Coupling Molecular Spin Qubits with 2D Magnets for Coherent Magnon Manipulation

Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and transmission. However, the coherent control of spin waves in 2D magnets still remains a challenge. Herein, we investigate the interplay between molecu...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 25; no. 26; pp. 10457 - 10464
Main Authors: Dey, Sourav, Rivero-Carracedo, Gonzalo, Shumilin, Andrei, Gonzalez-Ballestero, Carlos, Baldoví, José J.
Format: Journal Article
Language:English
Published: United States American Chemical Society 02.07.2025
Subjects:
ISSN:1530-6984, 1530-6992, 1530-6992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and transmission. However, the coherent control of spin waves in 2D magnets still remains a challenge. Herein, we investigate the interplay between molecular spins and magnons in hybrid heterostructures formed by titanocene bis­(cyclooctatetraenyl) [CpTi­(cot)] and vanadyl phthalocyanine (VOPc) spin qubits deposited on the surface of the air-stable 2D van der Waals ferromagnet CrSBr using first principles. Our results show that different molecular rotation configurations significantly impact on qubit relaxation time and alter the magnon spectra of the underlying 2D magnet, allowing the chemical coherent control of spin waves in this material. We predict the feasibility of an ultrafast magnon-qubit interface with minimized decoherence, where exchange coupling plays a crucial role. This work opens new avenues for hybrid quantum magnonics, enabling selective tailoring through a versatile chemical approach.
AbstractList Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and transmission. However, the coherent control of spin waves in 2D magnets still remains a challenge. Herein, we investigate the interplay between molecular spins and magnons in hybrid heterostructures formed by titanocene bis­(cyclooctatetraenyl) [CpTi­(cot)] and vanadyl phthalocyanine (VOPc) spin qubits deposited on the surface of the air-stable 2D van der Waals ferromagnet CrSBr using first principles. Our results show that different molecular rotation configurations significantly impact on qubit relaxation time and alter the magnon spectra of the underlying 2D magnet, allowing the chemical coherent control of spin waves in this material. We predict the feasibility of an ultrafast magnon-qubit interface with minimized decoherence, where exchange coupling plays a crucial role. This work opens new avenues for hybrid quantum magnonics, enabling selective tailoring through a versatile chemical approach.
Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and transmission. However, the coherent control of spin waves in 2D magnets still remains a challenge. Herein, we investigate the interplay between molecular spins and magnons in hybrid heterostructures formed by titanocene bis­(cyclooctatetraenyl) [CpTi­(cot)] and vanadyl phthalocyanine (VOPc) spin qubits deposited on the surface of the air-stable 2D van der Waals ferromagnet CrSBr using first principles. Our results show that different molecular rotation configurations significantly impact on qubit relaxation time and alter the magnon spectra of the underlying 2D magnet, allowing the chemical coherent control of spin waves in this material. We predict the feasibility of an ultrafast magnon-qubit interface with minimized decoherence, where exchange coupling plays a crucial role. This work opens new avenues for hybrid quantum magnonics, enabling selective tailoring through a versatile chemical approach.
Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and transmission. However, the coherent control of spin waves in 2D magnets still remains a challenge. Herein, we investigate the interplay between molecular spins and magnons in hybrid heterostructures formed by titanocene bis(cyclooctatetraenyl) [CpTi(cot)] and vanadyl phthalocyanine (VOPc) spin qubits deposited on the surface of the air-stable 2D van der Waals ferromagnet CrSBr using first principles. Our results show that different molecular rotation configurations significantly impact on qubit relaxation time and alter the magnon spectra of the underlying 2D magnet, allowing the chemical coherent control of spin waves in this material. We predict the feasibility of an ultrafast magnon-qubit interface with minimized decoherence, where exchange coupling plays a crucial role. This work opens new avenues for hybrid quantum magnonics, enabling selective tailoring through a versatile chemical approach.
Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and transmission. However, the coherent control of spin waves in 2D magnets still remains a challenge. Herein, we investigate the interplay between molecular spins and magnons in hybrid heterostructures formed by titanocene bis(cyclooctatetraenyl) [CpTi(cot)] and vanadyl phthalocyanine (VOPc) spin qubits deposited on the surface of the air-stable 2D van der Waals ferromagnet CrSBr using first principles. Our results show that different molecular rotation configurations significantly impact on qubit relaxation time and alter the magnon spectra of the underlying 2D magnet, allowing the chemical coherent control of spin waves in this material. We predict the feasibility of an ultrafast magnon-qubit interface with minimized decoherence, where exchange coupling plays a crucial role. This work opens new avenues for hybrid quantum magnonics, enabling selective tailoring through a versatile chemical approach.Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and transmission. However, the coherent control of spin waves in 2D magnets still remains a challenge. Herein, we investigate the interplay between molecular spins and magnons in hybrid heterostructures formed by titanocene bis(cyclooctatetraenyl) [CpTi(cot)] and vanadyl phthalocyanine (VOPc) spin qubits deposited on the surface of the air-stable 2D van der Waals ferromagnet CrSBr using first principles. Our results show that different molecular rotation configurations significantly impact on qubit relaxation time and alter the magnon spectra of the underlying 2D magnet, allowing the chemical coherent control of spin waves in this material. We predict the feasibility of an ultrafast magnon-qubit interface with minimized decoherence, where exchange coupling plays a crucial role. This work opens new avenues for hybrid quantum magnonics, enabling selective tailoring through a versatile chemical approach.
Author Baldoví, José J.
Dey, Sourav
Gonzalez-Ballestero, Carlos
Rivero-Carracedo, Gonzalo
Shumilin, Andrei
AuthorAffiliation Instituto de Ciencia Molecular (ICMol)
TU Wien
Washington State University
Institute for Theoretical Physics and Vienna Center for Quantum Science and Technology
AuthorAffiliation_xml – name: Institute for Theoretical Physics and Vienna Center for Quantum Science and Technology
– name: TU Wien
– name: Washington State University
– name: Instituto de Ciencia Molecular (ICMol)
Author_xml – sequence: 1
  givenname: Sourav
  surname: Dey
  fullname: Dey, Sourav
  organization: Washington State University
– sequence: 2
  givenname: Gonzalo
  surname: Rivero-Carracedo
  fullname: Rivero-Carracedo, Gonzalo
  organization: Instituto de Ciencia Molecular (ICMol)
– sequence: 3
  givenname: Andrei
  surname: Shumilin
  fullname: Shumilin, Andrei
  organization: Instituto de Ciencia Molecular (ICMol)
– sequence: 4
  givenname: Carlos
  surname: Gonzalez-Ballestero
  fullname: Gonzalez-Ballestero, Carlos
  email: carlos.gonzalez-ballestero@tuwien.ac.at
  organization: TU Wien
– sequence: 5
  givenname: José J.
  orcidid: 0000-0002-2277-3974
  surname: Baldoví
  fullname: Baldoví, José J.
  email: j.jaime.baldovi@uv.es
  organization: Instituto de Ciencia Molecular (ICMol)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40526481$$D View this record in MEDLINE/PubMed
BookMark eNp9UclOwzAUtFARXeAPEMqRS4u3JPYJobJKrSoEnC3XcVpXqR3sBMTf49JFcOH0tpl5T2_6oGOd1QCcIzhCEKMrqcLISusq3TSjVEHESX4EeiglcJhxjjuHnNEu6IewghByksIT0KUwxRllqAdmY9fWlbGLZBqVVFtJn7zUxibP7dw0Ifk0zTLBt8lULqyOdel8MnZL7bVtfprOxmBNHZmNcfYUHJeyCvpsFwfg7f7udfw4nMwensY3k6GkEDXDXNGCpWkpM6Q4JQXhpVScqXlKC1RiIjOdaaYkyzNNS0hZXsyV5pAXkMpSUTIA11vdup2vdaHiOV5WovZmLf2XcNKIvxNrlmLhPgTCmGCSbxQudwrevbc6NGJtgtJVJa12bRAEI85SwhmP0Ivfyw5b9m-MALoFKO9C8Lo8QBAUG7dEdEvs3RI7tyINbmmb6cq13saX_U_5BpbfnVs
Cites_doi 10.1038/s44306-024-00030-7
10.1103/PhysRevB.105.075410
10.1021/acs.nanolett.1c00219
10.1021/ja710845v
10.1021/acs.nanolett.2c02124
10.1103/PhysRevLett.132.056704
10.1038/s41565-022-01259-1
10.1103/PhysRevB.108.224416
10.1038/s41467-022-32290-4
10.1088/1361-648X/abec1a
10.1002/advs.202202467
10.1103/PhysRevB.90.220404
10.1016/j.commatsci.2005.04.010
10.1021/acs.nanolett.4c00624
10.1038/nature07127
10.1039/C5SC04295J
10.1002/chem.202401092
10.1126/science.aaa3693
10.1038/s42004-024-01183-6
10.1002/anie.202009634
10.1038/s41563-018-0149-7
10.1038/nature22391
10.1021/acs.nanolett.8b03921
10.1016/0304-8853(90)90689-N
10.1088/1361-648X/ad399c
10.1103/PhysRevLett.128.183603
10.7567/1882-0786/ab248d
10.1039/D4NA00230J
10.1103/PhysRevB.96.134425
10.1039/D1SC06130E
10.1038/nmat1932
10.1103/PhysRevLett.113.156401
10.1103/PhysRevLett.101.047601
10.1038/nature22060
10.1021/acs.nanolett.4c01019
10.1039/D1NR00640A
10.1038/s41586-023-06275-2
10.1002/adma.202204940
10.1016/j.susc.2009.10.018
10.1021/jp406906k
10.1039/C9SC04499J
10.1021/acs.jpca.0c07860
10.1021/acs.nanolett.2c03161
10.1126/science.aaz9236
10.1103/PhysRevLett.130.193603
10.1103/PRXQuantum.2.040314
10.1103/PhysRevX.9.011026
10.1039/D4SC03290J
10.1021/acsami.4c05728
10.1073/pnas.2313754120
10.1021/acs.jpca.4c07627
10.1103/PhysRevB.111.064424
10.1021/jacs.5b13408
10.1021/acs.nanolett.2c02863
10.1016/j.ccr.2022.214858
10.1038/s41586-022-05024-1
10.1038/nmat3182
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society 2025 The Authors
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acs.nanolett.5c01937
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 10464
ExternalDocumentID PMC12232374
40526481
10_1021_acs_nanolett_5c01937
b939978271
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: CEX2024-001467-M
– fundername: ;
  grantid: PAT-1177623
– fundername: ;
  grantid: 10110771
– fundername: ;
  grantid: CIDEXG/2023/1
– fundername: ;
  grantid: 101042680
– fundername: ;
  grantid: 964396
– fundername: ;
  grantid: INV23-01-13
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
VF5
VG9
W1F
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a401t-7c4d855fa61c943d39fac98cb54d1f23a6e6e8ca876e4f0487dbce909d04afc43
IEDL.DBID ACS
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514101900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Thu Aug 21 18:23:54 EDT 2025
Thu Jun 19 01:37:14 EDT 2025
Thu Jul 10 08:26:18 EDT 2025
Sun Nov 09 14:50:39 EST 2025
Thu Jul 03 04:13:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords spin qubit
first-principles
magnonics
coherence
2D materials
Language English
License https://creativecommons.org/licenses/by/4.0
This article is licensed under CC-BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a401t-7c4d855fa61c943d39fac98cb54d1f23a6e6e8ca876e4f0487dbce909d04afc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2277-3974
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12232374
PMID 40526481
PQID 3219853989
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12232374
proquest_miscellaneous_3219853989
pubmed_primary_40526481
crossref_primary_10_1021_acs_nanolett_5c01937
acs_journals_10_1021_acs_nanolett_5c01937
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1038/s44306-024-00030-7
– ident: ref11/cit11
  doi: 10.1103/PhysRevB.105.075410
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.1c00219
– ident: ref59/cit59
  doi: 10.1021/ja710845v
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.2c02124
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.132.056704
– ident: ref38/cit38
  doi: 10.1038/s41565-022-01259-1
– ident: ref8/cit8
  doi: 10.1103/PhysRevB.108.224416
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.1c00219
– ident: ref47/cit47
  doi: 10.1038/s41467-022-32290-4
– ident: ref1/cit1
  doi: 10.1088/1361-648X/abec1a
– ident: ref52/cit52
  doi: 10.1002/advs.202202467
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.90.220404
– ident: ref50/cit50
  doi: 10.1016/j.commatsci.2005.04.010
– ident: ref36/cit36
  doi: 10.1021/acs.nanolett.4c00624
– ident: ref7/cit7
  doi: 10.1038/nature07127
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.105.075410
– ident: ref31/cit31
  doi: 10.1039/C5SC04295J
– ident: ref44/cit44
  doi: 10.1002/chem.202401092
– ident: ref13/cit13
  doi: 10.1126/science.aaa3693
– ident: ref24/cit24
  doi: 10.1038/s42004-024-01183-6
– ident: ref57/cit57
  doi: 10.1002/anie.202009634
– ident: ref18/cit18
  doi: 10.1038/s41563-018-0149-7
– ident: ref15/cit15
  doi: 10.1038/nature22391
– ident: ref34/cit34
  doi: 10.1021/acs.nanolett.8b03921
– ident: ref46/cit46
  doi: 10.1016/0304-8853(90)90689-N
– ident: ref2/cit2
  doi: 10.1088/1361-648X/ad399c
– ident: ref5/cit5
  doi: 10.1103/PhysRevLett.128.183603
– ident: ref3/cit3
  doi: 10.7567/1882-0786/ab248d
– ident: ref43/cit43
  doi: 10.1039/D4NA00230J
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.96.134425
– ident: ref55/cit55
  doi: 10.1039/D1SC06130E
– ident: ref54/cit54
  doi: 10.1038/nmat1932
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.113.156401
– ident: ref41/cit41
  doi: 10.1002/advs.202202467
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.101.047601
– ident: ref16/cit16
  doi: 10.1038/nature22060
– ident: ref19/cit19
  doi: 10.1021/acs.nanolett.4c01019
– ident: ref60/cit60
  doi: 10.1039/D1NR00640A
– ident: ref39/cit39
  doi: 10.1038/s41586-023-06275-2
– ident: ref42/cit42
  doi: 10.1002/adma.202204940
– ident: ref32/cit32
  doi: 10.1016/j.susc.2009.10.018
– ident: ref33/cit33
  doi: 10.1021/jp406906k
– ident: ref61/cit61
  doi: 10.1039/C9SC04499J
– ident: ref58/cit58
  doi: 10.1021/acs.jpca.0c07860
– ident: ref30/cit30
  doi: 10.1021/acs.nanolett.2c03161
– ident: ref9/cit9
  doi: 10.1126/science.aaz9236
– ident: ref10/cit10
  doi: 10.1103/PhysRevLett.130.193603
– ident: ref23/cit23
  doi: 10.1103/PRXQuantum.2.040314
– ident: ref20/cit20
  doi: 10.1103/PhysRevX.9.011026
– ident: ref48/cit48
  doi: 10.1002/anie.202009634
– ident: ref51/cit51
  doi: 10.1039/D4SC03290J
– ident: ref56/cit56
  doi: 10.1021/acsami.4c05728
– ident: ref29/cit29
  doi: 10.1073/pnas.2313754120
– ident: ref26/cit26
  doi: 10.1021/acs.jpca.4c07627
– ident: ref12/cit12
  doi: 10.1103/PhysRevB.111.064424
– ident: ref49/cit49
  doi: 10.1021/jacs.5b13408
– ident: ref45/cit45
  doi: 10.1021/acs.nanolett.2c02863
– ident: ref25/cit25
  doi: 10.1016/j.ccr.2022.214858
– ident: ref40/cit40
  doi: 10.1038/s41586-022-05024-1
– ident: ref27/cit27
  doi: 10.1038/nmat3182
SSID ssj0009350
Score 2.4901357
Snippet Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and...
Magnonics is an emerging field widely considered as a paradigm shift in information technology that uses spin waves for data storage, processing, and...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10457
SubjectTerms Letter
Title Coupling Molecular Spin Qubits with 2D Magnets for Coherent Magnon Manipulation
URI http://dx.doi.org/10.1021/acs.nanolett.5c01937
https://www.ncbi.nlm.nih.gov/pubmed/40526481
https://www.proquest.com/docview/3219853989
https://pubmed.ncbi.nlm.nih.gov/PMC12232374
Volume 25
WOSCitedRecordID wos001514101900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VxwEOLZRHFyhypV56CCR-xPYRbUE9lJco0t4i23GWXLyIZPv7O85ugKVCiFNkx3Jij8fz-THfAHynUlgpU504a1h0yckTq6xLnETjoXSJiY5d_7e8uFCjkb56Wii-PMGn2bFxzVEwYYLNaI-EQ0jC5BKsUES68QrfyfDmiWSXdRFZUYlxSaQV713lXqklGiTXLBqk_1Dmy8uSz6zP2af3_vcGfJzjTHIyGxib8MGHz7D-jH1wCy6Hk2n0xx2T8z5GLrm5rwO5ntq6bUjcoiX0Jzk34-AxjfCWRG-OyOfUZU4CPkLdRwDbhtuz0z_DX8k8vkJicFXVJtLxUglRmTxzmrOS6co4rZwVvMwqykzuc6-cwQnT8wpVXZbWeZ3qMuWmcpztwDJ-yn8BYqILsHXCVoLxXFTKiNTYPBdl6nJr0gH8wP4o5vrRFN3RN82KmNl3UjHvpAEkvUCK-xnlxhvlv_VSK1A34oGHCX4ybQqG0zHCEa30AHZnUnyskUeiG66yAagF-T4WiLzbi29Cfdfxb2cIqSiTfO8djdqHNRojB8eNYXoAy-3D1H-FVfe3rZuHQ1iSI3XYDeZ_JhD1Cg
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkigHoC0tW6AYqZce0iaxHdtHtIBA3d2CoBK3yHYcyMWLSLa_v-PsBliqqoJT5Ik1sT0ez9jOfAPwJRXcCBGryBpNQ0hOFhlpbGQFGg-pCiy06PoDMRrJ62t1vgC8i4XBRtTIqW4v8R_RBZLvgea1H2Nvmm_comdCxSIsc7SwIXHBYf_yEWuXtolZUZdxZ6Qk6yLm_sEl2CVbz9ulv5zN5_9MPjFCJxuvbP4mrM-8TnI4nSZvYcH5d7D2BIvwPfzsjychOveGDLuMueTyrvLkYmKqpibhwJakR2Sob7zDMjq7JMR2BHSnljj2-PBVlw9sC36dHF_1T6NZtoVI4x6riYRlheS81FliFaMFVaW2SlrDWZGUKdWZy5y0GpdPx0pUfFEY61Ssipjp0jL6AZbwU24biA4BwcZyU3LKMl5KzWNtsowXsc2MjnvwFccjn2lLnbcX4WmSB2I3SPlskHoQdXLJ76YAHP-pf9AJL0dNCdcf2rvxpM4pLs7onCipevBxKswHjizA3jCZ9EDOifmhQkDhnn_jq9sWjTtBByulgn16Qaf2YfX0ajjIB2ejHzvwJg05hcORcboLS839xO3Biv3dVPX953Zm_wHjkfyI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21FFXtoS0fbbcUaiQuPaRNYju2j2jpqghYQIDELbIdB3Lxrki2v7_jbEJ3QVWFeorsWI7t8XjGduY9gL1UcCNErCJrNA0hOVlkpLGRFWg8pCow0aLrH4vxWF5fq7MFqi9sRI011e0lftDqaVF2CAPJ95DvtZ9gj5pv3KJ3QsVzeMHRpgfygv3hxR-8XdqSs6I-4-5ISdZHzf2llmCbbL1smx45nA__m1wwRKO3_9GFd_Cm8z7J_ny6rMEz59fh9QIm4QacDiezEKV7Q0565lxyMa08OZ-ZqqlJOLgl6QE50TfeYRqdXhJiPALKU5s58fjwVc8LtglXox-Xw59Rx7oQadxrNZGwrJCclzpLrGK0oKrUVklrOCuSMqU6c5mTVuMy6liJC4AojHUqVkXMdGkZfQ8r-Cn3EYgOgcHGclNyyjJeSs1jbbKMF7HNjI4H8BXHI--0ps7bC_E0yUNmP0h5N0gDiHrZ5NM5EMc_yu_2AsxRY8I1iPZuMqtzios0OilKqgF8mAv0vkYW4G-YTAYgl0R9XyCgcS-_8dVti8qdoKOVUsE-PaFTX-Dl2cEoPz4cH23BqzRQC4eT4_QzrDR3M7cNq_ZXU9V3O-3k_g3dTP8C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+Molecular+Spin+Qubits+with+2D+Magnets+for+Coherent+Magnon+Manipulation&rft.jtitle=Nano+letters&rft.au=Dey%2C+Sourav&rft.au=Rivero-Carracedo%2C+Gonzalo&rft.au=Shumilin%2C+Andrei&rft.au=Gonzalez-Ballestero%2C+Carlos&rft.date=2025-07-02&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=25&rft.issue=26&rft.spage=10457&rft.epage=10464&rft_id=info:doi/10.1021%2Facs.nanolett.5c01937&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_5c01937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon