Scaling Point‐Scale (Pedo)transfer Functions to Seamless Large‐Domain Parameter Estimates for High‐Resolution Distributed Hydrologic Modeling: An Example for the Rhine River

Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources research Ročník 56; číslo 4
Hlavní autori: Imhoff, R. O., van Verseveld, W. J., van Osnabrugge, B., Weerts, A. H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.04.2020
Predmet:
ISSN:0043-1397, 1944-7973
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETact) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ETact dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr−1 higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETact fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue. Plain Language Summary Hydrologic models are used for flood and drought predictions. Most models have parameters, and to increase model performance, hydrologists often tune these parameters by calibration. State‐of‐the‐art gridded hydrologic models have parameter sets per grid cell, leading to many parameters and making current calibration procedures far from ideal. Here, we tested the use of well‐known (pedo)transfer functions from literature to estimate these parameter values, something which can reduce the calibration burden. By using parameter‐specific upscaling rules to derive seamless parameter maps for the wflow_sbm model, which explicitly takes subsurface lateral flows into account, this gives a model which is scalable to different grid cell sizes. We assessed the approach on multiple model resolutions, and we found consistent parameter fields and the preservation of vertical fluxes. Only routed discharge, a key output, deteriorates for headwater catchments on coarser resolutions. We attribute this to model structure and the derivation procedure of the river network on different scales, resulting in the loss of lateral flow representation on coarser resolutions. Nevertheless, discharge and evapotranspiration simulations are similar to observations and other models. Hence, regionalization with literature transfer functions and upscaling techniques can further lower the calibration burden and enable predictions in ungauged basins. Key Points Seamless distributed parameter maps can be obtained for the gridded hydrologic model wflow_sbm with transfer functions from literature Application of wflow_sbm with these seamless parameter maps yields simulation results with high KGE and NSE across the Rhine basin Fluxes matched across model scales for evapotranspiration, but this match was considerably less for fluxes affected by (sub)surface flows
AbstractList Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETact) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ETact dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr−1 higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETact fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue.
Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ET act ) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ET act dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr −1 higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ET act fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue. Hydrologic models are used for flood and drought predictions. Most models have parameters, and to increase model performance, hydrologists often tune these parameters by calibration. State‐of‐the‐art gridded hydrologic models have parameter sets per grid cell, leading to many parameters and making current calibration procedures far from ideal. Here, we tested the use of well‐known (pedo)transfer functions from literature to estimate these parameter values, something which can reduce the calibration burden. By using parameter‐specific upscaling rules to derive seamless parameter maps for the wflow_sbm model, which explicitly takes subsurface lateral flows into account, this gives a model which is scalable to different grid cell sizes. We assessed the approach on multiple model resolutions, and we found consistent parameter fields and the preservation of vertical fluxes. Only routed discharge, a key output, deteriorates for headwater catchments on coarser resolutions. We attribute this to model structure and the derivation procedure of the river network on different scales, resulting in the loss of lateral flow representation on coarser resolutions. Nevertheless, discharge and evapotranspiration simulations are similar to observations and other models. Hence, regionalization with literature transfer functions and upscaling techniques can further lower the calibration burden and enable predictions in ungauged basins. Seamless distributed parameter maps can be obtained for the gridded hydrologic model wflow_sbm with transfer functions from literature Application of wflow_sbm with these seamless parameter maps yields simulation results with high KGE and NSE across the Rhine basin Fluxes matched across model scales for evapotranspiration, but this match was considerably less for fluxes affected by (sub)surface flows
Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETₐcₜ) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ETₐcₜ dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr⁻¹ higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETₐcₜ fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue.
Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETact) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ETact dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr−1 higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETact fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue. Plain Language Summary Hydrologic models are used for flood and drought predictions. Most models have parameters, and to increase model performance, hydrologists often tune these parameters by calibration. State‐of‐the‐art gridded hydrologic models have parameter sets per grid cell, leading to many parameters and making current calibration procedures far from ideal. Here, we tested the use of well‐known (pedo)transfer functions from literature to estimate these parameter values, something which can reduce the calibration burden. By using parameter‐specific upscaling rules to derive seamless parameter maps for the wflow_sbm model, which explicitly takes subsurface lateral flows into account, this gives a model which is scalable to different grid cell sizes. We assessed the approach on multiple model resolutions, and we found consistent parameter fields and the preservation of vertical fluxes. Only routed discharge, a key output, deteriorates for headwater catchments on coarser resolutions. We attribute this to model structure and the derivation procedure of the river network on different scales, resulting in the loss of lateral flow representation on coarser resolutions. Nevertheless, discharge and evapotranspiration simulations are similar to observations and other models. Hence, regionalization with literature transfer functions and upscaling techniques can further lower the calibration burden and enable predictions in ungauged basins. Key Points Seamless distributed parameter maps can be obtained for the gridded hydrologic model wflow_sbm with transfer functions from literature Application of wflow_sbm with these seamless parameter maps yields simulation results with high KGE and NSE across the Rhine basin Fluxes matched across model scales for evapotranspiration, but this match was considerably less for fluxes affected by (sub)surface flows
Author van Osnabrugge, B.
van Verseveld, W. J.
Imhoff, R. O.
Weerts, A. H.
Author_xml – sequence: 1
  givenname: R. O.
  orcidid: 0000-0002-4096-3528
  surname: Imhoff
  fullname: Imhoff, R. O.
  email: Ruben.Imhoff@deltares.nl
  organization: Wageningen University & Research
– sequence: 2
  givenname: W. J.
  orcidid: 0000-0003-3311-738X
  surname: van Verseveld
  fullname: van Verseveld, W. J.
  organization: Department of Inland Water Systems
– sequence: 3
  givenname: B.
  orcidid: 0000-0002-3156-9107
  surname: van Osnabrugge
  fullname: van Osnabrugge, B.
  organization: Wageningen University & Research
– sequence: 4
  givenname: A. H.
  orcidid: 0000-0002-3249-8363
  surname: Weerts
  fullname: Weerts, A. H.
  organization: Wageningen University & Research
BookMark eNp9kcFu1DAURSNUJKaFHR9giU2RGLBjJ47ZVdNpB2kQoxTUZeQ4zzOuEntqO8Ds-gn8C3_El-BoWKBKsPGTpXPvu3r3NDuxzkKWvST4LcG5eJdjIm5rnJcV5k-yGRGMzbng9CSbYczonFDBn2WnIdxhTFhR8ln280bJ3tgt2jhj46-HH9Mf0PkGOvc6emmDBo-uRquicTag6NANyKGHENBa-i0kyaUbpLFoI70cICZ8GaIZZISAtPNoZba7RNUQXD9OLujShOhNO0bo0OrQede7rVHoo-tgyvIeXVi0_C6HfUoyOcQdoHpnbHrNV_DPs6da9gFe_Jln2Zer5efFar7-dP1hcbGeS4YJn0PbAiEC8pZojrUWoAvcCV1wUoq2xMAVqcqWMYUrTXmli7ZqWUmVUBpUx-hZdn703Xt3P0KIzWCCgr6XFtwYmrzkRcE5rXhCXz1C79zobUrX5FSwSuCCT4ZvjpTyLgQPutn7dCh_aAhupgabvxtMeP4IVybK6YKpGNP_S0SPom-mh8N_FzS39aLOWUE5_Q0JNLTI
CitedBy_id crossref_primary_10_1038_s43247_021_00180_0
crossref_primary_10_1016_j_jhydrol_2023_130587
crossref_primary_10_1016_j_scitotenv_2024_172678
crossref_primary_10_3389_frwa_2023_1166124
crossref_primary_10_1016_j_envsoft_2024_106099
crossref_primary_10_3390_rs15061642
crossref_primary_10_5194_hess_25_3137_2021
crossref_primary_10_1038_s41597_024_03825_9
crossref_primary_10_1016_j_envsoft_2021_105168
crossref_primary_10_1016_j_gsd_2023_100953
crossref_primary_10_5194_hess_28_5107_2024
crossref_primary_10_3389_frwa_2021_713537
crossref_primary_10_1111_jfr3_12846
crossref_primary_10_5194_hess_25_5287_2021
crossref_primary_10_1080_02626667_2025_2496280
crossref_primary_10_3390_w16223252
crossref_primary_10_1111_jfr3_12787
crossref_primary_10_3390_hydrology9090158
crossref_primary_10_1016_j_pdisas_2020_100076
crossref_primary_10_5194_hess_29_1483_2025
crossref_primary_10_5194_hess_25_2353_2021
crossref_primary_10_5194_hess_28_3079_2024
crossref_primary_10_1029_2022WR031966
crossref_primary_10_1029_2022WR033075
crossref_primary_10_5194_hess_26_4407_2022
crossref_primary_10_5194_hess_28_5011_2024
crossref_primary_10_3390_w17182698
crossref_primary_10_3389_frwa_2023_1332678
crossref_primary_10_5194_nhess_22_3641_2022
crossref_primary_10_1029_2021WR030661
crossref_primary_10_1002_hyp_70149
crossref_primary_10_3390_atmos11030237
crossref_primary_10_7717_peerj_9558
Cites_doi 10.1016/j.jhydrol.2009.07.059
10.1175/2009JCLI3066.1
10.1016/S0022-1694(01)00393-6
10.1002/2015WR017173
10.1080/01431161003743199
10.1002/2016WR019430
10.1016/0002-1571(71)90034-3
10.5194/hess-11-532-2007
10.1175/2008JHM1068.1
10.1029/2007WR006168
10.1016/S0022-1694(99)00095-5
10.1016/j.advwatres.2012.08.008
10.1111/ejss.12192
10.1175/JHM-D-15-0054.1
10.1371/journal.pone.0169748
10.1002/2013WR014639
10.1016/j.rse.2017.07.001
10.5194/gmd-11-1873-2018
10.1007/978-94-009-2352-2_10
10.1016/0022-1694(89)90101-7
10.1016/S0022-1694(98)00115-2
10.1016/0022-1694(70)90255-6
10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2
10.1016/j.envsoft.2009.10.004
10.5194/hess-21-3427-2017
10.2307/2401739
10.1175/2009JHM1034.1
10.1016/S0022-1694(03)00257-9
10.1029/2008WR007574
10.5194/tc-7-141-2013
10.1002/2017RG000581
10.1016/j.jhydrol.2009.08.003
10.1002/hyp.1425
10.5194/hess-15-3355-2011
10.1029/2005RG000183
10.1002/qj.49710544304
10.1016/j.jhydrol.2016.03.026
10.1657/1938-4246-46.4.933
10.1016/j.jhydrol.2019.05.084
10.1002/2017WR020401
10.2136/vzj2002.2610
10.1016/j.cliser.2016.01.001
10.5194/hess-20-1151-2016
10.1002/2015WR017498
10.1029/2010WR009791
10.1016/j.gloplacha.2006.07.018
10.1016/j.jhydrol.2008.03.027
10.1016/S0022-1694(97)00041-3
10.5194/hess-21-4323-2017
10.1016/j.jhydrol.2005.09.008
10.5194/hess-10-609-2006
10.5194/hess-23-1453-2019
10.1002/2015WR017910
10.1002/2015WR017780
10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
10.5194/gmd-12-2501-2019
10.1016/j.jhydrol.2012.11.005
10.1016/j.landusepol.2011.07.003
10.1016/j.fcr.2016.02.013
10.1029/1999WR900051
10.1023/A:1010784727448
10.5194/tc-8-471-2014
10.1016/j.jhydrol.2016.02.018
10.1088/1748-9326/aa8359
10.1002/hyp.3360090305
10.1175/JHM-D-15-0006.1
10.1029/2012WR012195
10.1002/wrcr.20431
10.5194/hess-20-1069-2016
10.1016/S0168-1923(99)00105-7
10.1002/2017WR021201
10.1061/(ASCE)0733-9437(1986)112:1(39)
10.1016/j.jhydrol.2017.10.024
10.1016/S0304-3800(97)00054-9
10.5194/hess-9-347-2005
10.1029/2008WR007327
10.1016/0022-1694(89)90111-X
10.1016/j.jhydrol.2011.08.030
10.5194/hess-16-3607-2012
10.5194/hess-22-1299-2018
10.1029/2010JD015139
10.1029/2009WR007707
ContentType Journal Article
Copyright 2020. The Authors.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. The Authors.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2019WR026807
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2019WR026807
WRCR24537
Genre article
GeographicLocations Rhine River
Europe
GeographicLocations_xml – name: Rhine River
– name: Europe
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4017-ebbe119e2b1f70ff9ef50d9f57169b60e7c186b44c08f378f5b8b463c9cfecd43
IEDL.DBID 24P
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538987800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:18:30 EDT 2025
Fri Aug 29 22:19:31 EDT 2025
Sat Nov 29 01:36:44 EST 2025
Tue Nov 18 22:36:14 EST 2025
Wed Jan 22 16:35:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4017-ebbe119e2b1f70ff9ef50d9f57169b60e7c186b44c08f378f5b8b463c9cfecd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4096-3528
0000-0003-3311-738X
0000-0002-3249-8363
0000-0002-3156-9107
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR026807
PQID 2394890574
PQPubID 105507
PageCount 28
ParticipantIDs proquest_miscellaneous_2675577387
proquest_journals_2394890574
crossref_primary_10_1029_2019WR026807
crossref_citationtrail_10_1029_2019WR026807
wiley_primary_10_1029_2019WR026807_WRCR24537
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 45
2011; 116
1979; 105
1964; 7
1975; 17
2019; 12
2016; 189
2003; 17
2001; 49
2012; 16
2011; 15
2013; 7
2017; 555
1890; 37
1978
2010; 23
1971; 9
1989; 105
2009; 10
2010; 25
2013; 55
2011; 409
2000
2019; 23
1997; 101
1998; 207
2003; 282
2013; 477
1984
1999; 98
2012; 29
2008; 356
2014; 8
2006; 324
2014; 50
2017; 203
1989
2015; 12
1995; 9
2013; 49
2006; 10
2015; 51
1986; 112
2010
2002; 72
2017; 21
1997
2002; 2
2016; 52
1970; 10
2009; 376
2007
2014; 46
2009; 377
2011; 32
1994
1999; 223
2004
2002
2016; 17
2018; 22
2007; 11
2007; 56
2001; 247
1995; 8
1997; 201
2017; 53
2016; 1
2010; 46
2016; 537
2020
2005; 9
2017; 55
2015; 66
2017; 12
1999; 35
2016; 20
2018
2019; 575
2017
2016; 535
2008; 44
2015
2011; 47
2018; 11
2007; 45
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
Görgen K. (e_1_2_10_29_1) 2010
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_63_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
Todini E. (e_1_2_10_82_1) 2002
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Van Bemmelen J. M. (e_1_2_10_86_1) 1890; 37
Brooks R. (e_1_2_10_13_1) 1964; 7
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_69_1
e_1_2_10_42_1
Kuusisto E. (e_1_2_10_46_1) 1984
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
Feddes R. A. (e_1_2_10_26_1) 1978
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 66
  start-page: 226
  year: 2015
  end-page: 238
  article-title: New generation of hydraulic pedotransfer functions for Europe
  publication-title: European Journal of Soil Science
– volume: 535
  start-page: 509
  year: 2016
  end-page: 524
  article-title: The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for stream flow prediction
  publication-title: Journal of Hydrology
– volume: 189
  start-page: 68
  year: 2016
  end-page: 74
  article-title: Root distribution by depth for temperate agricultural crops
  publication-title: Field Crops Research
– volume: 12
  start-page: 105,002
  issue: 10
  year: 2017
  article-title: Intercomparison of regional‐scale hydrological models and climate change impacts projected for 12 large river basins worldwide synthesis
  publication-title: Environmental Research Letters
– volume: 55
  start-page: 1199
  year: 2017
  end-page: 1256
  article-title: Pedotransfer functions in Earth system science: Challenges and perspectives
  publication-title: Reviews of Geophysics
– volume: 46
  year: 2010
  article-title: Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale
  publication-title: Water Resources Research
– volume: 45
  year: 2007
  article-title: The shuttle radar topography mission
  publication-title: Reviews of Geophysics
– volume: 356
  start-page: 56
  issue: 1‐2
  year: 2008
  end-page: 69
  article-title: A Bayesian approach to decision‐making under uncertainty: An application to real‐time forecasting in the river Rhine
  publication-title: Journal of Hydrology
– volume: 9
  start-page: 251
  issue: 3‐4
  year: 1995
  end-page: 290
  article-title: Scale issues in hydrological modelling: A review
  publication-title: Hydrological Processes
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models part IA discussion of principles
  publication-title: Journal of Hydrology
– volume: 44
  year: 2008
  article-title: Water balance versus land surface model in the simulation of Rhine river discharges
  publication-title: Water Resources Research
– volume: 10
  start-page: 609
  issue: 5
  year: 2006
  end-page: 618
  article-title: Searching for the Holy Grail of scientific hydrology: Q =(S, R, Δt)A as closure
  publication-title: Hydrology and Earth System Sciences
– volume: 49
  start-page: 105
  issue: 1
  year: 2001
  end-page: 128
  article-title: Impact of climate change on hydrological regimes and water resources management in the Rhine basin
  publication-title: Climatic Change
– volume: 50
  start-page: 6874
  year: 2014
  end-page: 6891
  article-title: The benefits of using remotely sensed soil moisture in parameter identification of large‐scale hydrological models
  publication-title: Water Resources Research
– volume: 47
  year: 2011
  article-title: Global monthly water stress: 1. Water balance and water availability
  publication-title: Water Resources Research
– volume: 23
  start-page: 1453
  issue: 3
  year: 2019
  end-page: 1467
  article-title: Contribution of potential evaporation forecasts to 10‐day streamflow forecast skill for the Rhine River
  publication-title: Hydrology and Earth System Sciences
– volume: 17
  start-page: 1373
  issue: 5
  year: 2016
  end-page: 1382
  article-title: A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application
  publication-title: Journal of Hydrometeorology
– volume: 52
  start-page: 2350
  year: 2016
  end-page: 2365
  article-title: Improving the theoretical underpinnings of process‐based hydrologic models
  publication-title: Water Resources Research
– volume: 21
  start-page: 3427
  issue: 7
  year: 2017
  end-page: 3440
  article-title: The evolution of process‐based hydrologic models: Historical challenges and the collective quest for physical realism
  publication-title: Hydrology and Earth System Sciences
– volume: 537
  start-page: 45
  year: 2016
  end-page: 60
  article-title: An overview of current applications, challenges, and future trends in distributed process‐based models in hydrology
  publication-title: Journal of Hydrology
– volume: 377
  start-page: 80
  issue: 1
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
– volume: 16
  start-page: 3607
  issue: 10
  year: 2012
  end-page: 3620
  article-title: A bare ground evaporation revision in the ECMWF land‐surface scheme: Evaluation of its impact using ground soil moisture and satellite microwave data
  publication-title: Hydrology and Earth System Sciences
– volume: 203
  start-page: 185
  year: 2017
  end-page: 215
  article-title: ESA CCI soil moisture for improved Earth system understanding: State‐of‐the art and future directions
  publication-title: Remote Sensing of Environment
– volume: 12
  start-page: 2501
  issue: 6
  year: 2019
  end-page: 2521
  article-title: The multiscale routing model mRM v1.0: Simple river routing at resolutions from 1 to 50 km
  publication-title: Geoscientific Model Development
– volume: 29
  start-page: 329
  issue: 2
  year: 2012
  end-page: 338
  article-title: European soil data centre: Response to European policy support and public data requirements
  publication-title: Land Use Policy
– volume: 324
  start-page: 10
  issue: 1
  year: 2006
  end-page: 23
  article-title: A global sensitivity analysis tool for the parameters of multi‐variable catchment models
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 489
  issue: 4
  year: 2010
  end-page: 502
  article-title: A software framework for construction of process‐based stochastic spatio‐temporal models and data assimilation
  publication-title: Environmental Modelling & Software
– volume: 15
  start-page: 3355
  issue: 11
  year: 2011
  end-page: 3366
  article-title: Evaluation of two precipitation data sets for the Rhine River using streamflow simulations
  publication-title: Hydrology and Earth System Sciences
– volume: 1
  start-page: 6
  year: 2016
  end-page: 11
  article-title: Improving predictions and management of hydrological extremes through climate services: www.imprex.eu
  publication-title: Climate Services
– volume: 8
  start-page: 471
  issue: 2
  year: 2014
  end-page: 485
  article-title: Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: Methodology and applications
  publication-title: The Cryosphere
– year: 2007
– volume: 20
  start-page: 1151
  issue: 3
  year: 2016
  end-page: 1176
  article-title: The importance of topography‐controlled sub‐grid process heterogeneity and semi‐quantitative prior constraints in distributed hydrological models
  publication-title: Hydrology and Earth System Sciences
– volume: 555
  start-page: 257
  year: 2017
  end-page: 277
  article-title: Estimating predictive hydrological uncertainty by dressing deterministic and ensemble forecasts: A comparison, with application to Meuse and Rhine
  publication-title: Journal of Hydrology
– volume: 12
  start-page: 10,078
  year: 2015
  end-page: 10,091
  article-title: Accelerating advances in continental domain hydrologic modeling
  publication-title: Water Resources Research
– volume: 23
  start-page: 679
  issue: 3
  year: 2010
  end-page: 699
  article-title: Changes in streamflow dynamics in the Rhine basin under three high‐resolution regional climate scenarios
  publication-title: Journal of Climate
– volume: 21
  start-page: 4323
  issue: 9
  year: 2017
  end-page: 4346
  article-title: Toward seamless hydrologic predictions across spatial scales
  publication-title: Hydrology and Earth System Sciences
– volume: 52
  start-page: 7779
  year: 2016
  end-page: 7792
  article-title: Improving the realism of hydrologic model functioning through multivariate parameter estimation
  publication-title: Water Resources Research
– year: 2010
– year: 1984
– volume: 101
  start-page: 303
  issue: 2‐3
  year: 1997
  end-page: 323
  article-title: Monthly snowmelt modelling for large‐scale climate change studies using the degree day approach
  publication-title: Ecological Modelling
– volume: 575
  start-page: 1308
  year: 2019
  end-page: 1327
  article-title: Hydrological modelling at multiple sub‐daily time steps: Model improvement via flux‐matching
  publication-title: Journal of Hydrology
– volume: 477
  start-page: 72
  year: 2013
  end-page: 85
  article-title: Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China
  publication-title: Journal of Hydrology
– volume: 7
  start-page: 26
  year: 1964
  end-page: 28
  article-title: Hydraulic properties of porous media
  publication-title: Hydrology Papers, Colorado State University
– volume: 7
  start-page: 141
  issue: 1
  year: 2013
  end-page: 151
  article-title: An estimate of global glacier volume
  publication-title: The Cryosphere
– volume: 2
  start-page: 261
  issue: 1
  year: 2002
  end-page: 272
  article-title: Spatial averaging of van Genuchten hydraulic parameters for steady‐state flow in heterogeneous soils
  publication-title: Vadose Zone Journal
– volume: 10
  start-page: 953
  issue: 4
  year: 2009
  end-page: 968
  article-title: Seasonal predictability of European discharge: NAO and hydrological response time
  publication-title: Journal of Hydrometeorology
– volume: 49
  start-page: 360
  year: 2013
  end-page: 379
  article-title: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations
  publication-title: Water Resources Research
– start-page: 275
  year: 1989
  end-page: 300
– volume: 72
  start-page: 311
  issue: 3
  year: 2002
  end-page: 328
  article-title: The global biogeography of roots
  publication-title: Ecological Monographs
– volume: 98
  start-page: 279
  year: 1999
  end-page: 293
  article-title: Regionalisation of parameters for a conceptual rainfall‐runoff model
  publication-title: Agricultural and Forest Meteorology
– volume: 116
  year: 2011
  article-title: The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements
  publication-title: Journal of Geophysical Research
– volume: 45
  year: 2009
  article-title: Effects of land use changes on stream flow generation in the Rhine basin
  publication-title: Water Resources Research
– volume: 37
  start-page: 279
  year: 1890
  end-page: 290
  article-title: Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. s. w. im Ackerboden
  publication-title: Die Landwirthschaftlichen Versuchs‐Stationen
– volume: 35
  start-page: 2173
  issue: 7
  year: 1999
  end-page: 2187
  article-title: Distributed modeling of storm flow generation in an Amazonian rain forest catchment: Effects of model parameterization
  publication-title: Water Resources Research
– volume: 112
  start-page: 39
  issue: 1
  year: 1986
  end-page: 53
  article-title: Roughness coefficients for routing surface runoff
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 8
  start-page: 2716
  issue: 11
  year: 1995
  end-page: 2748
  article-title: An improved land surface parameterization scheme in the ECMWF model and its validation
  publication-title: Journal of Climate
– volume: 49
  start-page: 5700
  year: 2013
  end-page: 5714
  article-title: Toward computationally efficient large‐scale hydrologic predictions with a multiscale regionalization scheme
  publication-title: Water Resources Research
– year: 2018
– volume: 11
  start-page: 1873
  issue: 5
  year: 2018
  end-page: 1886
  article-title: The SPAtial EFficiency metric (SPAEF): Multiple‐component evaluation of spatial patterns for optimization of hydrological models
  publication-title: Geoscientific Model Development
– year: 1994
– volume: 17
  start-page: 367
  year: 1975
  end-page: 380
  article-title: A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands
  publication-title: Journal of Applied Ecology
– volume: 10
  start-page: 623
  issue: 3
  year: 2009
  end-page: 643
  article-title: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System
  publication-title: Journal of Hydrometeorology
– volume: 22
  start-page: 1299
  issue: 2
  year: 2018
  end-page: 1315
  article-title: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model
  publication-title: Hydrology and Earth System Sciences
– volume: 376
  start-page: 463
  issue: 3‐4
  year: 2009
  end-page: 475
  article-title: Verification of ensemble flow forecasts for the River Rhine
  publication-title: Journal of Hydrology
– volume: 247
  start-page: 239
  issue: 3‐4
  year: 2001
  end-page: 262
  article-title: Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system
  publication-title: Journal of Hydrology
– volume: 51
  start-page: 4923
  year: 2015
  end-page: 4947
  article-title: Global hydrology 2015: State, trends, and directions
  publication-title: Water Resources Research
– volume: 17
  start-page: 287
  issue: 1
  year: 2016
  end-page: 307
  article-title: Multiscale and multivariate evaluation of water fluxes and states over European river basins
  publication-title: Journal of Hydrometeorology
– year: 2004
– volume: 32
  start-page: 2725
  issue: 10
  year: 2011
  end-page: 2744
  article-title: The satellite application facility for land surface analysis
  publication-title: International Journal of Remote Sensing
– year: 1997
– volume: 55
  start-page: 149
  year: 2013
  end-page: 164
  article-title: Improving the degree‐day method for sub‐daily melt simulations with physically‐based diurnal variations
  publication-title: Advances in Water Resources
– year: 2015
– volume: 105
  start-page: 43
  issue: 443
  year: 1979
  end-page: 55
  article-title: An analytical model of rainfall interception by forests
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 409
  start-page: 337
  issue: 1
  year: 2011
  end-page: 349
  article-title: Model parameter analysis using remotely sensed pattern information in a multiconstraint framework
  publication-title: Journal of Hydrology
– volume: 51
  start-page: 7090
  year: 2015
  end-page: 7129
  article-title: Physically based modeling in catchment hydrology at 50: Survey and outlook
  publication-title: Water Resources Research
– volume: 56
  start-page: 101
  year: 2007
  end-page: 110
  article-title: The GLIMS geospatial glacier database: A new tool for studying glacier change
  publication-title: Global and Planetary Change
– volume: 46
  start-page: 933
  issue: 4
  year: 2014
  end-page: 945
  article-title: The new Swiss Glacier Inventory SGI2010: Relevance of using high‐resolution source data in areas dominated by very small glaciers
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 53
  start-page: 9284
  year: 2017
  end-page: 9303
  article-title: genRE: A method to extend gridded precipitation climatology data sets in near real‐time for hydrological forecasting purposes
  publication-title: Water Resources Research
– volume: 12
  issue: 2
  year: 2017
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PloS one
– year: 2000
– start-page: 16
  year: 1978
  end-page: 30
– volume: 9
  start-page: 367
  year: 1971
  end-page: 384
  article-title: A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine
  publication-title: Agricultural Meteorology
– volume: 223
  start-page: 1
  issue: 1‐2
  year: 1999
  end-page: 16
  article-title: Developing the snow component of a distributed hydrological model: A step‐wise approach based on multiobjective analysis
  publication-title: Journal of Hydrology
– volume: 201
  start-page: 272
  issue: 1‐4
  year: 1997
  end-page: 288
  article-title: Development and test of the distributed HBV‐96 hydrological model
  publication-title: Journal of Hydrology
– volume: 20
  start-page: 1069
  issue: 3
  year: 2016
  end-page: 1079
  article-title: HESS opinions: The need for process‐based evaluation of large‐domain hyper resolution models
  publication-title: Hydrology and Earth System Sciences
– volume: 46
  year: 2010
  article-title: Simulating low‐probability peak discharges for the Rhine basin using resampled climate modeling data
  publication-title: Water Resources Research
– start-page: 471
  year: 2002
  end-page: 506
– volume: 9
  start-page: 347
  issue: 4
  year: 2005
  end-page: 364
  article-title: Flood forecasting using a fully distributed model: Application of the TOPKAPI model to the Upper Xixian Catchment
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 207
  start-page: 32
  issue: 1‐2
  year: 1998
  end-page: 41
  article-title: Estimation of rainfall storage capacity in the canopies of cypress wet lands and slash pine uplands in North‐Central Florida
  publication-title: Journal of Hydrology
– volume: 53
  start-page: 8020
  year: 2017
  end-page: 8040
  article-title: Towards seamless large‐domain parameter estimation for hydrologic models
  publication-title: Water Resources Research
– volume: 17
  start-page: 2101
  issue: 11
  year: 2003
  end-page: 2111
  article-title: Downward approach to hydrological prediction
  publication-title: Hydrological Processes
– volume: 282
  start-page: 104
  issue: 1‐4
  year: 2003
  end-page: 115
  article-title: Temperature index melt modelling in mountain areas
  publication-title: Journal of Hydrology
– volume: 11
  start-page: 532
  issue: 1
  year: 2007
  end-page: 549
  article-title: Development of a high resolution grid‐based river flow model for use with regional climate model output
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 105
  start-page: 317
  issue: 3‐4
  year: 1989
  end-page: 334
  article-title: Rainfall interception by bracken in open habitats—Relations between leaf area, canopy storage and drainage rate
  publication-title: Journal of Hydrology
– year: 2020
– volume: 105
  start-page: 157
  issue: 1‐2
  year: 1989
  end-page: 172
  article-title: Changing ideas in hydrologythe case of physically‐based models
  publication-title: Journal of Hydrology
– year: 2017
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jhydrol.2009.07.059
– ident: e_1_2_10_37_1
  doi: 10.1175/2009JCLI3066.1
– ident: e_1_2_10_88_1
  doi: 10.1016/S0022-1694(01)00393-6
– ident: e_1_2_10_9_1
  doi: 10.1002/2015WR017173
– ident: e_1_2_10_84_1
  doi: 10.1080/01431161003743199
– ident: e_1_2_10_63_1
  doi: 10.1002/2016WR019430
– ident: e_1_2_10_69_1
  doi: 10.1016/0002-1571(71)90034-3
– volume-title: Snow accumulation and snowmelt in Finland
  year: 1984
  ident: e_1_2_10_46_1
– ident: e_1_2_10_5_1
  doi: 10.5194/hess-11-532-2007
– ident: e_1_2_10_4_1
  doi: 10.1175/2008JHM1068.1
– ident: e_1_2_10_35_1
  doi: 10.1029/2007WR006168
– ident: e_1_2_10_19_1
  doi: 10.1016/S0022-1694(99)00095-5
– ident: e_1_2_10_81_1
  doi: 10.1016/j.advwatres.2012.08.008
– ident: e_1_2_10_83_1
  doi: 10.1111/ejss.12192
– ident: e_1_2_10_64_1
  doi: 10.1175/JHM-D-15-0054.1
– ident: e_1_2_10_12_1
– volume: 7
  start-page: 26
  year: 1964
  ident: e_1_2_10_13_1
  article-title: Hydraulic properties of porous media
  publication-title: Hydrology Papers, Colorado State University
– ident: e_1_2_10_33_1
  doi: 10.1371/journal.pone.0169748
– ident: e_1_2_10_97_1
  doi: 10.1002/2013WR014639
– ident: e_1_2_10_18_1
  doi: 10.1016/j.rse.2017.07.001
– ident: e_1_2_10_41_1
  doi: 10.5194/gmd-11-1873-2018
– ident: e_1_2_10_66_1
  doi: 10.1007/978-94-009-2352-2_10
– ident: e_1_2_10_7_1
  doi: 10.1016/0022-1694(89)90101-7
– ident: e_1_2_10_48_1
  doi: 10.1016/S0022-1694(98)00115-2
– start-page: 16
  volume-title: Simulation of field water use and crop yield
  year: 1978
  ident: e_1_2_10_26_1
– ident: e_1_2_10_55_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_10_96_1
  doi: 10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2
– ident: e_1_2_10_39_1
  doi: 10.1016/j.envsoft.2009.10.004
– ident: e_1_2_10_14_1
  doi: 10.5194/hess-21-3427-2017
– ident: e_1_2_10_40_1
– ident: e_1_2_10_93_1
– ident: e_1_2_10_70_1
  doi: 10.2307/2401739
– ident: e_1_2_10_10_1
  doi: 10.1175/2009JHM1034.1
– ident: e_1_2_10_62_1
– ident: e_1_2_10_34_1
  doi: 10.1016/S0022-1694(03)00257-9
– ident: e_1_2_10_36_1
  doi: 10.1029/2008WR007574
– ident: e_1_2_10_31_1
  doi: 10.5194/tc-7-141-2013
– ident: e_1_2_10_90_1
  doi: 10.1002/2017RG000581
– ident: e_1_2_10_6_1
– ident: e_1_2_10_32_1
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: e_1_2_10_77_1
  doi: 10.1002/hyp.1425
– start-page: 471
  volume-title: Mathematical models of large watershed hydrology
  year: 2002
  ident: e_1_2_10_82_1
– ident: e_1_2_10_60_1
  doi: 10.5194/hess-15-3355-2011
– ident: e_1_2_10_24_1
  doi: 10.1029/2005RG000183
– ident: e_1_2_10_30_1
  doi: 10.1002/qj.49710544304
– ident: e_1_2_10_25_1
  doi: 10.1016/j.jhydrol.2016.03.026
– ident: e_1_2_10_28_1
  doi: 10.1657/1938-4246-46.4.933
– ident: e_1_2_10_27_1
  doi: 10.1016/j.jhydrol.2019.05.084
– ident: e_1_2_10_53_1
  doi: 10.1002/2017WR020401
– ident: e_1_2_10_99_1
  doi: 10.2136/vzj2002.2610
– ident: e_1_2_10_87_1
  doi: 10.1016/j.cliser.2016.01.001
– ident: e_1_2_10_56_1
  doi: 10.5194/hess-20-1151-2016
– ident: e_1_2_10_3_1
  doi: 10.1002/2015WR017498
– ident: e_1_2_10_85_1
  doi: 10.1029/2010WR009791
– ident: e_1_2_10_20_1
– ident: e_1_2_10_65_1
  doi: 10.1016/j.gloplacha.2006.07.018
– ident: e_1_2_10_67_1
  doi: 10.1016/j.jhydrol.2008.03.027
– ident: e_1_2_10_47_1
  doi: 10.1016/S0022-1694(97)00041-3
– ident: e_1_2_10_72_1
  doi: 10.5194/hess-21-4323-2017
– ident: e_1_2_10_89_1
  doi: 10.1016/j.jhydrol.2005.09.008
– ident: e_1_2_10_8_1
  doi: 10.5194/hess-10-609-2006
– ident: e_1_2_10_91_1
  doi: 10.5194/hess-23-1453-2019
– ident: e_1_2_10_15_1
  doi: 10.1002/2015WR017910
– ident: e_1_2_10_59_1
  doi: 10.1002/2015WR017780
– ident: e_1_2_10_74_1
  doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
– ident: e_1_2_10_80_1
  doi: 10.5194/gmd-12-2501-2019
– ident: e_1_2_10_50_1
  doi: 10.1016/j.jhydrol.2012.11.005
– ident: e_1_2_10_58_1
  doi: 10.1016/j.landusepol.2011.07.003
– ident: e_1_2_10_23_1
  doi: 10.1016/j.fcr.2016.02.013
– ident: e_1_2_10_95_1
  doi: 10.1029/1999WR900051
– ident: e_1_2_10_52_1
  doi: 10.1023/A:1010784727448
– ident: e_1_2_10_38_1
  doi: 10.5194/tc-8-471-2014
– ident: e_1_2_10_45_1
  doi: 10.1016/j.jhydrol.2016.02.018
– ident: e_1_2_10_42_1
  doi: 10.1088/1748-9326/aa8359
– volume: 37
  start-page: 279
  year: 1890
  ident: e_1_2_10_86_1
  article-title: Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. s. w. im Ackerboden
  publication-title: Die Landwirthschaftlichen Versuchs‐Stationen
– ident: e_1_2_10_11_1
  doi: 10.1002/hyp.3360090305
– ident: e_1_2_10_16_1
  doi: 10.1175/JHM-D-15-0006.1
– ident: e_1_2_10_44_1
  doi: 10.1029/2012WR012195
– ident: e_1_2_10_43_1
  doi: 10.1002/wrcr.20431
– ident: e_1_2_10_51_1
  doi: 10.5194/hess-20-1069-2016
– ident: e_1_2_10_75_1
  doi: 10.1016/S0168-1923(99)00105-7
– ident: e_1_2_10_54_1
– ident: e_1_2_10_92_1
  doi: 10.1002/2017WR021201
– ident: e_1_2_10_21_1
  doi: 10.1061/(ASCE)0733-9437(1986)112:1(39)
– volume-title: Assessment of climate change impacts on discharge in the Rhine River Basin: Results of the RheinBlick2050 project
  year: 2010
  ident: e_1_2_10_29_1
– ident: e_1_2_10_73_1
– ident: e_1_2_10_94_1
  doi: 10.1016/j.jhydrol.2017.10.024
– ident: e_1_2_10_76_1
  doi: 10.1016/S0304-3800(97)00054-9
– ident: e_1_2_10_49_1
  doi: 10.5194/hess-9-347-2005
– ident: e_1_2_10_71_1
  doi: 10.1029/2008WR007327
– ident: e_1_2_10_61_1
  doi: 10.1016/0022-1694(89)90111-X
– ident: e_1_2_10_78_1
  doi: 10.1016/j.jhydrol.2011.08.030
– ident: e_1_2_10_98_1
– ident: e_1_2_10_2_1
  doi: 10.5194/hess-16-3607-2012
– ident: e_1_2_10_17_1
  doi: 10.5194/hess-22-1299-2018
– ident: e_1_2_10_22_1
– ident: e_1_2_10_57_1
  doi: 10.1029/2010JD015139
– ident: e_1_2_10_79_1
  doi: 10.1029/2009WR007707
SSID ssj0014567
Score 2.4982905
Snippet Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm)...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms basins
Calibration
Catchments
Computer simulation
Discharge
Drainage
Drainage density
Drainage network
Drainage patterns
Drought
Estimates
Europe
Evapotranspiration
Evapotranspiration estimates
Fields
Flood predictions
Fluxes
Headwater catchments
Headwaters
Hydrologic models
hydrological modeling
Hydrologists
Hydrology
Parameter estimation
Parameterization
Parameters
pedotransfer functions
Preservation
Procedures
regionalization
Resolution
Rhine River
River networks
Rivers
satellites
Scaling
Simulation
Surface analysis (chemical)
Transfer functions
water
Watersheds
Title Scaling Point‐Scale (Pedo)transfer Functions to Seamless Large‐Domain Parameter Estimates for High‐Resolution Distributed Hydrologic Modeling: An Example for the Rhine River
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR026807
https://www.proquest.com/docview/2394890574
https://www.proquest.com/docview/2675577387
Volume 56
WOSCitedRecordID wos000538987800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231211
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQhgQ3_CMKYzpIIIGgWn6c2OZuWlsNaaqijKm7ixzH1iqtCWozxO54BN6FN-JJOMdJS7kACXHXqMetFZ-fzz7H32HsJceoFyUmHqZOaLqSQ5S3Oh4S-Eit5qoKjW82IaZTeX6usv7Aje7CdPwQmwM3sgzvr8nAdbnqyQaIIxMjl5rluIWQdJl8NwxjQVod8WyTRUBwINYZZkI6feE7jj_YHv17SPqFM7fRqg83k7v_O9F77E4PNOGw04z77IatH7Bb63vIK_zc9z-_uH7Ivp_iUmEQg6yZ1-2Pr9_o2cLrzFbNm9ZjW7uECcZAr6bQNnBq9eIS3SScUC05Dhk1Cz2vIdNU7oWrBWP0HguCsoDAGKigBKUoXdApO4yIs5fabdkKjq-rZeeGgbqz0Vzew2EN4y-a6Iv9LyBUhfwCXwfkVEzyiJ1Nxh-Pjod9O4eh5hQLbVnaMFQ2KkMnAueUdUlQKZcQYU-ZBlaYUKYl5yaQLhbSJaUsUZeMMs6aiseP2U7d1PYJAxvEFZcuNYlLuTJSKtwjBCrSuLkjtzlgb9crWpie65xablwWPuceqWJ7UQbs1Ub6U8fx8Qe5vbVyFL2lrwpqLS8Vol4-YC82X6ONUuJF17a5QhnclSVCxDSxd15V_vo_xSw_yiOexOLpv4k_Y7cjOg7whUV7bKddXtnn7Kb53M5Xy31vG_tsd5RPzk7wafZh-hMynxOs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hFKlc-EcESjtIIIEgqn_W3t3eqiZRECGK3FbtzVqvd9VIjY0SF9Ebj8C78EY8SWdsJ4QDSIibLc_aK8_ftzuzM4y94uj1gsiEvdgJTUdyqOStDnsEPmKrucp9UzebEJOJPD9X07bPKZ2FaepDrDfcSDNqe00KThvSbbUBKpKJrkudJbiGkHSafAu_KqMO2-onw9PxOpCA-ECsgswEdtrcd3zD_ub4373SL6i5CVhrjzO8999zvc_utmATDhvpeMBu2eIh216dRV7iddsD_eL6EftxjOxCRwbTclZUP799p3sLb6Y2L99WNb61CxiiH6xFFaoSjq2eX6KphDHlk-OQfjnXswKmmlK-kGMwQAsyJzgLCI6BkkqQikIGjcBDn-r2Usstm8PoOl80phioQxvN5QAOCxh81VTCuH4DwlVILvB_QEIJJY_Z6XBwcjTqtS0depqTP7RZZn1f2SDznfCcU9ZFXq5cREV7stizwvgyzjg3nnShkC7KZIacNco4a3IePmGdoizsUwbWC3MuXWwiF3NlpFS4TvBUoHGBR6azy96tWJqatt45td24TOu4e6DSTaZ02es19eemzscf6HZW0pG22r5Mqb28VIh8eZe9XD9GPaXgiy5seYU0uDKLhAhpYu9rWfnrd9Kz5CgJeBSKZ_9Gvse2Ryefxun4w-Tjc3YnoO2BOtFoh3WqxZV9wW6bL9VsudhtVeUGZkwWeg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQQLAb_hEdAw4SSCCoyI8T29xNa6shpirKQNtd5Di2VmlNpjZD7I5H4F14I56Ec5y0lAuQEHeNepxY8fn5nHP8Hcaec4x6UWLiYeqEpiM5RHmr4yGBj9RqrqrQ-GYTYjqVJycq6_uc0lmYjh9i_cGNLMP7azJwe165nm2ASDIxdKnjHPcQkk6TX-UJulmidubZOo2A6ECsUswEdfrKdxz_dnP07zHpF9DchKs-3kxu_fdMb7ObPdSEvU437rArtr7LbqxOIi_xd98B_fTyHvt-hIuFYQyyZla3P75-o2sLLzNbNa9aj27tAiYYBb2iQtvAkdXzM3SUcEjV5Dhk1Mz1rIZMU8EXrheM0X_MCcwCQmOgkhKUooRBp-4wItZearhlKzi4rBadIwbqz0ZzeQd7NYy_aCIw9ndAsAr5Kb4PyKmc5D77NBl_3D8Y9g0dhppTNLRlacNQ2agMnQicU9YlQaVcQpQ9ZRpYYUKZlpybQLpYSJeUskRtMso4ayoeP2BbdVPbhwxsEFdcutQkLuXKSKlwlxCoSOP2jhzngL1eLWlherZzarpxVvise6SKzUUZsBdr6fOO5eMPcrsr7Sh6W18W1FxeKsS9fMCerf9GK6XUi65tc4EyuC9LhIhpYm-8rvz1OcVxvp9HPInFzr-JP2XXs9GkOHw__fCIbUf0bcBXGe2yrXZxYR-za-ZzO1sunng7-QnjfxRj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+Point%E2%80%90Scale+%28Pedo%29transfer+Functions+to+Seamless+Large%E2%80%90Domain+Parameter+Estimates+for+High%E2%80%90Resolution+Distributed+Hydrologic+Modeling%3A+An+Example+for+the+Rhine+River&rft.jtitle=Water+resources+research&rft.au=Imhoff%2C+R+O&rft.au=van%C2%A0Verseveld%2C+W.+J.&rft.au=van%C2%A0Osnabrugge%2C+B.&rft.au=Weerts%2C+A.+H.&rft.date=2020-04-01&rft.issn=0043-1397&rft.volume=56&rft.issue=4+p.e2019WR026807-&rft_id=info:doi/10.1029%2F2019WR026807&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon