Scaling Point‐Scale (Pedo)transfer Functions to Seamless Large‐Domain Parameter Estimates for High‐Resolution Distributed Hydrologic Modeling: An Example for the Rhine River
Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model p...
Uložené v:
| Vydané v: | Water resources research Ročník 56; číslo 4 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
01.04.2020
|
| Predmet: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETact) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ETact dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr−1 higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETact fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue.
Plain Language Summary
Hydrologic models are used for flood and drought predictions. Most models have parameters, and to increase model performance, hydrologists often tune these parameters by calibration. State‐of‐the‐art gridded hydrologic models have parameter sets per grid cell, leading to many parameters and making current calibration procedures far from ideal. Here, we tested the use of well‐known (pedo)transfer functions from literature to estimate these parameter values, something which can reduce the calibration burden. By using parameter‐specific upscaling rules to derive seamless parameter maps for the wflow_sbm model, which explicitly takes subsurface lateral flows into account, this gives a model which is scalable to different grid cell sizes. We assessed the approach on multiple model resolutions, and we found consistent parameter fields and the preservation of vertical fluxes. Only routed discharge, a key output, deteriorates for headwater catchments on coarser resolutions. We attribute this to model structure and the derivation procedure of the river network on different scales, resulting in the loss of lateral flow representation on coarser resolutions. Nevertheless, discharge and evapotranspiration simulations are similar to observations and other models. Hence, regionalization with literature transfer functions and upscaling techniques can further lower the calibration burden and enable predictions in ungauged basins.
Key Points
Seamless distributed parameter maps can be obtained for the gridded hydrologic model wflow_sbm with transfer functions from literature
Application of wflow_sbm with these seamless parameter maps yields simulation results with high KGE and NSE across the Rhine basin
Fluxes matched across model scales for evapotranspiration, but this match was considerably less for fluxes affected by (sub)surface flows |
|---|---|
| AbstractList | Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETact) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ETact dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr−1 higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETact fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue. Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ET act ) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ET act dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr −1 higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ET act fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue. Hydrologic models are used for flood and drought predictions. Most models have parameters, and to increase model performance, hydrologists often tune these parameters by calibration. State‐of‐the‐art gridded hydrologic models have parameter sets per grid cell, leading to many parameters and making current calibration procedures far from ideal. Here, we tested the use of well‐known (pedo)transfer functions from literature to estimate these parameter values, something which can reduce the calibration burden. By using parameter‐specific upscaling rules to derive seamless parameter maps for the wflow_sbm model, which explicitly takes subsurface lateral flows into account, this gives a model which is scalable to different grid cell sizes. We assessed the approach on multiple model resolutions, and we found consistent parameter fields and the preservation of vertical fluxes. Only routed discharge, a key output, deteriorates for headwater catchments on coarser resolutions. We attribute this to model structure and the derivation procedure of the river network on different scales, resulting in the loss of lateral flow representation on coarser resolutions. Nevertheless, discharge and evapotranspiration simulations are similar to observations and other models. Hence, regionalization with literature transfer functions and upscaling techniques can further lower the calibration burden and enable predictions in ungauged basins. Seamless distributed parameter maps can be obtained for the gridded hydrologic model wflow_sbm with transfer functions from literature Application of wflow_sbm with these seamless parameter maps yields simulation results with high KGE and NSE across the Rhine basin Fluxes matched across model scales for evapotranspiration, but this match was considerably less for fluxes affected by (sub)surface flows Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETₐcₜ) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ETₐcₜ dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr⁻¹ higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETₐcₜ fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue. Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm) was parameterized for the Rhine basin in Europe based on point‐scale (pedo)transfer functions, without further calibration of effective model parameters on discharge. Parameters were estimated on the data resolution, followed by upscaling of parameter fields to the model resolution. The method was tested using a 6‐hourly time step at four model resolutions (1.2, 2.4, 3.6, and 4.8 km), followed by a validation with discharge observations and a comparison with actual evapotranspiration (ETact) estimates from an independent model (DMET Land Surface Analysis Satellite Application Facility). Additionally, the scalability of parameter fields and simulated fluxes was tested. Validation of simulated discharges yielded Kling‐Gupta Efficiency (KGE) values ranging from 0.6 to 0.9, except for the Alps where a volume bias caused lower performance. Catchment‐averaged temporal ETact dynamics were comparable with independent ET estimates (KGE ≈ 0.7), although wflow_sbm model simulations were on average 115 mm yr−1 higher. Spatially, the two models were less in agreement (SPAEF = 0.10), especially around the Rhine valley. Consistent parameter fields were obtained, and by running the model at the different resolutions, preserved ETact fluxes were found across the scales. For recharge, fluxes were less consistent with relative errors around 30% for regions with high drainage densities. However, catchment‐averaged fluxes were better preserved. Routed discharge in headwaters was not consistent across scales, although simulations for the main Rhine River were. Better processing (scale independent) of the river and drainage network may overcome this issue. Plain Language Summary Hydrologic models are used for flood and drought predictions. Most models have parameters, and to increase model performance, hydrologists often tune these parameters by calibration. State‐of‐the‐art gridded hydrologic models have parameter sets per grid cell, leading to many parameters and making current calibration procedures far from ideal. Here, we tested the use of well‐known (pedo)transfer functions from literature to estimate these parameter values, something which can reduce the calibration burden. By using parameter‐specific upscaling rules to derive seamless parameter maps for the wflow_sbm model, which explicitly takes subsurface lateral flows into account, this gives a model which is scalable to different grid cell sizes. We assessed the approach on multiple model resolutions, and we found consistent parameter fields and the preservation of vertical fluxes. Only routed discharge, a key output, deteriorates for headwater catchments on coarser resolutions. We attribute this to model structure and the derivation procedure of the river network on different scales, resulting in the loss of lateral flow representation on coarser resolutions. Nevertheless, discharge and evapotranspiration simulations are similar to observations and other models. Hence, regionalization with literature transfer functions and upscaling techniques can further lower the calibration burden and enable predictions in ungauged basins. Key Points Seamless distributed parameter maps can be obtained for the gridded hydrologic model wflow_sbm with transfer functions from literature Application of wflow_sbm with these seamless parameter maps yields simulation results with high KGE and NSE across the Rhine basin Fluxes matched across model scales for evapotranspiration, but this match was considerably less for fluxes affected by (sub)surface flows |
| Author | van Osnabrugge, B. van Verseveld, W. J. Imhoff, R. O. Weerts, A. H. |
| Author_xml | – sequence: 1 givenname: R. O. orcidid: 0000-0002-4096-3528 surname: Imhoff fullname: Imhoff, R. O. email: Ruben.Imhoff@deltares.nl organization: Wageningen University & Research – sequence: 2 givenname: W. J. orcidid: 0000-0003-3311-738X surname: van Verseveld fullname: van Verseveld, W. J. organization: Department of Inland Water Systems – sequence: 3 givenname: B. orcidid: 0000-0002-3156-9107 surname: van Osnabrugge fullname: van Osnabrugge, B. organization: Wageningen University & Research – sequence: 4 givenname: A. H. orcidid: 0000-0002-3249-8363 surname: Weerts fullname: Weerts, A. H. organization: Wageningen University & Research |
| BookMark | eNp9kcFu1DAURSNUJKaFHR9giU2RGLBjJ47ZVdNpB2kQoxTUZeQ4zzOuEntqO8Ds-gn8C3_El-BoWKBKsPGTpXPvu3r3NDuxzkKWvST4LcG5eJdjIm5rnJcV5k-yGRGMzbng9CSbYczonFDBn2WnIdxhTFhR8ln280bJ3tgt2jhj46-HH9Mf0PkGOvc6emmDBo-uRquicTag6NANyKGHENBa-i0kyaUbpLFoI70cICZ8GaIZZISAtPNoZba7RNUQXD9OLujShOhNO0bo0OrQede7rVHoo-tgyvIeXVi0_C6HfUoyOcQdoHpnbHrNV_DPs6da9gFe_Jln2Zer5efFar7-dP1hcbGeS4YJn0PbAiEC8pZojrUWoAvcCV1wUoq2xMAVqcqWMYUrTXmli7ZqWUmVUBpUx-hZdn703Xt3P0KIzWCCgr6XFtwYmrzkRcE5rXhCXz1C79zobUrX5FSwSuCCT4ZvjpTyLgQPutn7dCh_aAhupgabvxtMeP4IVybK6YKpGNP_S0SPom-mh8N_FzS39aLOWUE5_Q0JNLTI |
| CitedBy_id | crossref_primary_10_1038_s43247_021_00180_0 crossref_primary_10_1016_j_jhydrol_2023_130587 crossref_primary_10_1016_j_scitotenv_2024_172678 crossref_primary_10_3389_frwa_2023_1166124 crossref_primary_10_1016_j_envsoft_2024_106099 crossref_primary_10_3390_rs15061642 crossref_primary_10_5194_hess_25_3137_2021 crossref_primary_10_1038_s41597_024_03825_9 crossref_primary_10_1016_j_envsoft_2021_105168 crossref_primary_10_1016_j_gsd_2023_100953 crossref_primary_10_5194_hess_28_5107_2024 crossref_primary_10_3389_frwa_2021_713537 crossref_primary_10_1111_jfr3_12846 crossref_primary_10_5194_hess_25_5287_2021 crossref_primary_10_1080_02626667_2025_2496280 crossref_primary_10_3390_w16223252 crossref_primary_10_1111_jfr3_12787 crossref_primary_10_3390_hydrology9090158 crossref_primary_10_1016_j_pdisas_2020_100076 crossref_primary_10_5194_hess_29_1483_2025 crossref_primary_10_5194_hess_25_2353_2021 crossref_primary_10_5194_hess_28_3079_2024 crossref_primary_10_1029_2022WR031966 crossref_primary_10_1029_2022WR033075 crossref_primary_10_5194_hess_26_4407_2022 crossref_primary_10_5194_hess_28_5011_2024 crossref_primary_10_3390_w17182698 crossref_primary_10_3389_frwa_2023_1332678 crossref_primary_10_5194_nhess_22_3641_2022 crossref_primary_10_1029_2021WR030661 crossref_primary_10_1002_hyp_70149 crossref_primary_10_3390_atmos11030237 crossref_primary_10_7717_peerj_9558 |
| Cites_doi | 10.1016/j.jhydrol.2009.07.059 10.1175/2009JCLI3066.1 10.1016/S0022-1694(01)00393-6 10.1002/2015WR017173 10.1080/01431161003743199 10.1002/2016WR019430 10.1016/0002-1571(71)90034-3 10.5194/hess-11-532-2007 10.1175/2008JHM1068.1 10.1029/2007WR006168 10.1016/S0022-1694(99)00095-5 10.1016/j.advwatres.2012.08.008 10.1111/ejss.12192 10.1175/JHM-D-15-0054.1 10.1371/journal.pone.0169748 10.1002/2013WR014639 10.1016/j.rse.2017.07.001 10.5194/gmd-11-1873-2018 10.1007/978-94-009-2352-2_10 10.1016/0022-1694(89)90101-7 10.1016/S0022-1694(98)00115-2 10.1016/0022-1694(70)90255-6 10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2 10.1016/j.envsoft.2009.10.004 10.5194/hess-21-3427-2017 10.2307/2401739 10.1175/2009JHM1034.1 10.1016/S0022-1694(03)00257-9 10.1029/2008WR007574 10.5194/tc-7-141-2013 10.1002/2017RG000581 10.1016/j.jhydrol.2009.08.003 10.1002/hyp.1425 10.5194/hess-15-3355-2011 10.1029/2005RG000183 10.1002/qj.49710544304 10.1016/j.jhydrol.2016.03.026 10.1657/1938-4246-46.4.933 10.1016/j.jhydrol.2019.05.084 10.1002/2017WR020401 10.2136/vzj2002.2610 10.1016/j.cliser.2016.01.001 10.5194/hess-20-1151-2016 10.1002/2015WR017498 10.1029/2010WR009791 10.1016/j.gloplacha.2006.07.018 10.1016/j.jhydrol.2008.03.027 10.1016/S0022-1694(97)00041-3 10.5194/hess-21-4323-2017 10.1016/j.jhydrol.2005.09.008 10.5194/hess-10-609-2006 10.5194/hess-23-1453-2019 10.1002/2015WR017910 10.1002/2015WR017780 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 10.5194/gmd-12-2501-2019 10.1016/j.jhydrol.2012.11.005 10.1016/j.landusepol.2011.07.003 10.1016/j.fcr.2016.02.013 10.1029/1999WR900051 10.1023/A:1010784727448 10.5194/tc-8-471-2014 10.1016/j.jhydrol.2016.02.018 10.1088/1748-9326/aa8359 10.1002/hyp.3360090305 10.1175/JHM-D-15-0006.1 10.1029/2012WR012195 10.1002/wrcr.20431 10.5194/hess-20-1069-2016 10.1016/S0168-1923(99)00105-7 10.1002/2017WR021201 10.1061/(ASCE)0733-9437(1986)112:1(39) 10.1016/j.jhydrol.2017.10.024 10.1016/S0304-3800(97)00054-9 10.5194/hess-9-347-2005 10.1029/2008WR007327 10.1016/0022-1694(89)90111-X 10.1016/j.jhydrol.2011.08.030 10.5194/hess-16-3607-2012 10.5194/hess-22-1299-2018 10.1029/2010JD015139 10.1029/2009WR007707 |
| ContentType | Journal Article |
| Copyright | 2020. The Authors. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. The Authors. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2019WR026807 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2019WR026807 WRCR24537 |
| Genre | article |
| GeographicLocations | Rhine River Europe |
| GeographicLocations_xml | – name: Rhine River – name: Europe |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a4017-ebbe119e2b1f70ff9ef50d9f57169b60e7c186b44c08f378f5b8b463c9cfecd43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538987800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:18:30 EDT 2025 Fri Aug 29 22:19:31 EDT 2025 Sat Nov 29 01:36:44 EST 2025 Tue Nov 18 22:36:14 EST 2025 Wed Jan 22 16:35:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4017-ebbe119e2b1f70ff9ef50d9f57169b60e7c186b44c08f378f5b8b463c9cfecd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4096-3528 0000-0003-3311-738X 0000-0002-3249-8363 0000-0002-3156-9107 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR026807 |
| PQID | 2394890574 |
| PQPubID | 105507 |
| PageCount | 28 |
| ParticipantIDs | proquest_miscellaneous_2675577387 proquest_journals_2394890574 crossref_primary_10_1029_2019WR026807 crossref_citationtrail_10_1029_2019WR026807 wiley_primary_10_1029_2019WR026807_WRCR24537 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2009; 45 2011; 116 1979; 105 1964; 7 1975; 17 2019; 12 2016; 189 2003; 17 2001; 49 2012; 16 2011; 15 2013; 7 2017; 555 1890; 37 1978 2010; 23 1971; 9 1989; 105 2009; 10 2010; 25 2013; 55 2011; 409 2000 2019; 23 1997; 101 1998; 207 2003; 282 2013; 477 1984 1999; 98 2012; 29 2008; 356 2014; 8 2006; 324 2014; 50 2017; 203 1989 2015; 12 1995; 9 2013; 49 2006; 10 2015; 51 1986; 112 2010 2002; 72 2017; 21 1997 2002; 2 2016; 52 1970; 10 2009; 376 2007 2014; 46 2009; 377 2011; 32 1994 1999; 223 2004 2002 2016; 17 2018; 22 2007; 11 2007; 56 2001; 247 1995; 8 1997; 201 2017; 53 2016; 1 2010; 46 2016; 537 2020 2005; 9 2017; 55 2015; 66 2017; 12 1999; 35 2016; 20 2018 2019; 575 2017 2016; 535 2008; 44 2015 2011; 47 2018; 11 2007; 45 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 Görgen K. (e_1_2_10_29_1) 2010 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_63_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 Todini E. (e_1_2_10_82_1) 2002 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Van Bemmelen J. M. (e_1_2_10_86_1) 1890; 37 Brooks R. (e_1_2_10_13_1) 1964; 7 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_69_1 e_1_2_10_42_1 Kuusisto E. (e_1_2_10_46_1) 1984 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 Feddes R. A. (e_1_2_10_26_1) 1978 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – volume: 66 start-page: 226 year: 2015 end-page: 238 article-title: New generation of hydraulic pedotransfer functions for Europe publication-title: European Journal of Soil Science – volume: 535 start-page: 509 year: 2016 end-page: 524 article-title: The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for stream flow prediction publication-title: Journal of Hydrology – volume: 189 start-page: 68 year: 2016 end-page: 74 article-title: Root distribution by depth for temperate agricultural crops publication-title: Field Crops Research – volume: 12 start-page: 105,002 issue: 10 year: 2017 article-title: Intercomparison of regional‐scale hydrological models and climate change impacts projected for 12 large river basins worldwide synthesis publication-title: Environmental Research Letters – volume: 55 start-page: 1199 year: 2017 end-page: 1256 article-title: Pedotransfer functions in Earth system science: Challenges and perspectives publication-title: Reviews of Geophysics – volume: 46 year: 2010 article-title: Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale publication-title: Water Resources Research – volume: 45 year: 2007 article-title: The shuttle radar topography mission publication-title: Reviews of Geophysics – volume: 356 start-page: 56 issue: 1‐2 year: 2008 end-page: 69 article-title: A Bayesian approach to decision‐making under uncertainty: An application to real‐time forecasting in the river Rhine publication-title: Journal of Hydrology – volume: 9 start-page: 251 issue: 3‐4 year: 1995 end-page: 290 article-title: Scale issues in hydrological modelling: A review publication-title: Hydrological Processes – volume: 10 start-page: 282 issue: 3 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models part IA discussion of principles publication-title: Journal of Hydrology – volume: 44 year: 2008 article-title: Water balance versus land surface model in the simulation of Rhine river discharges publication-title: Water Resources Research – volume: 10 start-page: 609 issue: 5 year: 2006 end-page: 618 article-title: Searching for the Holy Grail of scientific hydrology: Q =(S, R, Δt)A as closure publication-title: Hydrology and Earth System Sciences – volume: 49 start-page: 105 issue: 1 year: 2001 end-page: 128 article-title: Impact of climate change on hydrological regimes and water resources management in the Rhine basin publication-title: Climatic Change – volume: 50 start-page: 6874 year: 2014 end-page: 6891 article-title: The benefits of using remotely sensed soil moisture in parameter identification of large‐scale hydrological models publication-title: Water Resources Research – volume: 47 year: 2011 article-title: Global monthly water stress: 1. Water balance and water availability publication-title: Water Resources Research – volume: 23 start-page: 1453 issue: 3 year: 2019 end-page: 1467 article-title: Contribution of potential evaporation forecasts to 10‐day streamflow forecast skill for the Rhine River publication-title: Hydrology and Earth System Sciences – volume: 17 start-page: 1373 issue: 5 year: 2016 end-page: 1382 article-title: A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application publication-title: Journal of Hydrometeorology – volume: 52 start-page: 2350 year: 2016 end-page: 2365 article-title: Improving the theoretical underpinnings of process‐based hydrologic models publication-title: Water Resources Research – volume: 21 start-page: 3427 issue: 7 year: 2017 end-page: 3440 article-title: The evolution of process‐based hydrologic models: Historical challenges and the collective quest for physical realism publication-title: Hydrology and Earth System Sciences – volume: 537 start-page: 45 year: 2016 end-page: 60 article-title: An overview of current applications, challenges, and future trends in distributed process‐based models in hydrology publication-title: Journal of Hydrology – volume: 377 start-page: 80 issue: 1 year: 2009 end-page: 91 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: Journal of Hydrology – volume: 16 start-page: 3607 issue: 10 year: 2012 end-page: 3620 article-title: A bare ground evaporation revision in the ECMWF land‐surface scheme: Evaluation of its impact using ground soil moisture and satellite microwave data publication-title: Hydrology and Earth System Sciences – volume: 203 start-page: 185 year: 2017 end-page: 215 article-title: ESA CCI soil moisture for improved Earth system understanding: State‐of‐the art and future directions publication-title: Remote Sensing of Environment – volume: 12 start-page: 2501 issue: 6 year: 2019 end-page: 2521 article-title: The multiscale routing model mRM v1.0: Simple river routing at resolutions from 1 to 50 km publication-title: Geoscientific Model Development – volume: 29 start-page: 329 issue: 2 year: 2012 end-page: 338 article-title: European soil data centre: Response to European policy support and public data requirements publication-title: Land Use Policy – volume: 324 start-page: 10 issue: 1 year: 2006 end-page: 23 article-title: A global sensitivity analysis tool for the parameters of multi‐variable catchment models publication-title: Journal of Hydrology – volume: 25 start-page: 489 issue: 4 year: 2010 end-page: 502 article-title: A software framework for construction of process‐based stochastic spatio‐temporal models and data assimilation publication-title: Environmental Modelling & Software – volume: 15 start-page: 3355 issue: 11 year: 2011 end-page: 3366 article-title: Evaluation of two precipitation data sets for the Rhine River using streamflow simulations publication-title: Hydrology and Earth System Sciences – volume: 1 start-page: 6 year: 2016 end-page: 11 article-title: Improving predictions and management of hydrological extremes through climate services: www.imprex.eu publication-title: Climate Services – volume: 8 start-page: 471 issue: 2 year: 2014 end-page: 485 article-title: Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: Methodology and applications publication-title: The Cryosphere – year: 2007 – volume: 20 start-page: 1151 issue: 3 year: 2016 end-page: 1176 article-title: The importance of topography‐controlled sub‐grid process heterogeneity and semi‐quantitative prior constraints in distributed hydrological models publication-title: Hydrology and Earth System Sciences – volume: 555 start-page: 257 year: 2017 end-page: 277 article-title: Estimating predictive hydrological uncertainty by dressing deterministic and ensemble forecasts: A comparison, with application to Meuse and Rhine publication-title: Journal of Hydrology – volume: 12 start-page: 10,078 year: 2015 end-page: 10,091 article-title: Accelerating advances in continental domain hydrologic modeling publication-title: Water Resources Research – volume: 23 start-page: 679 issue: 3 year: 2010 end-page: 699 article-title: Changes in streamflow dynamics in the Rhine basin under three high‐resolution regional climate scenarios publication-title: Journal of Climate – volume: 21 start-page: 4323 issue: 9 year: 2017 end-page: 4346 article-title: Toward seamless hydrologic predictions across spatial scales publication-title: Hydrology and Earth System Sciences – volume: 52 start-page: 7779 year: 2016 end-page: 7792 article-title: Improving the realism of hydrologic model functioning through multivariate parameter estimation publication-title: Water Resources Research – year: 2010 – year: 1984 – volume: 101 start-page: 303 issue: 2‐3 year: 1997 end-page: 323 article-title: Monthly snowmelt modelling for large‐scale climate change studies using the degree day approach publication-title: Ecological Modelling – volume: 575 start-page: 1308 year: 2019 end-page: 1327 article-title: Hydrological modelling at multiple sub‐daily time steps: Model improvement via flux‐matching publication-title: Journal of Hydrology – volume: 477 start-page: 72 year: 2013 end-page: 85 article-title: Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China publication-title: Journal of Hydrology – volume: 7 start-page: 26 year: 1964 end-page: 28 article-title: Hydraulic properties of porous media publication-title: Hydrology Papers, Colorado State University – volume: 7 start-page: 141 issue: 1 year: 2013 end-page: 151 article-title: An estimate of global glacier volume publication-title: The Cryosphere – volume: 2 start-page: 261 issue: 1 year: 2002 end-page: 272 article-title: Spatial averaging of van Genuchten hydraulic parameters for steady‐state flow in heterogeneous soils publication-title: Vadose Zone Journal – volume: 10 start-page: 953 issue: 4 year: 2009 end-page: 968 article-title: Seasonal predictability of European discharge: NAO and hydrological response time publication-title: Journal of Hydrometeorology – volume: 49 start-page: 360 year: 2013 end-page: 379 article-title: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations publication-title: Water Resources Research – start-page: 275 year: 1989 end-page: 300 – volume: 72 start-page: 311 issue: 3 year: 2002 end-page: 328 article-title: The global biogeography of roots publication-title: Ecological Monographs – volume: 98 start-page: 279 year: 1999 end-page: 293 article-title: Regionalisation of parameters for a conceptual rainfall‐runoff model publication-title: Agricultural and Forest Meteorology – volume: 116 year: 2011 article-title: The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements publication-title: Journal of Geophysical Research – volume: 45 year: 2009 article-title: Effects of land use changes on stream flow generation in the Rhine basin publication-title: Water Resources Research – volume: 37 start-page: 279 year: 1890 end-page: 290 article-title: Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. s. w. im Ackerboden publication-title: Die Landwirthschaftlichen Versuchs‐Stationen – volume: 35 start-page: 2173 issue: 7 year: 1999 end-page: 2187 article-title: Distributed modeling of storm flow generation in an Amazonian rain forest catchment: Effects of model parameterization publication-title: Water Resources Research – volume: 112 start-page: 39 issue: 1 year: 1986 end-page: 53 article-title: Roughness coefficients for routing surface runoff publication-title: Journal of Irrigation and Drainage Engineering – volume: 8 start-page: 2716 issue: 11 year: 1995 end-page: 2748 article-title: An improved land surface parameterization scheme in the ECMWF model and its validation publication-title: Journal of Climate – volume: 49 start-page: 5700 year: 2013 end-page: 5714 article-title: Toward computationally efficient large‐scale hydrologic predictions with a multiscale regionalization scheme publication-title: Water Resources Research – year: 2018 – volume: 11 start-page: 1873 issue: 5 year: 2018 end-page: 1886 article-title: The SPAtial EFficiency metric (SPAEF): Multiple‐component evaluation of spatial patterns for optimization of hydrological models publication-title: Geoscientific Model Development – year: 1994 – volume: 17 start-page: 367 year: 1975 end-page: 380 article-title: A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands publication-title: Journal of Applied Ecology – volume: 10 start-page: 623 issue: 3 year: 2009 end-page: 643 article-title: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System publication-title: Journal of Hydrometeorology – volume: 22 start-page: 1299 issue: 2 year: 2018 end-page: 1315 article-title: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model publication-title: Hydrology and Earth System Sciences – volume: 376 start-page: 463 issue: 3‐4 year: 2009 end-page: 475 article-title: Verification of ensemble flow forecasts for the River Rhine publication-title: Journal of Hydrology – volume: 247 start-page: 239 issue: 3‐4 year: 2001 end-page: 262 article-title: Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system publication-title: Journal of Hydrology – volume: 51 start-page: 4923 year: 2015 end-page: 4947 article-title: Global hydrology 2015: State, trends, and directions publication-title: Water Resources Research – volume: 17 start-page: 287 issue: 1 year: 2016 end-page: 307 article-title: Multiscale and multivariate evaluation of water fluxes and states over European river basins publication-title: Journal of Hydrometeorology – year: 2004 – volume: 32 start-page: 2725 issue: 10 year: 2011 end-page: 2744 article-title: The satellite application facility for land surface analysis publication-title: International Journal of Remote Sensing – year: 1997 – volume: 55 start-page: 149 year: 2013 end-page: 164 article-title: Improving the degree‐day method for sub‐daily melt simulations with physically‐based diurnal variations publication-title: Advances in Water Resources – year: 2015 – volume: 105 start-page: 43 issue: 443 year: 1979 end-page: 55 article-title: An analytical model of rainfall interception by forests publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 409 start-page: 337 issue: 1 year: 2011 end-page: 349 article-title: Model parameter analysis using remotely sensed pattern information in a multiconstraint framework publication-title: Journal of Hydrology – volume: 51 start-page: 7090 year: 2015 end-page: 7129 article-title: Physically based modeling in catchment hydrology at 50: Survey and outlook publication-title: Water Resources Research – volume: 56 start-page: 101 year: 2007 end-page: 110 article-title: The GLIMS geospatial glacier database: A new tool for studying glacier change publication-title: Global and Planetary Change – volume: 46 start-page: 933 issue: 4 year: 2014 end-page: 945 article-title: The new Swiss Glacier Inventory SGI2010: Relevance of using high‐resolution source data in areas dominated by very small glaciers publication-title: Arctic, Antarctic, and Alpine Research – volume: 53 start-page: 9284 year: 2017 end-page: 9303 article-title: genRE: A method to extend gridded precipitation climatology data sets in near real‐time for hydrological forecasting purposes publication-title: Water Resources Research – volume: 12 issue: 2 year: 2017 article-title: SoilGrids250m: Global gridded soil information based on machine learning publication-title: PloS one – year: 2000 – start-page: 16 year: 1978 end-page: 30 – volume: 9 start-page: 367 year: 1971 end-page: 384 article-title: A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine publication-title: Agricultural Meteorology – volume: 223 start-page: 1 issue: 1‐2 year: 1999 end-page: 16 article-title: Developing the snow component of a distributed hydrological model: A step‐wise approach based on multiobjective analysis publication-title: Journal of Hydrology – volume: 201 start-page: 272 issue: 1‐4 year: 1997 end-page: 288 article-title: Development and test of the distributed HBV‐96 hydrological model publication-title: Journal of Hydrology – volume: 20 start-page: 1069 issue: 3 year: 2016 end-page: 1079 article-title: HESS opinions: The need for process‐based evaluation of large‐domain hyper resolution models publication-title: Hydrology and Earth System Sciences – volume: 46 year: 2010 article-title: Simulating low‐probability peak discharges for the Rhine basin using resampled climate modeling data publication-title: Water Resources Research – start-page: 471 year: 2002 end-page: 506 – volume: 9 start-page: 347 issue: 4 year: 2005 end-page: 364 article-title: Flood forecasting using a fully distributed model: Application of the TOPKAPI model to the Upper Xixian Catchment publication-title: Hydrology and Earth System Sciences Discussions – volume: 207 start-page: 32 issue: 1‐2 year: 1998 end-page: 41 article-title: Estimation of rainfall storage capacity in the canopies of cypress wet lands and slash pine uplands in North‐Central Florida publication-title: Journal of Hydrology – volume: 53 start-page: 8020 year: 2017 end-page: 8040 article-title: Towards seamless large‐domain parameter estimation for hydrologic models publication-title: Water Resources Research – volume: 17 start-page: 2101 issue: 11 year: 2003 end-page: 2111 article-title: Downward approach to hydrological prediction publication-title: Hydrological Processes – volume: 282 start-page: 104 issue: 1‐4 year: 2003 end-page: 115 article-title: Temperature index melt modelling in mountain areas publication-title: Journal of Hydrology – volume: 11 start-page: 532 issue: 1 year: 2007 end-page: 549 article-title: Development of a high resolution grid‐based river flow model for use with regional climate model output publication-title: Hydrology and Earth System Sciences Discussions – volume: 105 start-page: 317 issue: 3‐4 year: 1989 end-page: 334 article-title: Rainfall interception by bracken in open habitats—Relations between leaf area, canopy storage and drainage rate publication-title: Journal of Hydrology – year: 2020 – volume: 105 start-page: 157 issue: 1‐2 year: 1989 end-page: 172 article-title: Changing ideas in hydrologythe case of physically‐based models publication-title: Journal of Hydrology – year: 2017 – ident: e_1_2_10_68_1 doi: 10.1016/j.jhydrol.2009.07.059 – ident: e_1_2_10_37_1 doi: 10.1175/2009JCLI3066.1 – ident: e_1_2_10_88_1 doi: 10.1016/S0022-1694(01)00393-6 – ident: e_1_2_10_9_1 doi: 10.1002/2015WR017173 – ident: e_1_2_10_84_1 doi: 10.1080/01431161003743199 – ident: e_1_2_10_63_1 doi: 10.1002/2016WR019430 – ident: e_1_2_10_69_1 doi: 10.1016/0002-1571(71)90034-3 – volume-title: Snow accumulation and snowmelt in Finland year: 1984 ident: e_1_2_10_46_1 – ident: e_1_2_10_5_1 doi: 10.5194/hess-11-532-2007 – ident: e_1_2_10_4_1 doi: 10.1175/2008JHM1068.1 – ident: e_1_2_10_35_1 doi: 10.1029/2007WR006168 – ident: e_1_2_10_19_1 doi: 10.1016/S0022-1694(99)00095-5 – ident: e_1_2_10_81_1 doi: 10.1016/j.advwatres.2012.08.008 – ident: e_1_2_10_83_1 doi: 10.1111/ejss.12192 – ident: e_1_2_10_64_1 doi: 10.1175/JHM-D-15-0054.1 – ident: e_1_2_10_12_1 – volume: 7 start-page: 26 year: 1964 ident: e_1_2_10_13_1 article-title: Hydraulic properties of porous media publication-title: Hydrology Papers, Colorado State University – ident: e_1_2_10_33_1 doi: 10.1371/journal.pone.0169748 – ident: e_1_2_10_97_1 doi: 10.1002/2013WR014639 – ident: e_1_2_10_18_1 doi: 10.1016/j.rse.2017.07.001 – ident: e_1_2_10_41_1 doi: 10.5194/gmd-11-1873-2018 – ident: e_1_2_10_66_1 doi: 10.1007/978-94-009-2352-2_10 – ident: e_1_2_10_7_1 doi: 10.1016/0022-1694(89)90101-7 – ident: e_1_2_10_48_1 doi: 10.1016/S0022-1694(98)00115-2 – start-page: 16 volume-title: Simulation of field water use and crop yield year: 1978 ident: e_1_2_10_26_1 – ident: e_1_2_10_55_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_10_96_1 doi: 10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2 – ident: e_1_2_10_39_1 doi: 10.1016/j.envsoft.2009.10.004 – ident: e_1_2_10_14_1 doi: 10.5194/hess-21-3427-2017 – ident: e_1_2_10_40_1 – ident: e_1_2_10_93_1 – ident: e_1_2_10_70_1 doi: 10.2307/2401739 – ident: e_1_2_10_10_1 doi: 10.1175/2009JHM1034.1 – ident: e_1_2_10_62_1 – ident: e_1_2_10_34_1 doi: 10.1016/S0022-1694(03)00257-9 – ident: e_1_2_10_36_1 doi: 10.1029/2008WR007574 – ident: e_1_2_10_31_1 doi: 10.5194/tc-7-141-2013 – ident: e_1_2_10_90_1 doi: 10.1002/2017RG000581 – ident: e_1_2_10_6_1 – ident: e_1_2_10_32_1 doi: 10.1016/j.jhydrol.2009.08.003 – ident: e_1_2_10_77_1 doi: 10.1002/hyp.1425 – start-page: 471 volume-title: Mathematical models of large watershed hydrology year: 2002 ident: e_1_2_10_82_1 – ident: e_1_2_10_60_1 doi: 10.5194/hess-15-3355-2011 – ident: e_1_2_10_24_1 doi: 10.1029/2005RG000183 – ident: e_1_2_10_30_1 doi: 10.1002/qj.49710544304 – ident: e_1_2_10_25_1 doi: 10.1016/j.jhydrol.2016.03.026 – ident: e_1_2_10_28_1 doi: 10.1657/1938-4246-46.4.933 – ident: e_1_2_10_27_1 doi: 10.1016/j.jhydrol.2019.05.084 – ident: e_1_2_10_53_1 doi: 10.1002/2017WR020401 – ident: e_1_2_10_99_1 doi: 10.2136/vzj2002.2610 – ident: e_1_2_10_87_1 doi: 10.1016/j.cliser.2016.01.001 – ident: e_1_2_10_56_1 doi: 10.5194/hess-20-1151-2016 – ident: e_1_2_10_3_1 doi: 10.1002/2015WR017498 – ident: e_1_2_10_85_1 doi: 10.1029/2010WR009791 – ident: e_1_2_10_20_1 – ident: e_1_2_10_65_1 doi: 10.1016/j.gloplacha.2006.07.018 – ident: e_1_2_10_67_1 doi: 10.1016/j.jhydrol.2008.03.027 – ident: e_1_2_10_47_1 doi: 10.1016/S0022-1694(97)00041-3 – ident: e_1_2_10_72_1 doi: 10.5194/hess-21-4323-2017 – ident: e_1_2_10_89_1 doi: 10.1016/j.jhydrol.2005.09.008 – ident: e_1_2_10_8_1 doi: 10.5194/hess-10-609-2006 – ident: e_1_2_10_91_1 doi: 10.5194/hess-23-1453-2019 – ident: e_1_2_10_15_1 doi: 10.1002/2015WR017910 – ident: e_1_2_10_59_1 doi: 10.1002/2015WR017780 – ident: e_1_2_10_74_1 doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 – ident: e_1_2_10_80_1 doi: 10.5194/gmd-12-2501-2019 – ident: e_1_2_10_50_1 doi: 10.1016/j.jhydrol.2012.11.005 – ident: e_1_2_10_58_1 doi: 10.1016/j.landusepol.2011.07.003 – ident: e_1_2_10_23_1 doi: 10.1016/j.fcr.2016.02.013 – ident: e_1_2_10_95_1 doi: 10.1029/1999WR900051 – ident: e_1_2_10_52_1 doi: 10.1023/A:1010784727448 – ident: e_1_2_10_38_1 doi: 10.5194/tc-8-471-2014 – ident: e_1_2_10_45_1 doi: 10.1016/j.jhydrol.2016.02.018 – ident: e_1_2_10_42_1 doi: 10.1088/1748-9326/aa8359 – volume: 37 start-page: 279 year: 1890 ident: e_1_2_10_86_1 article-title: Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. s. w. im Ackerboden publication-title: Die Landwirthschaftlichen Versuchs‐Stationen – ident: e_1_2_10_11_1 doi: 10.1002/hyp.3360090305 – ident: e_1_2_10_16_1 doi: 10.1175/JHM-D-15-0006.1 – ident: e_1_2_10_44_1 doi: 10.1029/2012WR012195 – ident: e_1_2_10_43_1 doi: 10.1002/wrcr.20431 – ident: e_1_2_10_51_1 doi: 10.5194/hess-20-1069-2016 – ident: e_1_2_10_75_1 doi: 10.1016/S0168-1923(99)00105-7 – ident: e_1_2_10_54_1 – ident: e_1_2_10_92_1 doi: 10.1002/2017WR021201 – ident: e_1_2_10_21_1 doi: 10.1061/(ASCE)0733-9437(1986)112:1(39) – volume-title: Assessment of climate change impacts on discharge in the Rhine River Basin: Results of the RheinBlick2050 project year: 2010 ident: e_1_2_10_29_1 – ident: e_1_2_10_73_1 – ident: e_1_2_10_94_1 doi: 10.1016/j.jhydrol.2017.10.024 – ident: e_1_2_10_76_1 doi: 10.1016/S0304-3800(97)00054-9 – ident: e_1_2_10_49_1 doi: 10.5194/hess-9-347-2005 – ident: e_1_2_10_71_1 doi: 10.1029/2008WR007327 – ident: e_1_2_10_61_1 doi: 10.1016/0022-1694(89)90111-X – ident: e_1_2_10_78_1 doi: 10.1016/j.jhydrol.2011.08.030 – ident: e_1_2_10_98_1 – ident: e_1_2_10_2_1 doi: 10.5194/hess-16-3607-2012 – ident: e_1_2_10_17_1 doi: 10.5194/hess-22-1299-2018 – ident: e_1_2_10_22_1 – ident: e_1_2_10_57_1 doi: 10.1029/2010JD015139 – ident: e_1_2_10_79_1 doi: 10.1029/2009WR007707 |
| SSID | ssj0014567 |
| Score | 2.4982905 |
| Snippet | Moving toward high‐resolution gridded hydrologic models asks for novel parametrization approaches. A high‐resolution conceptual hydrologic model (wflow_sbm)... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | basins Calibration Catchments Computer simulation Discharge Drainage Drainage density Drainage network Drainage patterns Drought Estimates Europe Evapotranspiration Evapotranspiration estimates Fields Flood predictions Fluxes Headwater catchments Headwaters Hydrologic models hydrological modeling Hydrologists Hydrology Parameter estimation Parameterization Parameters pedotransfer functions Preservation Procedures regionalization Resolution Rhine River River networks Rivers satellites Scaling Simulation Surface analysis (chemical) Transfer functions water Watersheds |
| Title | Scaling Point‐Scale (Pedo)transfer Functions to Seamless Large‐Domain Parameter Estimates for High‐Resolution Distributed Hydrologic Modeling: An Example for the Rhine River |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR026807 https://www.proquest.com/docview/2394890574 https://www.proquest.com/docview/2675577387 |
| Volume | 56 |
| WOSCitedRecordID | wos000538987800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231211 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQhgQ3_CMKYzpIIIGgWn6c2OZuWlsNaaqijKm7ixzH1iqtCWozxO54BN6FN-JJOMdJS7kACXHXqMetFZ-fzz7H32HsJceoFyUmHqZOaLqSQ5S3Oh4S-Eit5qoKjW82IaZTeX6usv7Aje7CdPwQmwM3sgzvr8nAdbnqyQaIIxMjl5rluIWQdJl8NwxjQVod8WyTRUBwINYZZkI6feE7jj_YHv17SPqFM7fRqg83k7v_O9F77E4PNOGw04z77IatH7Bb63vIK_zc9z-_uH7Ivp_iUmEQg6yZ1-2Pr9_o2cLrzFbNm9ZjW7uECcZAr6bQNnBq9eIS3SScUC05Dhk1Cz2vIdNU7oWrBWP0HguCsoDAGKigBKUoXdApO4yIs5fabdkKjq-rZeeGgbqz0Vzew2EN4y-a6Iv9LyBUhfwCXwfkVEzyiJ1Nxh-Pjod9O4eh5hQLbVnaMFQ2KkMnAueUdUlQKZcQYU-ZBlaYUKYl5yaQLhbSJaUsUZeMMs6aiseP2U7d1PYJAxvEFZcuNYlLuTJSKtwjBCrSuLkjtzlgb9crWpie65xablwWPuceqWJ7UQbs1Ub6U8fx8Qe5vbVyFL2lrwpqLS8Vol4-YC82X6ONUuJF17a5QhnclSVCxDSxd15V_vo_xSw_yiOexOLpv4k_Y7cjOg7whUV7bKddXtnn7Kb53M5Xy31vG_tsd5RPzk7wafZh-hMynxOs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hFKlc-EcESjtIIIEgqn_W3t3eqiZRECGK3FbtzVqvd9VIjY0SF9Ebj8C78EY8SWdsJ4QDSIibLc_aK8_ftzuzM4y94uj1gsiEvdgJTUdyqOStDnsEPmKrucp9UzebEJOJPD9X07bPKZ2FaepDrDfcSDNqe00KThvSbbUBKpKJrkudJbiGkHSafAu_KqMO2-onw9PxOpCA-ECsgswEdtrcd3zD_ub4373SL6i5CVhrjzO8999zvc_utmATDhvpeMBu2eIh216dRV7iddsD_eL6EftxjOxCRwbTclZUP799p3sLb6Y2L99WNb61CxiiH6xFFaoSjq2eX6KphDHlk-OQfjnXswKmmlK-kGMwQAsyJzgLCI6BkkqQikIGjcBDn-r2Usstm8PoOl80phioQxvN5QAOCxh81VTCuH4DwlVILvB_QEIJJY_Z6XBwcjTqtS0depqTP7RZZn1f2SDznfCcU9ZFXq5cREV7stizwvgyzjg3nnShkC7KZIacNco4a3IePmGdoizsUwbWC3MuXWwiF3NlpFS4TvBUoHGBR6azy96tWJqatt45td24TOu4e6DSTaZ02es19eemzscf6HZW0pG22r5Mqb28VIh8eZe9XD9GPaXgiy5seYU0uDKLhAhpYu9rWfnrd9Kz5CgJeBSKZ_9Gvse2Ryefxun4w-Tjc3YnoO2BOtFoh3WqxZV9wW6bL9VsudhtVeUGZkwWeg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQQLAb_hEdAw4SSCCoyI8T29xNa6shpirKQNtd5Di2VmlNpjZD7I5H4F14I56Ec5y0lAuQEHeNepxY8fn5nHP8Hcaec4x6UWLiYeqEpiM5RHmr4yGBj9RqrqrQ-GYTYjqVJycq6_uc0lmYjh9i_cGNLMP7azJwe165nm2ASDIxdKnjHPcQkk6TX-UJulmidubZOo2A6ECsUswEdfrKdxz_dnP07zHpF9DchKs-3kxu_fdMb7ObPdSEvU437rArtr7LbqxOIi_xd98B_fTyHvt-hIuFYQyyZla3P75-o2sLLzNbNa9aj27tAiYYBb2iQtvAkdXzM3SUcEjV5Dhk1Mz1rIZMU8EXrheM0X_MCcwCQmOgkhKUooRBp-4wItZearhlKzi4rBadIwbqz0ZzeQd7NYy_aCIw9ndAsAr5Kb4PyKmc5D77NBl_3D8Y9g0dhppTNLRlacNQ2agMnQicU9YlQaVcQpQ9ZRpYYUKZlpybQLpYSJeUskRtMso4ayoeP2BbdVPbhwxsEFdcutQkLuXKSKlwlxCoSOP2jhzngL1eLWlherZzarpxVvise6SKzUUZsBdr6fOO5eMPcrsr7Sh6W18W1FxeKsS9fMCerf9GK6XUi65tc4EyuC9LhIhpYm-8rvz1OcVxvp9HPInFzr-JP2XXs9GkOHw__fCIbUf0bcBXGe2yrXZxYR-za-ZzO1sunng7-QnjfxRj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+Point%E2%80%90Scale+%28Pedo%29transfer+Functions+to+Seamless+Large%E2%80%90Domain+Parameter+Estimates+for+High%E2%80%90Resolution+Distributed+Hydrologic+Modeling%3A+An+Example+for+the+Rhine+River&rft.jtitle=Water+resources+research&rft.au=Imhoff%2C+R+O&rft.au=van%C2%A0Verseveld%2C+W.+J.&rft.au=van%C2%A0Osnabrugge%2C+B.&rft.au=Weerts%2C+A.+H.&rft.date=2020-04-01&rft.issn=0043-1397&rft.volume=56&rft.issue=4+p.e2019WR026807-&rft_id=info:doi/10.1029%2F2019WR026807&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |