.1029/GL006i007p00541 10.1029/2001JE001760 10.1046/j.1365-246X.2003.02053.x 10.1007/s11214-010-9667-6 10.1029/JB090iB03p02655 |
| ContentType | Journal Article |
| Copyright | 2018. American Geophysical Union. All Rights Reserved. Copyright |
| Copyright_xml | – notice: 2018. American Geophysical Union. All Rights Reserved. – notice: Copyright |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 1XC VOOES |
| DOI | 10.1029/2018GL079876 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | 12,292 |
| ExternalDocumentID | oai:HAL:insu-03589318v1 10_1029_2018GL079876 GRL58284 |
| Genre | article |
| GrantInformation_xml | – fundername: Centre National d’Etudes Spatiales (CNES) funderid: Travaux préparatoires et exploitation de la mission Swarm – fundername: Deutsche Forschungsgemeinschaft (DFG) funderid: SPP 1788 LE2477/7- 1 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 1XC 31~ 6TJ 7XC 88I 8FE 8FG 8FH 8G5 AANHP ABJCF ABJNI ABUWG ACBWZ ACCMX ACRPL ACYXJ ADNMO AEUYN AFKRA AFZJQ AGQPQ AI. AIQQE ARAPS ASPBG ATCPS AVWKF AZQEC BDRZF BGLVJ BHPHI BKSAR BPHCQ CCPQU D1K DDYGU DWQXO FEDTE GNUQQ GROUPED_DOAJ GUQSH HCIFZ HVGLF K6- L6V LK5 M2O M2P M7R M7S MVM P62 PALCI PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS RIWAO RJQFR SAMSI UQL VH1 VOH VOOES ZCG |
| ID | FETCH-LOGICAL-a4024-6f157da6d666b75a9e6620f19b39a6f7dc22e942c804c91c27466d721433ff7e3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453250000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Tue Oct 14 20:36:14 EDT 2025 Fri Jul 25 10:37:57 EDT 2025 Sat Nov 29 02:57:34 EST 2025 Tue Nov 18 22:20:50 EST 2025 Wed Jan 22 16:28:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | Earth Swarm magnetization lithospheric magnetic field WDMAM inverse problems |
| Language | English |
| License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4024-6f157da6d666b75a9e6620f19b39a6f7dc22e942c804c91c27466d721433ff7e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6053-5758 0000-0003-2568-320X |
| OpenAccessLink | https://insu.hal.science/insu-03589318 |
| PQID | 2156313797 |
| PQPubID | 54723 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_insu_03589318v1 proquest_journals_2156313797 crossref_citationtrail_10_1029_2018GL079876 crossref_primary_10_1029_2018GL079876 wiley_primary_10_1029_2018GL079876_GRL58284 |
| PublicationCentury | 2000 |
| PublicationDate | 28 November 2018 |
| PublicationDateYYYYMMDD | 2018-11-28 |
| PublicationDate_xml | – month: 11 year: 2018 text: 28 November 2018 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc American Geophysical Union |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union |
| References | 2015; 32(1) 1963; 199 2005; 110 2015; 201 2006; 58 1996 2007 2013; 224 2006 2004 1975; 253 2017; 211 2003; 155 1996; 98 2009; 478 2014; 624 2015; 67 2003; 108 2015; 430 1992; 212 1979; 6 2002; 107 2019; 27 2010; 155 2000; 140 1985; 90 2006; 164 2012; 29 2005; 309 1998; 103 2013; 192 2017; 122 1999; 138 2016; 68 2008; 173 2011; 187 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 Blakely R. J. (e_1_2_7_5_1) 1996 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 Lanza R. (e_1_2_7_18_1) 2006 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 Gerhards C. (e_1_2_7_10_1) 2015; 32 e_1_2_7_38_1 |
| References_xml | – volume: 430 start-page: 54 year: 2015 end-page: 65 article-title: Global equivalent magnetization of the oceanic lithosphere publication-title: Earth and Planetary Science Letters – volume: 27 start-page: 37 issue: 1 year: 2019 end-page: 60 article-title: On the reconstruction of inducing dipole directions and susceptibilities from knowledge of the magnetic field on a sphere publication-title: Inverse Problems in Science and Engineering – volume: 199 start-page: 947 issue: 4897 year: 1963 end-page: 949 article-title: Magnetic anomalies over oceanic ridges publication-title: Nature – volume: 155 start-page: 95 year: 2010 end-page: 127 article-title: The magnetic field of the Earth's lithosphere publication-title: Space Science Reviews – volume: 122 start-page: 2294 year: 2017 end-page: 2311 article-title: Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures publication-title: Geophysical Research: Planets – year: 2007 – volume: 201 start-page: 605 year: 2015 end-page: 620 article-title: A statistical spatial power spectrum of the Earth's lithospheric magnetic field publication-title: Geophysical Journal International – year: 1996 – volume: 173 start-page: 382 year: 2008 end-page: 394 article-title: GRIMM—The GFZ Reference Internal Magnetic Model based on vector satellite and observatory data publication-title: Geophysical Journal International – volume: 224 start-page: 11 year: 2013 end-page: 20 article-title: Rock magnetic investigation of possible sources of the Bangui magnetic anomaly publication-title: Physics of the Earth and Planetary Interiors – volume: 140 start-page: 453 issue: 2 year: 2000 end-page: 459 article-title: Exact solutions for internally induced magnetization in a shell publication-title: Geophysical Journal International – volume: 155 start-page: 509 issue: 2 year: 2003 end-page: 513 article-title: Magnetic field annihilators: Invisible magnetization at the magnetic equator publication-title: Geophysical Journal International – volume: 187 start-page: 99 year: 2011 end-page: 117 article-title: Analysis of lithospheric magnetization in vector spherical harmonics publication-title: Geophysical Journal International – volume: 624 start-page: 3 year: 2014 end-page: 14 article-title: Eight good reasons why the uppermost mantle could be magnetic publication-title: Tectonophysics – volume: 6 start-page: 541 issue: 7 year: 1979 end-page: 544 article-title: The Moho as a magnetic boundary publication-title: Geophysical Research Letters – volume: 29 start-page: 15004 issue: 1 year: 2012 article-title: Characterizing kernels of operators related to thin‐plate magnetizations via generalizations of Hodge decompositions publication-title: Inverse Problems – volume: 212 start-page: 45 year: 1992 end-page: 58 article-title: A possible impact origin for the Bangui magnetic anomaly (Central Africa) publication-title: Tectonophysics – volume: 138 start-page: 285 issue: 1 year: 1999 end-page: 289 article-title: Geomagnetic effects of the Earth's ellipticity publication-title: Geophysical Journal International – volume: 478 start-page: 111 issue: 1‐2 year: 2009 end-page: 118 article-title: Simple models for the Beattie Magnetic Anomaly in South Africa publication-title: Tectonophysics – volume: 211 start-page: 1669 year: 2017 end-page: 1678 article-title: On the accuracy of paleopole estimations from magnetic field measurements publication-title: Geophysical Journal International – volume: 192 start-page: 951 year: 2013 end-page: 962 article-title: Forward modelling of oceanic lithospheric magnetization publication-title: Geophysical Journal International – volume: 110 start-page: B12103 year: 2005 article-title: Geological modeling of the new CHAMP magnetic anomaly maps using a Geographical Information System (GIS) technique publication-title: Journal of Geophysical research – volume: 68 start-page: 27 issue: 1 year: 2016 article-title: Building the second version of the World Digital Magnetic Anomaly Map (WDMAM) publication-title: Earth, Planets and Space – year: 2006 – volume: 309 start-page: 464 year: 2005 end-page: 467 article-title: Heat flux anomalies in Antarctica revealed by satellite magnetic data publication-title: Science – volume: 32(1) start-page: 15002 year: 2015 article-title: On the unique reconstruction of induced spherical magnetizations publication-title: Inverse Problems – year: 2004 – volume: 108 start-page: 5006 issue: E1 year: 2003 article-title: Ideal bodies for Mars magnetics publication-title: Journal of Geophysical Research – volume: 58 start-page: 351 year: 2006 end-page: 358 article-title: Swarm: A constellation to study the Earth's magnetic field publication-title: Earth Planets Space – volume: 253 start-page: 701 year: 1975 end-page: 703 article-title: An ancient lunar magnetic dipole field publication-title: Nature – volume: 98 start-page: 303 year: 1996 end-page: 319 article-title: Minimal crustal magnetizations from satellite data publication-title: Physics of the Earth and Planetary Interiors – volume: 67 start-page: 173 year: 2015 article-title: Global maps of the magnetic thickness and magnetization of the Earth's lithosphere publication-title: Earth, Planets and Space – volume: 107 start-page: 2300 issue: B11 year: 2002 article-title: Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr publication-title: Journal of Geophysical Research – volume: 103 start-page: 2563 issue: B2 year: 1998 end-page: 2584 article-title: Global magnetization models with a priori information publication-title: Journal of Geophysical Research – volume: 90 start-page: 2655 year: 1985 end-page: 2664 article-title: Lateral variations of apparent magnetic susceptibility of lithosphere deduced from Magsat data publication-title: Journal of Geophysical Research – volume: 164 start-page: 319 year: 2006 end-page: 330 article-title: Earth's lithospheric magnetic field determined to Spherical Harmonic degree 90 from CHAMP satellite measurements publication-title: Geophysical Journal International – volume: 68 start-page: 126 year: 2016 article-title: A Swarm lithospheric magnetic field model to SH degree 80 publication-title: Earth, Planets and Space – volume-title: The Earth's magnetism year: 2006 ident: e_1_2_7_18_1 – ident: e_1_2_7_13_1 doi: 10.1017/CBO9780511840302 – ident: e_1_2_7_15_1 doi: 10.1029/2005JB003837 – ident: e_1_2_7_7_1 doi: 10.1016/j.tecto.2014.01.004 – ident: e_1_2_7_29_1 doi: 10.1038/253701a0 – ident: e_1_2_7_28_1 doi: 10.1016/j.tecto.2008.11.027 – ident: e_1_2_7_14_1 doi: 10.1111/j.1365-246X.2011.05153.x – ident: e_1_2_7_4_1 doi: 10.1029/2000JB000050 – ident: e_1_2_7_3_1 doi: 10.1088/0266-5611/29/1/015004 – volume-title: Potential theory in gravity and magnetic applications year: 1996 ident: e_1_2_7_5_1 – volume: 32 start-page: 15002 year: 2015 ident: e_1_2_7_10_1 article-title: On the unique reconstruction of induced spherical magnetizations publication-title: Inverse Problems doi: 10.1088/0266-5611/32/1/015002 – ident: e_1_2_7_17_1 – ident: e_1_2_7_12_1 doi: 10.1016/0040-1951(92)90139-W – ident: e_1_2_7_19_1 doi: 10.1186/s40623-016-0404-6 – ident: e_1_2_7_16_1 doi: 10.1046/j.1365-246x.1999.00860.x – ident: e_1_2_7_9_1 doi: 10.1186/BF03351933 – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-246X.2008.03724.x – ident: e_1_2_7_33_1 doi: 10.1002/2017JE005410 – ident: e_1_2_7_27_1 doi: 10.1029/97JB02935 – ident: e_1_2_7_22_1 doi: 10.1093/gji/ggs063 – ident: e_1_2_7_34_1 doi: 10.1093/gji/ggx400 – ident: e_1_2_7_35_1 doi: 10.1186/s40623-015-0329-5 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-246X.2005.02833.x – ident: e_1_2_7_31_1 doi: 10.1093/gji/ggu463 – ident: e_1_2_7_36_1 doi: 10.1038/199947a0 – ident: e_1_2_7_25_1 doi: 10.1016/j.pepi.2013.09.003 – ident: e_1_2_7_11_1 doi: 10.1080/17415977.2018.1438426 – ident: e_1_2_7_20_1 doi: 10.1046/j.1365-246x.2000.00046.x – ident: e_1_2_7_38_1 doi: 10.1016/S0031-9201(96)03193-7 – ident: e_1_2_7_6_1 doi: 10.1016/j.epsl.2015.08.002 – ident: e_1_2_7_32_1 doi: 10.1186/s40623-016-0510-5 – ident: e_1_2_7_8_1 doi: 10.1126/science.1106888 – ident: e_1_2_7_37_1 doi: 10.1029/GL006i007p00541 – ident: e_1_2_7_26_1 doi: 10.1029/2001JE001760 – ident: e_1_2_7_23_1 doi: 10.1046/j.1365-246X.2003.02053.x – ident: e_1_2_7_30_1 doi: 10.1007/s11214-010-9667-6 – ident: e_1_2_7_2_1 doi: 10.1029/JB090iB03p02655 |
| SSID | ssj0003031 |
| Score | 2.3285637 |
| Snippet | Rock magnetization carries information about rocks' properties, Earth's tectonic history, and evolution of its core magnetic field. One way to study Earth's... |
| SourceID | hal proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12,283 |
| SubjectTerms | Airborne sensing Alliances Crustal thickness Earth Earth crust Earth orbits Evolution Hydrothermal activity Information processing inverse problems Latitude lithospheric magnetic field Magnetic field Magnetic fields Magnetic properties Magnetic signals Magnetism Magnetite Magnetization Minerals Missions Remote sensing Rock Rocks Satellites Sciences of the Universe Sediment samples Spaceborne remote sensing Spatial resolution Swarm Tectonics Temperature gradients WDMAM |
| Title | Unveiling Earth's Hidden Magnetization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GL079876 https://www.proquest.com/docview/2156313797 https://insu.hal.science/insu-03589318 |
| Volume | 45 |
| WOSCitedRecordID | wos000453250000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1944-8007 dateEnd: 20231211 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aFbz4FuuLBV8HWdw8msexqG2FWkQsels22cQKsopbC_57J-la6kFBvC27EzZkZjIzycw3CB02cpUxTnGMjaMx09zEiiodJ3muwaRocIp1aDYhej358KBuqgM3XwszxoeYHLh5zQj7tVfwTJcV2IDHyATLJdvdREDQ7BG3MQt6eX_Vm2zEsDuPG-YpFksieJX3DsPPpgd_s0izA58POeVsTruswea0lv872xW0VHmbUXMsHqtoxhZraKEduvl-wFPI_zTlOjruFyP75EvTo0sQpsFJGXU8uEgRXWePhR1W1ZobqN-6vDvvxFULhTiDwJDF3OGGyDOeQ5SiRSNTlnOSOKw0VRl3IjeEWMWIkQkzChuIUTnPISpklDonLN1EteKlsFso0lYkysJ34hiziZMO08w4IXMlHdGqjk6_ljE1Fb64b3PxnIZ7bqLS6TWoo6MJ9esYV-MHugPgyITEg2F3mt3UJ-qnCW2At4XlCNfR7hfH0koHyxScGRBCKpSAqQXe_PqntH3b9XeIbPtP1Dto0b_35YlE7qLa8O3d7qF5Mxo-lW_7aO7ittXv7gfB_ASxjNuM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WdKN72Ue30WzdZlg_HoqZLcn6eCxdk4y5YZQE8iYsWVoLxRtJGth_v5OjhPShhbI3g8-W0N3p7qS73wEcFLWqGKd5mltPU2a4TRVVJs3q2qBJMegUm7bZhBgO5WSifsY-p6EWZokPsT5wC5rR7tdBwcOBdEQbCCCZaLpkv8wERs18C7ZxRFl0YPvbZW9crjdj3KGXTfMUSyURPOa-4x--bn5_xyptXYWcyA2Hc9Ntbe1O7-V_z_gVvIguZ3K6lJHX8MQ1u_Cs37b0_YtPbRKonb2Bo3GzcNehPj05R4m6Op4lg4Aw0iQX1a_GzWPJ5lsY985HZ4M09lFIK4wOWcp9Xoi64jWGKkYUlXKck8znylBVcS9qS4hTjFiZMatyi4Eq5zWGhoxS74Wj76DT_G7cHiTGiUw5fE88Yy7z0ue0sl7IWklPjOrCyWodtY0g46HXxY1uL7uJ0ptr0IXDNfWfJbjGPXRfkCVrkoCIPTgtdcjW1xkt0OXK5SLvwv6KZToq4kyjR4OSSIUSOLWWOQ-OpPuXZbhIZO8fRf0Zdgaji1KX34c_PsDzQBPqFYnch858eus-wlO7mF_Ppp-ifP4DRMzfOA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7Ym_ii9iKuVg20tg8lmMxM5vJYbHdXTJdSutC3IXNzCxJLd13w33smO13WBwviWyAnyTDnnjnnOwCHlVMN47TMSxtozgy3uaLK5IVzBl2KwaDYdMMmxGgkb27UZZpzGnthFvgQyx9uUTM6ex0V3N-5kNAGIkgmui45qAuBWTNfgw1WKY6auXF21R_XS2OMFnoxNE-xXBLBU-07vuHT6vN_eKW1SayJXAk4V8PWzu_0X_z3il_C8xRyZqcLGdmGJ77dga1BN9L3F151RaB2ugtH43bub2N_enaOEjU5nmbDiDDSZhfNt9bPUsvmHoz759efh3mao5A3mB2ynIeyEq7hDlMVI6pGec5JEUplqGp4EM4S4hUjVhbMqtJiosq5w9SQURqC8PQVrLc_Wv8aMuNFoTzeJ4ExXwQZStrYIKRTMhCjenDysI_aJpDxOOviu-4Ou4nSq3vQg49L6rsFuMZf6A6QJUuSiIg9PK11rNbXBa0w5CrlvOzB_gPLdFLEqcaIBiWRCiVwaR1zHv2SHlzV8SCRvfkn6g_w9PKsr-svo69v4Vkkie2KRO7D-uz-p38Hm3Y-u53ev0_i-Rv8Md6z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+Earth%27s+Hidden+Magnetization&rft.jtitle=Geophysical+research+letters&rft.au=Vervelidou%2C+Foteini&rft.au=Lesur%2C+Vincent&rft.date=2018-11-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=45&rft.issue=22&rft_id=info:doi/10.1029%2F2018GL079876&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2018GL079876 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |