Using Machine Learning to Identify Hydrologic Signatures With an Encoder–Decoder Framework

Hydrologic signatures are quantitative metrics that describe a streamflow time series. Examples include annual maximum flow, baseflow index and recession shape descriptors. In this paper, we use machine learning (ML) to learn encodings that are optimal ML equivalents of hydrologic signatures, and th...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 59; no. 3
Main Authors: Botterill, Tom E., McMillan, Hilary K.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.03.2023
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hydrologic signatures are quantitative metrics that describe a streamflow time series. Examples include annual maximum flow, baseflow index and recession shape descriptors. In this paper, we use machine learning (ML) to learn encodings that are optimal ML equivalents of hydrologic signatures, and that are derived directly from the data. We compare the learned signatures to classical signatures, interpret their meaning, and use them to build rainfall‐runoff models in otherwise ungauged watersheds. Our model has an encoder–decoder structure. The encoder is a convolutional neural net mapping historical flow and climate data to a low‐dimensional vector encoding, analogous to hydrological signatures. The decoder structure includes stores and fluxes similar to a classical hydrologic model. For each timestep, the decoder uses current climate data, watershed attributes and the encoding to predict coefficients that distribute precipitation between stores and store outflow coefficients. The model is trained end‐to‐end on the U.S. CAMELS watershed data set to minimize streamflow error. We show that learned signatures can extract new information from streamflow series, because using learned signatures as input to the process‐informed model improves prediction accuracy over benchmark configurations that use classical signatures or no signatures. We interpret learned signatures by correlation with classical signatures, and by using sensitivity analysis to assess their impact on modeled store dynamics. Learned signatures are spatially correlated and relate to streamflow dynamics including seasonality, high and low extremes, baseflow and recessions. We conclude that process‐informed ML models and other applications using hydrologic signatures may benefit from replacing expert‐selected signatures with learned signatures. Key Points We built an encoder–decoder network to learn an optimal equivalent of hydrologic signatures Using learned signatures as input to a process‐informed ML model improves prediction accuracy over benchmark configurations We interpret learned signatures by correlation with classical signatures and by sensitivity analysis of their impact on model store dynamics
AbstractList Hydrologic signatures are quantitative metrics that describe a streamflow time series. Examples include annual maximum flow, baseflow index and recession shape descriptors. In this paper, we use machine learning (ML) to learn encodings that are optimal ML equivalents of hydrologic signatures, and that are derived directly from the data. We compare the learned signatures to classical signatures, interpret their meaning, and use them to build rainfall‐runoff models in otherwise ungauged watersheds. Our model has an encoder–decoder structure. The encoder is a convolutional neural net mapping historical flow and climate data to a low‐dimensional vector encoding, analogous to hydrological signatures. The decoder structure includes stores and fluxes similar to a classical hydrologic model. For each timestep, the decoder uses current climate data, watershed attributes and the encoding to predict coefficients that distribute precipitation between stores and store outflow coefficients. The model is trained end‐to‐end on the U.S. CAMELS watershed data set to minimize streamflow error. We show that learned signatures can extract new information from streamflow series, because using learned signatures as input to the process‐informed model improves prediction accuracy over benchmark configurations that use classical signatures or no signatures. We interpret learned signatures by correlation with classical signatures, and by using sensitivity analysis to assess their impact on modeled store dynamics. Learned signatures are spatially correlated and relate to streamflow dynamics including seasonality, high and low extremes, baseflow and recessions. We conclude that process‐informed ML models and other applications using hydrologic signatures may benefit from replacing expert‐selected signatures with learned signatures. Key Points We built an encoder–decoder network to learn an optimal equivalent of hydrologic signatures Using learned signatures as input to a process‐informed ML model improves prediction accuracy over benchmark configurations We interpret learned signatures by correlation with classical signatures and by sensitivity analysis of their impact on model store dynamics
Hydrologic signatures are quantitative metrics that describe a streamflow time series. Examples include annual maximum flow, baseflow index and recession shape descriptors. In this paper, we use machine learning (ML) to learn encodings that are optimal ML equivalents of hydrologic signatures, and that are derived directly from the data. We compare the learned signatures to classical signatures, interpret their meaning, and use them to build rainfall‐runoff models in otherwise ungauged watersheds. Our model has an encoder–decoder structure. The encoder is a convolutional neural net mapping historical flow and climate data to a low‐dimensional vector encoding, analogous to hydrological signatures. The decoder structure includes stores and fluxes similar to a classical hydrologic model. For each timestep, the decoder uses current climate data, watershed attributes and the encoding to predict coefficients that distribute precipitation between stores and store outflow coefficients. The model is trained end‐to‐end on the U.S. CAMELS watershed data set to minimize streamflow error. We show that learned signatures can extract new information from streamflow series, because using learned signatures as input to the process‐informed model improves prediction accuracy over benchmark configurations that use classical signatures or no signatures. We interpret learned signatures by correlation with classical signatures, and by using sensitivity analysis to assess their impact on modeled store dynamics. Learned signatures are spatially correlated and relate to streamflow dynamics including seasonality, high and low extremes, baseflow and recessions. We conclude that process‐informed ML models and other applications using hydrologic signatures may benefit from replacing expert‐selected signatures with learned signatures. We built an encoder–decoder network to learn an optimal equivalent of hydrologic signatures Using learned signatures as input to a process‐informed ML model improves prediction accuracy over benchmark configurations We interpret learned signatures by correlation with classical signatures and by sensitivity analysis of their impact on model store dynamics
Hydrologic signatures are quantitative metrics that describe a streamflow time series. Examples include annual maximum flow, baseflow index and recession shape descriptors. In this paper, we use machine learning (ML) to learn encodings that are optimal ML equivalents of hydrologic signatures, and that are derived directly from the data. We compare the learned signatures to classical signatures, interpret their meaning, and use them to build rainfall‐runoff models in otherwise ungauged watersheds. Our model has an encoder–decoder structure. The encoder is a convolutional neural net mapping historical flow and climate data to a low‐dimensional vector encoding, analogous to hydrological signatures. The decoder structure includes stores and fluxes similar to a classical hydrologic model. For each timestep, the decoder uses current climate data, watershed attributes and the encoding to predict coefficients that distribute precipitation between stores and store outflow coefficients. The model is trained end‐to‐end on the U.S. CAMELS watershed data set to minimize streamflow error. We show that learned signatures can extract new information from streamflow series, because using learned signatures as input to the process‐informed model improves prediction accuracy over benchmark configurations that use classical signatures or no signatures. We interpret learned signatures by correlation with classical signatures, and by using sensitivity analysis to assess their impact on modeled store dynamics. Learned signatures are spatially correlated and relate to streamflow dynamics including seasonality, high and low extremes, baseflow and recessions. We conclude that process‐informed ML models and other applications using hydrologic signatures may benefit from replacing expert‐selected signatures with learned signatures.
Author Botterill, Tom E.
McMillan, Hilary K.
Author_xml – sequence: 1
  givenname: Tom E.
  orcidid: 0000-0002-2305-2650
  surname: Botterill
  fullname: Botterill, Tom E.
  organization: Independent Researcher
– sequence: 2
  givenname: Hilary K.
  orcidid: 0000-0002-9330-9730
  surname: McMillan
  fullname: McMillan, Hilary K.
  email: hmcmillan@sdsu.edu
  organization: San Diego State University
BookMark eNp90MFOGzEQBmALUYlAe-sDWOLSA0tnbGe9PlYBClKqSgGUS6WV1zsbTDc2tTdCufUdeMM-SZOGQ4UEpxmNvhmN_kO2H2Igxj4inCII81mAEPMZSAkG99gIjVKFNlrusxGAkgVKow_YYc73AKjGpR6xH7fZhwX_Zt2dD8SnZFPYDobIr1oKg-_W_HLdptjHhXf82i-CHVaJMp_74Y7bwM-Diy2lP7-fzuhfxy-SXdJjTD_fs3ed7TN9eK5H7Pbi_GZyWUy_f72afJkWVgGOCxKNKjsyjSVTYUvaIiK1BKiFs63WnaayUcI1QMqVhHZctY0yHXZd5cDII_Zpd_chxV8rykO99NlR39tAcZVrUSEaA6WSG3r8gt7HVQqb77YKtDJawEaJnXIp5pyoq50f7OBjGJL1fY1QbwOv_w98s3TyYukh-aVN69e43PFH39P6TVvPZ5OZKFU1ln8BtmiTFg
CitedBy_id crossref_primary_10_1007_s00477_025_02954_w
crossref_primary_10_5194_hess_28_4971_2024
crossref_primary_10_1016_j_jappgeo_2024_105501
crossref_primary_10_1016_j_jhydrol_2024_130771
crossref_primary_10_1016_j_jhydrol_2024_130772
crossref_primary_10_1029_2024WR039008
crossref_primary_10_1016_j_jhydrol_2024_131389
crossref_primary_10_1016_j_jhydrol_2025_133654
crossref_primary_10_1016_j_teadva_2024_200116
crossref_primary_10_1016_j_jhydrol_2025_133033
crossref_primary_10_1016_j_jhydrol_2025_134044
crossref_primary_10_1016_j_jhydrol_2025_134004
crossref_primary_10_1016_j_atmosres_2025_108196
crossref_primary_10_1016_j_rineng_2025_106345
crossref_primary_10_1016_j_geoen_2024_213028
Cites_doi 10.3115/v1/D14-1179
10.1007/978-3-030-01246-5_18
10.1029/2022WR032404
10.1093/biosci/biv102
10.1016/j.envsoft.2021.104983
10.1111/j.1365-2427.2009.02204.x
10.1029/2019WR026635
10.1080/02626668609491024
10.21105/joss.04050
10.1029/2018WR023254
10.1111/j.1365-2427.2009.02307.x
10.31223/X5BH0P
10.1002/hyp.13632
10.5194/hess-15-2895-2011
10.1080/00401706.1991.10484804
10.1002/2017wr020528
10.1214/aos/1013203451
10.1109/IJCNN.2017.7966039
10.1109/CVPR42600.2020.00259
10.1111/1752-1688.12964
10.5194/hess-19-3951-2015
10.5194/hess-23-5089-2019
10.5194/hess-25-2045-2021
10.1002/hyp.10972
10.1029/2018wr022606
10.5194/hess-19-209-2015
10.2166/nh.2020.100
10.1002/hyp.11300
10.2166/hydro.2020.095
10.1002/2015wr017635
10.5194/hess-21-5293-2017
10.5281/zenodo.6712302
10.1016/j.jhydrol.2020.124631
10.1029/2018WR022643
10.5281/zenodo.6462813
10.1061/(asce)0733-9496(1994)120:4(485)
10.1002/hyp.6989
10.1029/2020WR028091
10.1029/2019WR026065
10.1029/2019wr026793
10.1016/j.advwatres.2007.01.005
10.1109/CVPRW.2018.00060
10.1038/s41467-021-26107-z
10.1016/s0022-1694(02)00171-3
10.1016/j.jhydrol.2011.11.055
10.1002/2017wr020401
10.1046/j.1523-1739.1996.10041163.x
10.1175/jhm-d-16-0284.1
10.1016/j.envsoft.2021.105159
10.1111/j.1749-8198.2007.00039.x
10.1086/694913
10.2307/1313099
10.1002/hyp.11476
10.1002/rra.700
10.1002/hyp.14596
ContentType Journal Article
Copyright 2023. The Authors.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Authors.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2022WR033091
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2022WR033091
WRCR26485
Genre researchArticle
GrantInformation_xml – fundername: California Department of Water Resources
  funderid: 4600013361; 4600014294
– fundername: NSF Division of Earth Sciences
  funderid: 2124923
– fundername: U.S. Army Corps of Engineers Engineer Research and Development Center
  funderid: USACE W912HZ‐15‐2‐0019
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
AFFHD
AIQQE
CITATION
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4015-e2b46fe9bae981de7a111ede0172cad77f7e6b42cb0e4c6e1a58db49f1ff8c093
IEDL.DBID 24P
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000949520600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:23:12 EDT 2025
Wed Aug 13 03:01:24 EDT 2025
Tue Nov 18 21:00:07 EST 2025
Sat Nov 29 01:36:51 EST 2025
Sun Jul 06 04:45:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4015-e2b46fe9bae981de7a111ede0172cad77f7e6b42cb0e4c6e1a58db49f1ff8c093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9330-9730
0000-0002-2305-2650
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR033091
PQID 2810749720
PQPubID 105507
PageCount 19
ParticipantIDs proquest_miscellaneous_2811990643
proquest_journals_2810749720
crossref_citationtrail_10_1029_2022WR033091
crossref_primary_10_1029_2022WR033091
wiley_primary_10_1029_2022WR033091_WRCR26485
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 25
2010; 55
1986; 31
2019; 55
1997; 47
2016; 31
2016; 30
2020; 56
2003; 19
2011; 15
2007; 30
2001
2017; 36
2020; 51
2002; 268
2019; 23
2022; 36
2008; 22
2007; 1
2018; 32
2021; 8
2015; 19
2012; 420
2012
2020; 583
1991; 33
2017; 21
2021b
2016; 52
2021; 144
1996; 10
2021a; 138
2021; 57
2017; 53
2015; 28
2006; 307
2021; 12
2022
2021
2020
2022; 7
1994; 120
2015; 65
2018
2017
2016
2017; 18
2014
2020; 22
2018; 54
e_1_2_8_28_1
e_1_2_8_24_1
Lees T. (e_1_2_8_30_1) 2021
e_1_2_8_47_1
McMillan H. K. (e_1_2_8_34_1) 2021
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
Mathevet T. (e_1_2_8_32_1) 2006
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
Thornton P. E. (e_1_2_8_55_1) 2012
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Hoedt P.‐J. (e_1_2_8_20_1) 2021
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_29_1
Goodfellow I. (e_1_2_8_18_1) 2016
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Jaderberg M. (e_1_2_8_21_1) 2015; 28
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 54
  start-page: 8558
  issue: 11
  year: 2018
  end-page: 8593
  article-title: A transdisciplinary review of deep learning research and its relevance for water Resources Scientists
  publication-title: Water Resources Research
– volume: 15
  start-page: 2895
  issue: 9
  year: 2011
  end-page: 2911
  article-title: Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA
  publication-title: Hydrology and Earth System Sciences
– volume: 7
  issue: 71
  year: 2022
  article-title: NeuralHydrology — A Python library for deep learning research in hydrology
  publication-title: Journal of Open Source Software
– volume: 23
  start-page: 5089
  issue: 12
  year: 2019
  end-page: 5110
  article-title: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large‐sample datasets
  publication-title: Hydrology and Earth System Sciences
– volume: 138
  year: 2021a
  article-title: TOSSH: A toolbox for streamflow signatures in hydrology
  publication-title: Environmental Modelling & Software
– volume: 31
  start-page: 4757
  issue: 26
  year: 2016
  end-page: 4761
  article-title: Five guidelines for selecting hydrological signatures
  publication-title: Hydrological Processes
– year: 2021b
  article-title: TOSSHtoolbox/TOSSH: First release – Minor update (1.0.1)
  publication-title: Zenodo
– volume: 420
  start-page: 171
  year: 2012
  end-page: 182
  article-title: A review of efficiency criteria suitable for evaluating low‐flow simulations
  publication-title: Journal of Hydrology
– start-page: 284
  year: 2018
  end-page: 299
– start-page: 2514
  year: 2020
  end-page: 2523
– volume: 53
  start-page: 8020
  issue: 9
  year: 2017
  end-page: 8040
  article-title: Towards seamless large‐domain parameter estimation for hydrologic models
  publication-title: Water Resources Research
– volume: 21
  start-page: 5293
  issue: 10
  year: 2017
  end-page: 5313
  article-title: The CAMELS data set: Catchment attributes and meteorology for large‐sample studies
  publication-title: Hydrology and Earth System Sciences
– volume: 144
  year: 2021
– volume: 57
  issue: 3
  year: 2021
  article-title: What role does hydrological science play in the age of machine learning?
  publication-title: Water Resources Research
– volume: 47
  start-page: 769
  issue: 11
  year: 1997
  end-page: 784
  article-title: The natural flow regime
  publication-title: BioScience
– year: 2014
– volume: 33
  start-page: 161
  issue: 2
  year: 1991
  end-page: 174
  article-title: Factorial sampling plans for preliminary computational experiments
  publication-title: Technometrics
– volume: 120
  start-page: 485
  issue: 4
  year: 1994
  end-page: 504
  article-title: Flow‐duration curves. I: New interpretation and confidence intervals
  publication-title: Journal of Water Resources Planning and Management
– volume: 55
  start-page: 171
  issue: 1
  year: 2010
  end-page: 193
  article-title: Classification of natural flow regimes in Australia to support environmental flow management
  publication-title: Freshwater Biology
– volume: 56
  issue: 9
  year: 2020
  article-title: Enhancing streamflow forecast and extracting insights using long‐short term memory networks with data integration at continental scales
  publication-title: Water Resources Research
– volume: 55
  start-page: 11344
  issue: 12
  year: 2019
  end-page: 11354
  article-title: Toward improved predictions in ungauged basins: Exploiting the power of machine learning
  publication-title: Water Resour. Res.
– year: 2022
– volume: 32
  start-page: 1120
  issue: 8
  year: 2018
  end-page: 1125
  article-title: Upper and lower benchmarks in hydrological modelling
  publication-title: Hydrological Processes
– volume: 10
  start-page: 1163
  issue: 4
  year: 1996
  end-page: 1174
  article-title: A method for assessing hydrologic alteration within ecosystems
  publication-title: Conservation Biology
– volume: 30
  start-page: 4019
  issue: 22
  year: 2016
  end-page: 4035
  article-title: Snow hydrology signatures for model identification within a limits‐of‐acceptability approach
  publication-title: Hydrological Processes
– volume: 268
  start-page: 244
  issue: 1–4
  year: 2002
  end-page: 258
  article-title: The use of indices of flow variability in assessing the hydrological and instream habitat impacts of upland afforestation and drainage
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 2045
  issue: 4
  year: 2021
  end-page: 2062
  article-title: Rainfall–runoff prediction at multiple timescales with a single Long Short‐Term Memory network
  publication-title: Hydrology and Earth System Sciences
– start-page: 1189
  year: 2001
  end-page: 1232
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Annals of Statistics
– volume: 57
  start-page: 885
  issue: 6
  year: 2021
  end-page: 905
  article-title: Post‐processing the national water model with long short‐term memory networks for streamflow predictions and model diagnostics
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 54
  start-page: 4059
  issue: 6
  year: 2018
  end-page: 4083
  article-title: Signature‐domain calibration of hydrological models using approximate Bayesian computation: Theory and comparison to existing applications
  publication-title: Water Resources Research
– start-page: 224
  year: 2018
  end-page: 236
– volume: 22
  start-page: 3802
  issue: 18
  year: 2008
  end-page: 3813
  article-title: Reconciling theory with observations: Elements of a diagnostic approach to model evaluation
  publication-title: Hydrological Processes: An International Journal
– volume: 583
  year: 2020
  article-title: Exploring a long short‐term memory based encoder‐decoder framework for multi‐step‐ahead flood forecasting
  publication-title: Journal of Hydrology
– volume: 65
  start-page: 963
  issue: 10
  year: 2015
  end-page: 972
  article-title: Functional flows in modified riverscapes: Hydrographs, habitats and opportunities
  publication-title: BioScience
– volume: 18
  start-page: 2215
  issue: 8
  year: 2017
  end-page: 2225
  article-title: Benchmarking of a physically based hydrologic model
  publication-title: Journal of Hydrometeorology
– start-page: 1578
  year: 2017
  end-page: 1585
– volume: 51
  start-page: 1136
  issue: 5
  year: 2020
  end-page: 1149
  article-title: The exploration of a temporal convolutional network combined with encoder‐decoder framework for runoff forecasting
  publication-title: Hydrology Research
– volume: 55
  start-page: 4364
  issue: 5
  year: 2019
  end-page: 4392
  article-title: Flow prediction in ungauged catchments using probabilistic random forests regionalization and new statistical adequacy tests
  publication-title: Water Resources Research
– volume: 307
  start-page: 211
  year: 2006
– volume: 55
  start-page: 147
  issue: 1
  year: 2010
  end-page: 170
  article-title: The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards
  publication-title: Freshwater Biology
– volume: 52
  start-page: 1847
  issue: 3
  year: 2016
  end-page: 1865
  article-title: Uncertainty in hydrological signatures for gauged and ungauged catchments
  publication-title: Water Resources Research
– year: 2020
  article-title: Signatures of hydrologic function across the critical zone observatory network
  publication-title: Water Resources Research
– volume: 54
  start-page: 8792
  issue: 11
  year: 2018
  end-page: 8812
  article-title: A ranking of hydrological signatures based on their predictability in space
  publication-title: Water Resources Research
– year: 2016
– year: 2012
  article-title: Daymet: Daily surface weather on a 1 km grid for North America, 1980‐2008. Oak ridge National Laboratory. ORNL Distribution Act
  publication-title: Archive Centre for Biogeochemical Dynamics. DAAC
– volume: 36
  start-page: 927
  issue: 4
  year: 2017
  end-page: 940
  article-title: Biological relevance of streamflow metrics: Regional and national perspectives
  publication-title: Freshwater Science
– year: 2020
  article-title: Linking hydrologic signatures to hydrologic processes: A review
  publication-title: Hydrological Processes
– start-page: 1
  year: 2021
  end-page: 37
  article-title: Hydrological concept formation inside long short‐term memory (LSTM) networks
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 8
  year: 2021
– volume: 31
  start-page: 13
  issue: 1
  year: 1986
  end-page: 24
  article-title: Operational testing of hydrological simulation models
  publication-title: Hydrological Sciences Journal
– volume: 22
  start-page: 541
  issue: 3
  year: 2020
  end-page: 561
  article-title: Deep learning convolutional neural network in rainfall–runoff modelling
  publication-title: Journal of Hydroinformatics
– volume: 36
  issue: 6
  year: 2022
  article-title: Coevolution of machine learning and process‐based modelling to revolutionize Earth and environmental sciences: A perspective
  publication-title: Hydrological Processes
– volume: 12
  issue: 1
  year: 2021
  article-title: From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling
  publication-title: Nature Communications
– start-page: 4275
  year: 2021
  end-page: 4286
– volume: 19
  start-page: 101
  issue: 2
  year: 2003
  end-page: 121
  article-title: Redundancy and the choice of hydrologic indices for characterizing streamflow regimes
  publication-title: River Research and Applications
– year: 2022
  article-title: mcmillanhk/HydroML: V1.0 Initial Release
  publication-title: Zenodo
– volume: 19
  start-page: 3951
  issue: 9
  year: 2015
  end-page: 3968
  article-title: Uncertainty in hydrological signatures
  publication-title: Hydrology and Earth System Sciences
– volume: 28
  year: 2015
  article-title: Spatial transformer networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 30
  start-page: 1756
  issue: 8
  year: 2007
  end-page: 1774
  article-title: Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins
  publication-title: Advances in Water Resources
– volume: 1
  start-page: 901
  issue: 4
  year: 2007
  end-page: 931
  article-title: Catchment classification and hydrologic similarity
  publication-title: Geography Compass
– volume: 19
  start-page: 209
  issue: 1
  year: 2015
  end-page: 223
  article-title: Development of a large‐sample watershed‐scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance
  publication-title: Hydrology and Earth System Sciences
– ident: e_1_2_8_7_1
  doi: 10.3115/v1/D14-1179
– ident: e_1_2_8_47_1
  doi: 10.1007/978-3-030-01246-5_18
– ident: e_1_2_8_11_1
  doi: 10.1029/2022WR032404
– ident: e_1_2_8_65_1
  doi: 10.1093/biosci/biv102
– ident: e_1_2_8_16_1
  doi: 10.1016/j.envsoft.2021.104983
– ident: e_1_2_8_44_1
  doi: 10.1111/j.1365-2427.2009.02204.x
– ident: e_1_2_8_63_1
  doi: 10.1029/2019WR026635
– start-page: 4275
  volume-title: International Conference on Machine Learning
  year: 2021
  ident: e_1_2_8_20_1
– ident: e_1_2_8_26_1
  doi: 10.1080/02626668609491024
– ident: e_1_2_8_27_1
  doi: 10.21105/joss.04050
– ident: e_1_2_8_45_1
  doi: 10.1029/2018WR023254
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1365-2427.2009.02307.x
– year: 2012
  ident: e_1_2_8_55_1
  article-title: Daymet: Daily surface weather on a 1 km grid for North America, 1980‐2008. Oak ridge National Laboratory. ORNL Distribution Act
  publication-title: Archive Centre for Biogeochemical Dynamics. DAAC
– ident: e_1_2_8_13_1
  doi: 10.31223/X5BH0P
– ident: e_1_2_8_33_1
  doi: 10.1002/hyp.13632
– ident: e_1_2_8_51_1
  doi: 10.5194/hess-15-2895-2011
– ident: e_1_2_8_37_1
  doi: 10.1080/00401706.1991.10484804
– ident: e_1_2_8_23_1
  doi: 10.1002/2017wr020528
– ident: e_1_2_8_14_1
  doi: 10.1214/aos/1013203451
– ident: e_1_2_8_60_1
  doi: 10.1109/IJCNN.2017.7966039
– volume: 28
  year: 2015
  ident: e_1_2_8_21_1
  article-title: Spatial transformer networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_8_1
  doi: 10.1109/CVPR42600.2020.00259
– ident: e_1_2_8_12_1
  doi: 10.1111/1752-1688.12964
– ident: e_1_2_8_61_1
  doi: 10.5194/hess-19-3951-2015
– ident: e_1_2_8_29_1
  doi: 10.5194/hess-23-5089-2019
– ident: e_1_2_8_15_1
  doi: 10.5194/hess-25-2045-2021
– ident: e_1_2_8_52_1
  doi: 10.1002/hyp.10972
– ident: e_1_2_8_2_1
  doi: 10.1029/2018wr022606
– ident: e_1_2_8_39_1
  doi: 10.5194/hess-19-209-2015
– ident: e_1_2_8_31_1
  doi: 10.2166/nh.2020.100
– ident: e_1_2_8_35_1
  doi: 10.1002/hyp.11300
– ident: e_1_2_8_42_1
– start-page: e1499
  volume-title: A review of hydrologic signatures and their applications
  year: 2021
  ident: e_1_2_8_34_1
– ident: e_1_2_8_57_1
  doi: 10.2166/hydro.2020.095
– ident: e_1_2_8_62_1
  doi: 10.1002/2015wr017635
– ident: e_1_2_8_3_1
  doi: 10.5194/hess-21-5293-2017
– ident: e_1_2_8_5_1
  doi: 10.5281/zenodo.6712302
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jhydrol.2020.124631
– ident: e_1_2_8_54_1
  doi: 10.1029/2018WR022643
– ident: e_1_2_8_17_1
  doi: 10.5281/zenodo.6462813
– ident: e_1_2_8_58_1
  doi: 10.1061/(asce)0733-9496(1994)120:4(485)
– ident: e_1_2_8_25_1
– ident: e_1_2_8_19_1
  doi: 10.1002/hyp.6989
– ident: e_1_2_8_38_1
  doi: 10.1029/2020WR028091
– ident: e_1_2_8_28_1
  doi: 10.1029/2019WR026065
– ident: e_1_2_8_10_1
  doi: 10.1029/2019wr026793
– start-page: 1
  year: 2021
  ident: e_1_2_8_30_1
  article-title: Hydrological concept formation inside long short‐term memory (LSTM) networks
  publication-title: Hydrology and Earth System Sciences Discussions
– ident: e_1_2_8_64_1
  doi: 10.1016/j.advwatres.2007.01.005
– ident: e_1_2_8_9_1
  doi: 10.1109/CVPRW.2018.00060
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467-021-26107-z
– ident: e_1_2_8_4_1
  doi: 10.1016/s0022-1694(02)00171-3
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jhydrol.2011.11.055
– ident: e_1_2_8_36_1
  doi: 10.1002/2017wr020401
– ident: e_1_2_8_50_1
  doi: 10.1046/j.1523-1739.1996.10041163.x
– ident: e_1_2_8_40_1
  doi: 10.1175/jhm-d-16-0284.1
– ident: e_1_2_8_48_1
  doi: 10.1016/j.envsoft.2021.105159
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1749-8198.2007.00039.x
– ident: e_1_2_8_6_1
  doi: 10.1086/694913
– ident: e_1_2_8_43_1
  doi: 10.2307/1313099
– start-page: 211
  volume-title: A bounded version of the Nash‐Sutcliffe criterion for better model assessment on large sets of basins
  year: 2006
  ident: e_1_2_8_32_1
– ident: e_1_2_8_53_1
  doi: 10.1002/hyp.11476
– ident: e_1_2_8_41_1
  doi: 10.1002/rra.700
– ident: e_1_2_8_49_1
  doi: 10.1002/hyp.14596
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_8_18_1
SSID ssj0014567
Score 2.5123506
Snippet Hydrologic signatures are quantitative metrics that describe a streamflow time series. Examples include annual maximum flow, baseflow index and recession shape...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Base flow
Climate
Climatic data
Coders
Coefficients
data collection
deep learning
Dynamics
encoder–decoder
flow indices
Flow mapping
flow metric
Hydrologic models
hydrologic signature
Hydrology
Information processing
Learning algorithms
Machine learning
Maximum flow
meteorological data
Model accuracy
Modelling
Neural networks
Outflow
Precipitation
prediction
Rainfall-runoff relationships
Runoff
Runoff models
Seasonal variations
Seasonality
Sensitivity analysis
Signatures
Stream discharge
Stream flow
time series analysis
Watersheds
Title Using Machine Learning to Identify Hydrologic Signatures With an Encoder–Decoder Framework
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR033091
https://www.proquest.com/docview/2810749720
https://www.proquest.com/docview/2811990643
Volume 59
WOSCitedRecordID wos000949520600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB9EBX2xWhXPXmUL7ZMNXjabbPJYTg8FPeRaOR8KYbOZ6IHk5HIK99bv0G_oJ3F2sznPhwrFt4TMJmF359_OzG8AvoaBDCIyIzxSpsoTgtwdxfPQ41xHItQSk6xuNiH7_fj6Orl0B26mFqbGh5gfuBnOsPLaMLjKKgc2YDAyyWvnw0GH_HFTvL7i-4E0u5qLy3kUgYwD2USYjaXjEt9p_NHi6Ncq6cXOXLRWrbrpfXjvj27ChjM02Y96Z2zBEpYfYa2pQ67o2vU_v51tw2-bOcAubGYlMge6esOmY1ZX8hYzdjrLJ7WkZD9HNzUgaMWGo-ktUyU7KU1x_OTpz99jtFes16R97cBV7-RX99RzfRc8Rd5W6CHPRFTQKilMyJxFqUggYo7GXdQql7KQGGWC66yDQkfoqzDOM5EUflHEupMEu7BcjkvcAxZjLLEINPnZ9G5BIk0EsTSg-AGJSpG34LCZ-lQ7UHLTG-MutcFxnqSLs9eCb3Pq-xqM4x907WYVU8eSVcpjk3uaSN5pwZf5Y2ImEyFRJY4fLI1P6pmstBZ8t2v65nfS4aA7MCmC4f7_kX-CddO2vs5la8PydPKAn2FVP05H1eTAbuIDWDke9K7O6W541n8GwYjxUg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6tykpw2QcPURZ2jbScIKJ1nDg5ImjVFW2FuqByQIocZ9JWQumqD6Te-A_8w_0lO06cUg4gob1ZysSJbM_MN54XwE_Pla5PMMIhZaocIcjcUTzxHM61LzwtMYyLZhOy2w1ub8Mr2-fU5MIU9SGWF26GM3J5bRjcXEjbagOmSCaZ7bzfq5FBbrLX1wSdJK8Caxe95k176UggfCBLJ7MBOzb2nWY4XX3_pVZ6hpqrgDXXOM3P__2vX-CTBZvsrDgdX-EDZpuwXuYiT2lse6APF1twl0cPsE4eXYnMFl4dsNmYFdm86YK1FsmkkJbs92hQFAWdsv5oNmQqY43MJMhP_j4-XWA-Ys0y9GsbbpqN6_OWY3svOIosLs9BHgs_pZ1SGBKkRalIKGKCxmTUKpEylejHguu4hkL7WFdekMQiTOtpGuha6O5AJRtnuAsswEBi6mqytWluQWJNuIE0hfFdEpciqcJxufaRtoXJTX-M-yh3kPMwWl29Khwtqf8UBTleodsvtzGybDmNeGDiT0PJa1U4XD4mhjJeEpXheJ7T1ElFE1Krwkm-qW9-J-r3znsmTNDbex_5D1hvXXfaUftX9_IbbJg29kVs2z5UZpM5HsBH_TAbTSff7Zn-B1hj9CA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB5CGtpc0vQnxImbbqA9tSL2aqWVjsU_OLQxxm2xDwWxWo1sQ5CD7RR8yzvkDfMknV2tXPfQQOlNoF1J7O7MfKOZ-QbgXeBLPyQY4ZExVZ4Q5O4ongUe5zoUgZYYp2WzCdnvR-NxPHB9Tk0tTMkPsfnhZiTD6msj4HiT5Y5twJBkktvOR8MGOeSmev2JCEjNGmpnMdiEEQgdyCrEbKCOy3yn-Rfbs_-0Sb-B5jZctfam-_y_v_QQDhzUZJ_Ks_ECdrB4Cc-qSuQlXbsO6NP1K_hhcwfYlc2tROZoVydsNWdlLW--Zr11tih1Jfs6m5SUoEs2mq2mTBWsU5jy-MXD3X0b7RXrVolfr-F7t_Ot1fNc5wVPkb8VeMhTEea0TwpjArQoFalEzNA4jFplUuYSw1RwnTZQ6BCbKoiyVMR5M88j3Yj9I9gt5gUeA4swkpj7mjxterYgpSb8SBpafJ-Upchq8KFa-0Q7WnLTHeM6seFxHifbq1eD95vRNyUdx1_G1attTJxQLhMemezTWPJGDc43t0mcTIxEFTi_tWOaZKAJp9Xgo93UR9-TjIatoUkSDE7-bfhbeDpod5Mvl_3Pp7BvetiXiW112F0tbvEN7Omfq9lycWYP9C-PUPIJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Machine+Learning+to+Identify+Hydrologic+Signatures+With+an+Encoder%E2%80%93Decoder+Framework&rft.jtitle=Water+resources+research&rft.au=Botterill%2C+Tom+E.&rft.au=McMillan%2C+Hilary+K.&rft.date=2023-03-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=59&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022WR033091&rft.externalDBID=10.1029%252F2022WR033091&rft.externalDocID=WRCR26485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon