An automated knickzone selection algorithm (KZ‐Picker) to analyze transient landscapes: Calibration and validation

Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of geophysical research. Earth surface Ročník 122; číslo 6; s. 1236 - 1261
Hlavní autoři: Neely, A. B., Bookhagen, B., Burbank, D. W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington Blackwell Publishing Ltd 01.06.2017
Témata:
ISSN:2169-9003, 2169-9011
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base‐level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a χ‐space (drainage‐area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30 m resolution digital elevation models (DEMs) of six catchments (trunk‐stream lengths: 2.1–5.4 km) on Santa Cruz Island, southern California. On the 1 m DEM, algorithm‐selected knickzones confirm 93% of handpicked knickzone positions (n = 178) to a spatial accuracy of ≤100 m, 88% to an accuracy within 50 m, and 46% to an accuracy within 10 m. Using 10 and 30 m DEMs, accuracy is similar: 88–86% to ≤100 m and 82% to ≤50 m (n = 38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land‐use, or changes in climate, all factors that can produce measurable differences in river morphology over time. Key Points Algorithm uses a training data set to objectively select and measure river knickzones as bounded reaches of sustained high channel steepness index Algorithm‐selected knickzones confirm ~80–90% of 178 manually selected knickzones on 1 to 30 m DEMs, and the measured height of confirmed knickzones matches to >90% Algorithm is embedded in a set of automated scripts and can be applied to any region with DEM coverage
AbstractList Streams commonly respond to base-level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base-level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a χ-space (drainage-area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30 m resolution digital elevation models (DEMs) of six catchments (trunk-stream lengths: 2.1-5.4 km) on Santa Cruz Island, southern California. On the 1 m DEM, algorithm-selected knickzones confirm 93% of handpicked knickzone positions (n = 178) to a spatial accuracy of ≤100 m, 88% to an accuracy within 50 m, and 46% to an accuracy within 10 m. Using 10 and 30 m DEMs, accuracy is similar: 88-86% to ≤100 m and 82% to ≤50 m (n = 38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land-use, or changes in climate, all factors that can produce measurable differences in river morphology over time. Key Points Algorithm uses a training data set to objectively select and measure river knickzones as bounded reaches of sustained high channel steepness index Algorithm-selected knickzones confirm ~80-90% of 178 manually selected knickzones on 1 to 30 m DEMs, and the measured height of confirmed knickzones matches to >90% Algorithm is embedded in a set of automated scripts and can be applied to any region with DEM coverage
Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base‐level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a χ‐space (drainage‐area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30 m resolution digital elevation models (DEMs) of six catchments (trunk‐stream lengths: 2.1–5.4 km) on Santa Cruz Island, southern California. On the 1 m DEM, algorithm‐selected knickzones confirm 93% of handpicked knickzone positions (n = 178) to a spatial accuracy of ≤100 m, 88% to an accuracy within 50 m, and 46% to an accuracy within 10 m. Using 10 and 30 m DEMs, accuracy is similar: 88–86% to ≤100 m and 82% to ≤50 m (n = 38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land‐use, or changes in climate, all factors that can produce measurable differences in river morphology over time. Key Points Algorithm uses a training data set to objectively select and measure river knickzones as bounded reaches of sustained high channel steepness index Algorithm‐selected knickzones confirm ~80–90% of 178 manually selected knickzones on 1 to 30 m DEMs, and the measured height of confirmed knickzones matches to >90% Algorithm is embedded in a set of automated scripts and can be applied to any region with DEM coverage
Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base‐level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a χ‐space (drainage‐area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30 m resolution digital elevation models (DEMs) of six catchments (trunk‐stream lengths: 2.1–5.4 km) on Santa Cruz Island, southern California. On the 1 m DEM, algorithm‐selected knickzones confirm 93% of handpicked knickzone positions (n = 178) to a spatial accuracy of ≤100 m, 88% to an accuracy within 50 m, and 46% to an accuracy within 10 m. Using 10 and 30 m DEMs, accuracy is similar: 88–86% to ≤100 m and 82% to ≤50 m (n = 38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes.
Author Neely, A. B.
Burbank, D. W.
Bookhagen, B.
Author_xml – sequence: 1
  givenname: A. B.
  surname: Neely
  fullname: Neely, A. B.
  email: abn5031@psu.edu
  organization: University of California
– sequence: 2
  givenname: B.
  orcidid: 0000-0003-1323-6453
  surname: Bookhagen
  fullname: Bookhagen, B.
  organization: University of California
– sequence: 3
  givenname: D. W.
  orcidid: 0000-0001-8497-3296
  surname: Burbank
  fullname: Burbank, D. W.
  organization: University of California
BookMark eNp9kc1OGzEQxy1EJShw4wEs9UKlhvpjnXV6Q1EDpUhFVXvhspq1Z6nBsYPttAonHqHPyJNgSIUqpHYu8-Hf_DXjeU02QwxIyD5nh5wx8V4w3p7OGGuEYhtkW_DxZDRhnG8-x0xukb2cr1g1XUtcbJNyFCgsS5xDQUuvgzPXt1WXZvRoiov11V_G5MqPOT34fHF_9_u8Ipje0hIpBPCrW6QlQcgOQ6Eegs0GFpg_0Cl41ydYiwRLf9bcPqW75NUAPuPeH79Dvs8-fpuejM6-HH-aHp2NoGG8GYG2dui1UkMPmsNgtVCDtq3FthdGqXbcoDAWhO5FY2wrGareaikbNe7BWLlDDta6ixRvlphLN3fZoK9TYlzmTrRcSyW1YhV98wK9istU98sdn_BWKi1aWSmxpkyKOSccOuPK00r1C5zvOOseb9H9fYva9O5F0yK5OaTVv3C5xn85j6v_st3p8deZYONJIx8ALqWccw
CitedBy_id crossref_primary_10_1111_bre_12687
crossref_primary_10_1007_s10064_024_04038_5
crossref_primary_10_5194_esurf_7_475_2019
crossref_primary_10_1029_2020JF005970
crossref_primary_10_17738_ajes_2021_0003
crossref_primary_10_5194_esurf_7_211_2019
crossref_primary_10_1016_j_geomorph_2022_108162
crossref_primary_10_1016_j_geomorph_2022_108580
crossref_primary_10_1016_j_quaint_2020_11_022
crossref_primary_10_1080_14702541_2023_2205853
crossref_primary_10_3390_geosciences8120443
crossref_primary_10_5194_esurf_7_87_2019
crossref_primary_10_1016_j_geomorph_2021_107890
crossref_primary_10_1029_2021JF006218
crossref_primary_10_1016_j_geomorph_2020_107551
crossref_primary_10_1016_j_tecto_2022_229638
crossref_primary_10_1016_j_geomorph_2024_109574
crossref_primary_10_1029_2019JF005025
crossref_primary_10_1080_10106049_2025_2480307
crossref_primary_10_1002_gj_4669
crossref_primary_10_1016_j_geomorph_2023_108937
crossref_primary_10_1016_j_geomorph_2019_03_034
crossref_primary_10_1016_j_geomorph_2021_107669
crossref_primary_10_1002_gj_3791
crossref_primary_10_1007_s41324_020_00345_7
crossref_primary_10_5194_esurf_12_973_2024
crossref_primary_10_1016_j_jseaes_2021_104751
crossref_primary_10_1016_j_earscirev_2020_103116
crossref_primary_10_1016_j_jseaes_2021_104877
crossref_primary_10_3389_feart_2022_821707
crossref_primary_10_1007_s10346_020_01549_6
crossref_primary_10_1080_24749508_2024_2338973
crossref_primary_10_1016_j_geomorph_2022_108132
crossref_primary_10_1016_j_geomorph_2018_12_024
crossref_primary_10_1029_2018JF004827
crossref_primary_10_5194_esurf_5_821_2017
crossref_primary_10_5194_esurf_7_681_2019
Cites_doi 10.1130/0016-7606(1998)110<0711:LQSOTS>2.3.CO;2
10.1130/G23641A.1
10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2
10.1016/j.jsg.2012.07.009
10.1038/379505a0
10.1016/j.geomorph.2013.04.011
10.1029/2008JF001187
10.1029/2003WR002496
10.1029/2009JF001562
10.1016/j.geomorph.2008.10.017
10.1130/RF.L003.1
10.1016/j.earscirev.2014.05.016
10.1029/2005JF000294
10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2
10.1086/621620
10.1130/L135.1
10.1086/629686
10.1177/030913339501900402
10.1130/2006.2398(18)
10.1130/G21959.1
10.1029/2006JF000516
10.1002/2013WR015167
10.1002/grl.50253
10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2
10.1016/j.cageo.2014.11.004
10.1002/2015JF003678
10.1016/j.geomorph.2015.03.003
10.1016/j.epsl.2015.06.034
10.1029/2006JF000461
10.5194/esurf‐5‐211‐2017
10.1130/G23106A.1
10.1016/j.geomorph.2005.08.023
10.1029/2001JB000550
10.1130/G32008.1
10.5194/esurf-3-201-2015
10.1130/0016-7606(1983)94<664:ESOKAL>2.0.CO;2
10.1029/2011JF002157
10.1029/2001JB000162
10.1130/G37530.1
10.1130/B31113.1
10.1130/B25986.1
10.1002/esp.272
10.1002/2014JF003318
10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2
10.1016/j.quascirev.2014.09.017
10.1002/esp.3462
10.1002/2016JF003973
10.1029/2003JF000086
10.1029/2006JF000570
10.1029/2010WR009648
10.1890/14-0649.1
10.1002/2013JF002981
10.1130/1052-5173(2005)015[4:TNLOTS]2.0.CO;2
10.1002/2013JF003004
10.1130/B25364.1
10.1038/ngeo1159
10.1029/2006JF000567
10.1029/WR010i005p00969
10.1029/94JB00744
10.1029/2005TC001935
10.1002/esp.1191
10.1002/esp.2150
10.1016/B978-0-12-374739-6.00254-2
10.1130/G24681A.1
10.1029/2011JF002057
10.1130/G38831.1
10.1029/2006JF000553
10.1002/jgrf.20031
10.1029/2006JF000566
10.1130/B26482.1
10.1002/esp.3205
10.1002/esp.3302
10.1046/j.1365-2117.2002.00169.x
10.5194/esurf‐5‐145‐2017
10.1016/j.epsl.2013.04.007
10.1038/ngeo413
10.1029/1999JB900120
10.1016/j.epsl.2009.10.036
10.1029/93WR02463
10.1111/j.1749-6632.1977.tb33618.x
10.1016/j.geomorph.2012.09.007
10.1016/j.geomorph.2011.07.013
10.1038/ngeo1479
10.2475/ajs.301.4-5.313
10.1002/2016GL069262
10.5194/esurf-2-1-2014
10.1029/2008JF001044
10.1130/G32018.1
10.1130/B30930.1
10.1038/41056
10.1130/0091-7613(1997)025<0631:IORSPO>2.3.CO;2
10.3133/pp294B
10.1146/annurev.earth.32.101802.120356
10.1130/G24517A.1
10.1126/science.1248765
ContentType Journal Article
Copyright 2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2017. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
SOI
7S9
L.6
DOI 10.1002/2017JF004250
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2169-9011
EndPage 1261
ExternalDocumentID 10_1002_2017JF004250
JGRF20694
Genre article
GeographicLocations California
GeographicLocations_xml – name: California
GrantInformation_xml – fundername: German Federal Ministry of Education and Research
  funderid: PROGRESS initiative
– fundername: NSF Geomorphology Land use Dynamics Program
  funderid: EAR‐1148268
– fundername: NSF
  funderid: EAR‐1148268
– fundername: German Federal Ministry of Education and Research
GroupedDBID 05W
0R~
1OC
31~
33P
50Y
52M
702
7XC
8-1
88I
8FE
8FG
8FH
8G5
AAESR
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJCF
ABJNI
ACAHQ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEUYN
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
BRXPI
CCPQU
DPXWK
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
~OA
~~A
AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-a4014-a8ddfb855fba81afd825f8d7de7b2c55764e2cda28b24cd730e5bd833456bacd3
IEDL.DBID WIN
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405203900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-9003
IngestDate Fri Jul 11 18:36:45 EDT 2025
Sat Aug 23 05:21:14 EDT 2025
Tue Nov 18 19:39:29 EST 2025
Sat Nov 29 03:38:39 EST 2025
Tue Nov 11 03:08:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4014-a8ddfb855fba81afd825f8d7de7b2c55764e2cda28b24cd730e5bd833456bacd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1323-6453
0000-0001-8497-3296
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2017JF004250
PQID 1917358273
PQPubID 54727
PageCount 26
ParticipantIDs proquest_miscellaneous_2718353850
proquest_journals_1917358273
crossref_citationtrail_10_1002_2017JF004250
crossref_primary_10_1002_2017JF004250
wiley_primary_10_1002_2017JF004250_JGRF20694
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Earth surface
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 5
2006b; 25
2002; 14
1993; 29
1974; 10
2006; 34
2013; 369
2015; 76
2008; 36
2015; 428
1983; 94
1977; 288
1998; 110
2005; 28
2007; 506
2007; 35
2009; 114
2014; 136
2001; 301
2013; 9
1997; 388
2004; 32
2014; 2
2010; 115
2013; 118
2009; 121
2016; 43
2005; 30
2002; 107
1996; 379
2017; 122
2014; 50
2013; 194
1948
2014; 126
2016; 44
2014; 119
2004; 40
2015; 3
2015; 127
2013; 40
2015; 244
2015; 96
1997; 25
2015; 120
2010; 289
1996
2016; 121
2001; 26
1994
1995; 19
2012; 37
2011; 36
2001; 29
2000; 112
2004; 109
2011; 39
2011; 4
2013; 180
2006c; 111
1999; 104
2006; 398
2011; 134
2006; 111
1957
1909; 17
2006; 82
2007; 112
2014; 105
2003; 108
2004; 116
2007; 119
2013; 38
1994; 99
2000; 81
2017
2014; 39
2011; 47
2005; 15
2009; 2
2012; 4
2006a; 398
2012; 117
2012; 44
2012; 5
1992; 23
1969
2014; 343
2009; 106
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_94_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
Whipple K. X. (e_1_2_9_95_1) 2007; 506
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
Orfanidis S. J. (e_1_2_9_67_1) 1996
e_1_2_9_76_1
e_1_2_9_91_1
Brocard G. (e_1_2_9_10_1) 2006; 398
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
Gasparini N. M. (e_1_2_9_29_1) 2006; 398
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
Seidl M. A. (e_1_2_9_79_1) 1992; 23
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
Harbor D. (e_1_2_9_36_1) 2005; 28
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
Wobus C. (e_1_2_9_104_1) 2006; 398
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
Royden L. H. (e_1_2_9_74_1) 2000; 81
Meyer‐Peter E. (e_1_2_9_56_1) 1948
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
References_xml – volume: 14
  start-page: 105
  issue: 2
  year: 2002
  end-page: 127
  article-title: Interactions between onshore bedrock‐channel incision and nearshore wave‐base erosion forced by eustasy and tectonics
  publication-title: Basin Res.
– volume: 35
  start-page: 103
  issue: 2
  year: 2007
  end-page: 106
  article-title: Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates
  publication-title: Geology
– volume: 47
  year: 2011
  article-title: On the prediction of channel heads in a complex alpine terrain using gridded elevation data
  publication-title: Water Resour. Res.
– volume: 94
  start-page: 664
  issue: 5
  year: 1983
  end-page: 672
  article-title: Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material
  publication-title: Geol. Soc. Am. Bull.
– volume: 105
  start-page: 209
  year: 2014
  end-page: 238
  article-title: Coastal tectonics on the eastern margin of the Pacific Rim: Late Quaternary sea‐level history and uplift rates, Channel Islands National Park, California, USA
  publication-title: Quat. Sci. Rev.
– volume: 111
  year: 2006c
  article-title: Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution
  publication-title: J. Geophys. Res.
– volume: 119
  start-page: 138
  year: 2014
  end-page: 152
  article-title: A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 120
  start-page: 137
  year: 2015
  end-page: 158
  article-title: Geomorphic constraints on fault throw rates and linkage times: Examples from the Northern Gulf of Evia, Greece
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 43
  start-page: 5070
  year: 2016
  end-page: 5078
  article-title: Hillslope‐derived blocks retard river incision
  publication-title: Geophys. Res. Lett.
– volume: 180
  start-page: 66
  year: 2013
  end-page: 81
  article-title: Relationships between block quarrying, bed shear stress, and stream power: A physical model of block quarrying of a jointed bedrock channel
  publication-title: Geomorphology
– volume: 398
  start-page: 295
  year: 2006
  end-page: 307
  article-title: Knickpoints and hillslope failures: Interactions in a steady‐state experimental landscape
  publication-title: GSA Spec. Pap.
– start-page: 97
  year: 1957
– volume: 106
  start-page: 376
  issue: 3
  year: 2009
  end-page: 382
  article-title: Wave train model for knickpoint migration
  publication-title: Geomorphology
– volume: 117
  year: 2012
  article-title: Using hilltop curvature to derive the spatial distribution of erosion rates
  publication-title: J. Geophys. Res.
– volume: 116
  start-page: 895
  issue: 7–8
  year: 2004
  end-page: 909
  article-title: Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China
  publication-title: Geol. Soc. Am. Bull.
– volume: 110
  start-page: 711
  issue: 6
  year: 1998
  end-page: 722
  article-title: Late quaternary slip on the Santa Cruz Island fault, California
  publication-title: Geol. Soc. Am. Bull.
– year: 1969
– volume: 118
  start-page: 497
  year: 2013
  end-page: 518
  article-title: Solutions of the stream power equation and application to the evolution of river longitudinal profiles
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 94
  start-page: 739
  issue: 6
  year: 1983
  end-page: 752
  article-title: Channel changes in badlands
  publication-title: Geol. Soc. Am. Bull.
– volume: 301
  start-page: 313
  issue: 4–5
  year: 2001
  end-page: 325
  article-title: Fluvial landscape response time: How plausible is steady‐state denudation?
  publication-title: Am. J. Sci.
– volume: 38
  start-page: 570
  issue: 6
  year: 2013
  end-page: 576
  article-title: An integral approach to bedrock river profile analysis
  publication-title: Earth Surf. Processes Landforms
– volume: 506
  year: 2007
  article-title: New tools for quantitative geomorphology: Extraction and interpretation of stream profiles from digital topographic data
  publication-title: GSA Short Course
– volume: 25
  start-page: 631
  issue: 7
  year: 1997
  end-page: 634
  article-title: Influence of rock strength properties on escarpment retreat across passive continental margins
  publication-title: Geology
– volume: 19
  start-page: 449
  issue: 4
  year: 1995
  end-page: 473
  article-title: Drainage rearrangement by river capture, beheading and diversion
  publication-title: Prog. Phys. Geogr.
– volume: 121
  start-page: 1123
  issue: 7–8
  year: 2009
  end-page: 1134
  article-title: The persistence of waterfalls in fractured rock
  publication-title: Geol. Soc. Am. Bull.
– volume: 108
  issue: B3
  year: 2003
  article-title: Implications of the shear stress river incision model for the timescale of postorogenic decay of topography
  publication-title: J. Geophys. Res.
– volume: 39
  start-page: 38
  issue: 1
  year: 2014
  end-page: 61
  article-title: The stream power river incision model: Evidence, theory and beyond
  publication-title: Earth Surf. Processes Landforms
– volume: 112
  year: 2007
  article-title: Responses of soil‐mantled hillslopes to transient channel incision rates
  publication-title: J. Geophys. Res.
– volume: 9
  year: 2013
– volume: 119
  start-page: 1395
  year: 2014
  end-page: 1417
  article-title: Diagenetic variation in the Oregon Coast Range: Implications for rock strength, soil production, hillslope form, and landscape evolution
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 29
  start-page: 3925
  issue: 12
  year: 1993
  end-page: 3934
  article-title: Channel network source representation using digital elevation models
  publication-title: Water Resour. Res.
– volume: 44
  start-page: 363
  issue: 5
  year: 2016
  end-page: 366
  article-title: Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction
  publication-title: Geology
– volume: 44
  start-page: 54
  year: 2012
  end-page: 75
  article-title: Expression of active tectonics in erosional landscapes
  publication-title: J. Struct. Geol.
– volume: 34
  start-page: 45
  issue: 1
  year: 2006
  end-page: 48
  article-title: Rock‐slope failure and the river long profile
  publication-title: Geology
– volume: 117
  year: 2012
  article-title: Tectonic and climatic controls on knickpoint retreat rates and landscape response times
  publication-title: J. Geophys. Res.
– volume: 134
  start-page: 394
  issue: 3–4
  year: 2011
  end-page: 407
  article-title: An automated method for producing synoptic regional maps of river gradient variation: Procedure, accuracy tests, and comparison with other knickpoint mapping methods
  publication-title: Geomorphology
– volume: 369
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates
  publication-title: Earth Planet. Sci. Lett.
– volume: 99
  start-page: 13,971
  year: 1994
  end-page: 13,986
  article-title: Modeling fluvial erosion on regional to continental scales
  publication-title: J. Geophys. Res.
– volume: 35
  start-page: 743
  issue: 8
  year: 2007
  end-page: 746
  article-title: Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range
  publication-title: Geology
– volume: 112
  start-page: 1250
  issue: 8
  year: 2000
  end-page: 1263
  article-title: Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California
  publication-title: Geol. Soc. Am. Bull.
– volume: 127
  start-page: 539
  issue: 3–4
  year: 2015
  end-page: 559
  article-title: The role of waterfalls and knickzones in controlling the style and pace of landscape adjustment in the western San Gabriel Mountains, California
  publication-title: Geol. Soc. Am. Bull.
– volume: 36
  start-page: 535
  issue: 7
  year: 2008
  end-page: 538
  article-title: New constraints on sediment‐flux‐dependent river incision: Implications for extracting tectonic signals from river profiles
  publication-title: Geology
– volume: 28
  start-page: 23
  year: 2005
  end-page: 36
  article-title: Capturing variable knickpoint retreat in the Central Appalachians, USA
  publication-title: Geogr. Fis. Din. Quat.
– volume: 112
  year: 2007
  article-title: Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China
  publication-title: J. Geophys. Res.
– volume: 36
  year: 2011
  article-title: Hillslope response to knickpoint migration in the southern Appalachians: Implications for the evolution of post‐orogenic landscapes
  publication-title: Earth Surf. Processes Landforms
– volume: 5
  start-page: 468
  year: 2012
  end-page: 473
  article-title: Landslide erosion coupled to tectonics and river incision
  publication-title: Nat. Geosci.
– year: 2017
  article-title: Controls and feedbacks in the coupling of mountain channels and hillslopes
  publication-title: Geology
– volume: 136
  start-page: 202
  year: 2014
  end-page: 225
  article-title: Roughness in the earth sciences
  publication-title: Earth Sci. Rev.
– volume: 2
  start-page: 97
  issue: 2
  year: 2009
  end-page: 104
  article-title: The influence of climate on the tectonic evolution of mountain belts
  publication-title: Nat. Geosci.
– volume: 112
  year: 2007
  article-title: Formation of fluvial hanging valleys: Theory and simulation
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 1
  issue: 1
  year: 2014
  end-page: 7
  article-title: Short communication: TopoToolbox 2–MATLAB‐based software for topographic analysis and modeling in Earth surface sciences
  publication-title: Earth Surf. Dyn.
– volume: 10
  start-page: 969
  issue: 5
  year: 1974
  end-page: 973
  article-title: Stream gradient as a function of order, magnitude, and discharge
  publication-title: Water Resour. Res.
– volume: 126
  start-page: 925
  issue: 7–8
  year: 2014
  end-page: 942
  article-title: Knickpoint formation, rapid propagation, and landscape response following coastal cliff retreat at the last interglacial sea‐level highstand: Kaua'i, Hawai'i
  publication-title: Geol. Soc. Am. Bull.
– volume: 39
  start-page: 823
  issue: 9
  year: 2011
  end-page: 826
  article-title: Stream capture as driver of transient landscape evolution in a tectonically quiescent setting
  publication-title: Geology
– volume: 23
  start-page: 101
  year: 1992
  end-page: 124
  article-title: The problem of channel erosion into bedrock
  publication-title: Funct. Geomorphol.
– volume: 37
  start-page: 855
  issue: 8
  year: 2012
  end-page: 865
  article-title: Hillslope response to tectonic forcing in threshold landscapes
  publication-title: Earth Surf. Processes Landforms
– volume: 111
  year: 2006
  article-title: Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau
  publication-title: J. Geophys. Res.
– volume: 4
  start-page: 131
  issue: 2
  year: 2012
  end-page: 149
  article-title: Transient fluvial incision and active surface uplift in the Woodlark Rift of eastern Papua New Guinea
  publication-title: Lithosphere
– volume: 81
  start-page: 48
  year: 2000
  article-title: Evolution of river elevation profiles by bedrock incision: Analytical solutions for transient river profiles related to changing uplift and precipitation rates
  publication-title: Eos Trans. AGU
– volume: 15
  start-page: 4
  year: 2005
  end-page: 10
  article-title: The non‐equilibrium landscape of the southern Sierra Nevada, California
  publication-title: GSA Today
– volume: 30
  start-page: 767
  issue: 6
  year: 2005
  end-page: 778
  article-title: Knickpoint recession rate and catchment area: The case of uplifted rivers in Eastern Scotland
  publication-title: Earth Surf. Processes Landforms
– volume: 111
  year: 2006
  article-title: Amplified erosion above waterfalls and oversteepened bedrock reaches
  publication-title: J. Geophys. Res.
– volume: 25
  year: 2006b
  article-title: Neotectonics of the central Nepalese Himalaya: Constraints from geomorphology, detrital 40Ar/39Ar thermochronology, and thermal modeling
  publication-title: Tectonics
– volume: 112
  start-page: 490
  issue: 3
  year: 2000
  end-page: 503
  article-title: River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation
  publication-title: Geol. Soc. Am. Bull.
– volume: 244
  start-page: 33
  year: 2015
  end-page: 55
  article-title: New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory
  publication-title: Geomorphology
– volume: 122
  start-page: 248
  year: 2017
  end-page: 273
  article-title: Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 29
  start-page: 1087
  issue: 12
  year: 2001
  end-page: 1090
  article-title: Sediment and rock strength controls on river incision into bedrock
  publication-title: Geology
– volume: 194
  start-page: 46
  year: 2013
  end-page: 56
  article-title: Channel planform geometry and slopes from freely available high‐spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes
  publication-title: Geomorphology
– volume: 104
  start-page: 17,661
  year: 1999
  end-page: 17,674
  article-title: Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs
  publication-title: J. Geophys. Res.
– volume: 289
  start-page: 134
  issue: 1
  year: 2010
  end-page: 144
  article-title: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA
  publication-title: Earth Planet. Sci. Lett.
– volume: 428
  start-page: 255
  year: 2015
  end-page: 266
  article-title: Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India
  publication-title: Earth Planet. Sci. Lett.
– volume: 109
  year: 2004
  article-title: Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 1317
  year: 2001
  end-page: 1332
  article-title: A quantitative evaluation of Playfair's law and its use in testing long‐term stream erosion models
  publication-title: Earth Surf. Processes Landforms
– volume: 112
  year: 2007
  article-title: Predictions of steady state and transient landscape morphology using sediment‐flux‐dependent river incision models
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Evolution of vertical knickpoints (waterfalls) with resistant caprock: Insights from numerical modeling
  publication-title: J. Geophys. Res.
– volume: 388
  start-page: 358
  issue: 6640
  year: 1997
  end-page: 361
  article-title: The soil production function and landscape equilibrium
  publication-title: Nature
– start-page: 457
  year: 1994
  end-page: 474
  article-title: Longitudinal profile development into bedrock: An analysis of Hawaiian channels
  publication-title: J. Geol.
– start-page: 39
  year: 1948
  end-page: 64
– volume: 5
  start-page: 145
  year: 2017
  end-page: 160
  article-title: Coupling slope‐area analysis, integral approach and statistic tests to steady‐state bedrock river profile analysis
  publication-title: Earth Surf. Dyn.
– volume: 4
  start-page: 469
  issue: 7
  year: 2011
  end-page: 473
  article-title: Climatic control of denudation in the deglaciated landscape of the Washington cascades
  publication-title: Nat. Geosci.
– volume: 76
  start-page: 80
  year: 2015
  end-page: 87
  article-title: Knickpoint finder: A software tool that improves neotectonic analysis
  publication-title: Comput. Geosci.
– volume: 17
  start-page: 344
  year: 1909
  end-page: 350
  article-title: The convexity of hilltops
  publication-title: J. Geol.
– volume: 4
  start-page: 160
  issue: 2
  year: 2012
  end-page: 164
  article-title: How do landscapes record tectonics and climate?
  publication-title: Lithosphere
– volume: 39
  start-page: 543
  issue: 6
  year: 2011
  end-page: 546
  article-title: Does decreasing paraglacial sediment supply slow knickpoint retreat?
  publication-title: Geology
– volume: 114
  year: 2009
  article-title: Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Modeling of knickpoint retreat on the Roan Plateau, western Colorado
  publication-title: J. Geophys. Res.
– volume: 398
  start-page: 127
  year: 2006
  end-page: 141
  article-title: Numerical modeling of non‐steady‐state river profile evolution using a sediment‐flux‐dependent incision model
  publication-title: Geol. Soc. Am. Spec. Pap.
– year: 1996
– volume: 107
  issue: B9
  year: 2002
  article-title: Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Does climate change create distinctive patterns of landscape incision?
  publication-title: J. Geophys. Res.
– volume: 343
  issue: 6175
  year: 2014
  article-title: Dynamic reorganization of river basins
  publication-title: Science
– volume: 379
  start-page: 505
  year: 1996
  end-page: 510
  article-title: Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas
  publication-title: Nature
– volume: 40
  year: 2004
  article-title: A mechanistic model for river incision into bedrock by saltating bed load
  publication-title: Water Resour. Res.
– volume: 119
  start-page: 805
  issue: 7–8
  year: 2007
  end-page: 822
  article-title: Formation of amphitheater‐headed valleys by waterfall erosion after large‐scale slumping on Hawai'i
  publication-title: Geol. Soc. Am. Bull.
– volume: 82
  start-page: 16
  issue: 1
  year: 2006
  end-page: 38
  article-title: Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand
  publication-title: Geomorphology
– volume: 40
  start-page: 859
  year: 2013
  end-page: 863
  article-title: Frequency‐dependent landscape response to climatic forcing
  publication-title: Geophys. Res. Lett.
– volume: 96
  start-page: 31
  issue: 1
  year: 2015
  end-page: 38
  article-title: Erosion rates as a potential bottom‐up control of forest structural characteristics in the Sierra Nevada Mountains
  publication-title: Ecology
– volume: 121
  start-page: 1182
  year: 2016
  end-page: 1203
  article-title: Relict landscape resistance to dissection by upstream migrating knickpoints
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 36
  start-page: 367
  issue: 5
  year: 2008
  end-page: 370
  article-title: Geomorphic response to uplift along the Dragon's back pressure ridge, Carrizo plain, California
  publication-title: Geology
– volume: 5
  start-page: 211
  year: 2017
  end-page: 237
  article-title: Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau
  publication-title: Earth Surf. Dyn.
– volume: 398
  start-page: 55
  year: 2006a
  end-page: 74
  article-title: Tectonics from topography: Procedures, promise, and pitfalls
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 288
  start-page: 223
  issue: 1
  year: 1977
  end-page: 233
  article-title: Late glacial and early postglacial environments in western New York
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 32
  start-page: 151
  year: 2004
  end-page: 185
  article-title: Bedrock rivers and the geomorphology of active orogens
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 50
  start-page: 4283
  year: 2014
  end-page: 4304
  article-title: Objective extraction of channel heads from high‐resolution topographic data
  publication-title: Water Resour. Res.
– volume: 3
  start-page: 201
  year: 2015
  end-page: 222
  article-title: Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California)
  publication-title: Earth Surf. Dyn.
– volume: 398
  start-page: 101
  year: 2006
  end-page: 126
  article-title: Influence of incision rate, rock strength, and bedload supply on bedrock river gradients and valley‐flat widths: Field‐based evidence and calibrations from western Alpine rivers (southeast France)
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 398
  start-page: 55
  year: 2006
  ident: e_1_2_9_104_1
  article-title: Tectonics from topography: Procedures, promise, and pitfalls
  publication-title: Geol. Soc. Am. Spec. Pap.
– ident: e_1_2_9_70_1
  doi: 10.1130/0016-7606(1998)110<0711:LQSOTS>2.3.CO;2
– ident: e_1_2_9_7_1
  doi: 10.1130/G23641A.1
– ident: e_1_2_9_82_1
  doi: 10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jsg.2012.07.009
– ident: e_1_2_9_12_1
  doi: 10.1038/379505a0
– ident: e_1_2_9_25_1
  doi: 10.1016/j.geomorph.2013.04.011
– ident: e_1_2_9_39_1
  doi: 10.1029/2008JF001187
– ident: e_1_2_9_83_1
  doi: 10.1029/2003WR002496
– ident: e_1_2_9_107_1
  doi: 10.1029/2009JF001562
– ident: e_1_2_9_53_1
  doi: 10.1016/j.geomorph.2008.10.017
– ident: e_1_2_9_99_1
  doi: 10.1130/RF.L003.1
– ident: e_1_2_9_84_1
  doi: 10.1016/j.earscirev.2014.05.016
– ident: e_1_2_9_15_1
  doi: 10.1029/2005JF000294
– ident: e_1_2_9_42_1
  doi: 10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2
– ident: e_1_2_9_31_1
  doi: 10.1086/621620
– ident: e_1_2_9_57_1
  doi: 10.1130/L135.1
– volume: 81
  start-page: 48
  year: 2000
  ident: e_1_2_9_74_1
  article-title: Evolution of river elevation profiles by bedrock incision: Analytical solutions for transient river profiles related to changing uplift and precipitation rates
  publication-title: Eos Trans. AGU
– volume: 398
  start-page: 127
  year: 2006
  ident: e_1_2_9_29_1
  article-title: Numerical modeling of non‐steady‐state river profile evolution using a sediment‐flux‐dependent incision model
  publication-title: Geol. Soc. Am. Spec. Pap.
– ident: e_1_2_9_80_1
  doi: 10.1086/629686
– ident: e_1_2_9_8_1
  doi: 10.1177/030913339501900402
– ident: e_1_2_9_6_1
  doi: 10.1130/2006.2398(18)
– ident: e_1_2_9_47_1
  doi: 10.1130/G21959.1
– ident: e_1_2_9_62_1
  doi: 10.1029/2006JF000516
– volume: 398
  start-page: 101
  year: 2006
  ident: e_1_2_9_10_1
  article-title: Influence of incision rate, rock strength, and bedload supply on bedrock river gradients and valley‐flat widths: Field‐based evidence and calibrations from western Alpine rivers (southeast France)
  publication-title: Geol. Soc. Am. Spec. Pap.
– ident: e_1_2_9_16_1
  doi: 10.1002/2013WR015167
– ident: e_1_2_9_32_1
  doi: 10.1002/grl.50253
– ident: e_1_2_9_85_1
  doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2
– ident: e_1_2_9_73_1
  doi: 10.1016/j.cageo.2014.11.004
– ident: e_1_2_9_11_1
  doi: 10.1002/2015JF003678
– ident: e_1_2_9_51_1
  doi: 10.1016/j.geomorph.2015.03.003
– ident: e_1_2_9_76_1
  doi: 10.1016/j.epsl.2015.06.034
– ident: e_1_2_9_38_1
  doi: 10.1029/2006JF000461
– ident: e_1_2_9_72_1
  doi: 10.5194/esurf‐5‐211‐2017
– ident: e_1_2_9_102_1
  doi: 10.1130/G23106A.1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.geomorph.2005.08.023
– ident: e_1_2_9_3_1
  doi: 10.1029/2001JB000550
– ident: e_1_2_9_71_1
  doi: 10.1130/G32008.1
– ident: e_1_2_9_2_1
  doi: 10.5194/esurf-3-201-2015
– ident: e_1_2_9_28_1
  doi: 10.1130/0016-7606(1983)94<664:ESOKAL>2.0.CO;2
– ident: e_1_2_9_100_1
  doi: 10.1029/2011JF002157
– ident: e_1_2_9_87_1
  doi: 10.1029/2001JB000162
– ident: e_1_2_9_5_1
  doi: 10.1130/G37530.1
– volume-title: Introduction to Signal Processing
  year: 1996
  ident: e_1_2_9_67_1
– ident: e_1_2_9_22_1
  doi: 10.1130/B31113.1
– ident: e_1_2_9_50_1
  doi: 10.1130/B25986.1
– ident: e_1_2_9_66_1
  doi: 10.1002/esp.272
– ident: e_1_2_9_101_1
  doi: 10.1002/2014JF003318
– ident: e_1_2_9_92_1
  doi: 10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2
– ident: e_1_2_9_64_1
  doi: 10.1016/j.quascirev.2014.09.017
– ident: e_1_2_9_48_1
  doi: 10.1002/esp.3462
– ident: e_1_2_9_98_1
  doi: 10.1002/2016JF003973
– ident: e_1_2_9_24_1
  doi: 10.1029/2003JF000086
– ident: e_1_2_9_37_1
  doi: 10.1029/2006JF000570
– ident: e_1_2_9_68_1
  doi: 10.1029/2010WR009648
– ident: e_1_2_9_59_1
  doi: 10.1890/14-0649.1
– ident: e_1_2_9_63_1
  doi: 10.1002/2013JF002981
– volume: 23
  start-page: 101
  year: 1992
  ident: e_1_2_9_79_1
  article-title: The problem of channel erosion into bedrock
  publication-title: Funct. Geomorphol.
– ident: e_1_2_9_14_1
  doi: 10.1130/1052-5173(2005)015[4:TNLOTS]2.0.CO;2
– ident: e_1_2_9_55_1
  doi: 10.1002/2013JF003004
– ident: e_1_2_9_77_1
  doi: 10.1130/B25364.1
– ident: e_1_2_9_61_1
  doi: 10.1038/ngeo1159
– ident: e_1_2_9_30_1
  doi: 10.1029/2006JF000567
– ident: e_1_2_9_26_1
  doi: 10.1029/WR010i005p00969
– ident: e_1_2_9_43_1
  doi: 10.1029/94JB00744
– ident: e_1_2_9_105_1
  doi: 10.1029/2005TC001935
– ident: e_1_2_9_9_1
  doi: 10.1002/esp.1191
– ident: e_1_2_9_27_1
  doi: 10.1002/esp.2150
– ident: e_1_2_9_97_1
  doi: 10.1016/B978-0-12-374739-6.00254-2
– ident: e_1_2_9_17_1
  doi: 10.1130/G24681A.1
– ident: e_1_2_9_44_1
  doi: 10.1029/2011JF002057
– ident: e_1_2_9_33_1
  doi: 10.1130/G38831.1
– ident: e_1_2_9_4_1
  doi: 10.1029/2006JF000553
– volume: 28
  start-page: 23
  year: 2005
  ident: e_1_2_9_36_1
  article-title: Capturing variable knickpoint retreat in the Central Appalachians, USA
  publication-title: Geogr. Fis. Din. Quat.
– volume: 506
  year: 2007
  ident: e_1_2_9_95_1
  article-title: New tools for quantitative geomorphology: Extraction and interpretation of stream profiles from digital topographic data
  publication-title: GSA Short Course
– ident: e_1_2_9_75_1
  doi: 10.1002/jgrf.20031
– ident: e_1_2_9_19_1
  doi: 10.1029/2006JF000566
– ident: e_1_2_9_49_1
  doi: 10.1130/B26482.1
– ident: e_1_2_9_21_1
  doi: 10.1002/esp.3205
– ident: e_1_2_9_69_1
  doi: 10.1002/esp.3302
– ident: e_1_2_9_86_1
  doi: 10.1046/j.1365-2117.2002.00169.x
– ident: e_1_2_9_88_1
  doi: 10.5194/esurf‐5‐145‐2017
– ident: e_1_2_9_58_1
  doi: 10.1016/j.epsl.2013.04.007
– ident: e_1_2_9_96_1
  doi: 10.1038/ngeo413
– ident: e_1_2_9_106_1
  doi: 10.1029/2005TC001935
– start-page: 39
  volume-title: Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research
  year: 1948
  ident: e_1_2_9_56_1
– ident: e_1_2_9_91_1
  doi: 10.1029/1999JB900120
– ident: e_1_2_9_20_1
  doi: 10.1016/j.epsl.2009.10.036
– ident: e_1_2_9_89_1
– ident: e_1_2_9_60_1
  doi: 10.1029/93WR02463
– ident: e_1_2_9_65_1
  doi: 10.1111/j.1749-6632.1977.tb33618.x
– ident: e_1_2_9_23_1
  doi: 10.1016/j.geomorph.2012.09.007
– ident: e_1_2_9_34_1
  doi: 10.1016/j.geomorph.2011.07.013
– ident: e_1_2_9_52_1
  doi: 10.1038/ngeo1479
– ident: e_1_2_9_93_1
  doi: 10.2475/ajs.301.4-5.313
– ident: e_1_2_9_81_1
  doi: 10.1002/2016GL069262
– ident: e_1_2_9_78_1
  doi: 10.5194/esurf-2-1-2014
– ident: e_1_2_9_13_1
  doi: 10.1029/2008JF001044
– ident: e_1_2_9_45_1
  doi: 10.1130/G32018.1
– ident: e_1_2_9_54_1
  doi: 10.1130/B30930.1
– ident: e_1_2_9_40_1
  doi: 10.1038/41056
– ident: e_1_2_9_90_1
  doi: 10.1130/0091-7613(1997)025<0631:IORSPO>2.3.CO;2
– ident: e_1_2_9_35_1
  doi: 10.3133/pp294B
– ident: e_1_2_9_94_1
  doi: 10.1146/annurev.earth.32.101802.120356
– ident: e_1_2_9_41_1
  doi: 10.1130/G24517A.1
– ident: e_1_2_9_103_1
  doi: 10.1126/science.1248765
SSID ssj0000816912
Score 2.2395568
Snippet Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to...
Streams commonly respond to base-level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1236
SubjectTerms Accuracy
Algorithms
Automation
Balances (scales)
California
Catchments
Climate
Climate change
Convergence
Digital Elevation Models
Drainage
Dynamics
Earthquake construction
Earthquakes
Efficiency
Environmental changes
Environmental conditions
Erosion
Fluvial morphology
Frameworks
Geological structures
geophysics
Gradients
Height
incision
knickpoint
knickzone
Land use
Landforms
Landscape
landscapes
Mathematical models
Morphology
Mountains
Oceans
Parameter identification
Parameters
Position (location)
relict landscape
River channels
River morphology
Rivers
Santa Cruz Island
Scripts
Sea level changes
Seismic activity
Shape
Slopes
Streams
Structures
Technology
Tectonics
topographic slope
Training
transient
Uplift
Upstream
Watersheds
Title An automated knickzone selection algorithm (KZ‐Picker) to analyze transient landscapes: Calibration and validation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017JF004250
https://www.proquest.com/docview/1917358273
https://www.proquest.com/docview/2718353850
Volume 122
WOSCitedRecordID wos000405203900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2169-9011
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816912
  issn: 2169-9003
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2169-9011
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816912
  issn: 2169-9003
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LSsQwMIh68OIDFVdXiaCgaNFN023rTdT1ySLi4uKlpEmqZddWtl0Pe_IT_Ea_xJm0rutBQbwVMklDZibzyDwI2aiHQtpKgHUCwsnizNyDLgOEaJTW3r72hWk24TabXrvtX5cON8yFKepDDB1uyBnmvkYGF2G291U0FCSXe9EwRIcme40bvrw7bw5dLNhTwjfvnQw-LPTZlaHvsMLe6PzvQulL0xzVV43Aacz8d6uzZLpUNelhQRtzZEwn8yQ_TKjo5ykoqlrRThLLziBNNM1MPxxAEhXdh7QX549PdOvy_v317TrGyIttmqdUYAWTgaY5CjhMpKQmUxhjqLIDimleYUFQAKko0HBcdGxaIK3Gye3RmVV2XrAE2FvcEp5SUeg5ThQKryYiBXZk5ClXaTdk0gEbhWsmlWBeyLhUcEtoJ1SebYM6BshX9iIZT2DzS4TquuaRDTp85PicycjXsiZVXTuSw_waq5Cdz6MPZFmWHLtjdIOioDILRk-vQjaH0M9FOY4f4KqfWAxKpswCNE0xMdi1K2R9OAzshG8kItFpPwsYyGobhAAusWtw-ut_govTG0Bv3efLfwNfIVM4UASdVcl43uvrVTIpX_I4662RieObRutqzdDzBxHN84s
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yCnrxgYrrM4KCokU3Tbett0VdX-sioiBeSpqkWtRWtl0PnvwJ_kZ_iTNpd10PCuKt0GkaMpN8M5N5ELJWD4W0lQDrBMDJ4sycgy4DhmhEa29X-8I0m3Dbbe_mxr8o-5xiLkxRH6LvcMOdYc5r3ODokN75qhoK0OWeNo3Ugc0-zEGSnAoZPrhsXrf6bhbsK-GbO08GDxb67crwdxhkZ3CI78D0pW0O6qwGdJoT_57uJBkv9U3aKARkigzpZJrkjYSKbp6CtqoVfUhi-fCaJppmpikOcIqKx7u0E-f3T3Tj7Pbj7f0ixvCLTZqnVGAZk1dNc0Q5zKakJl0YA6myPYq5XmEhVUCpKAhyXLRtmiHXzcOr_WOrbL9gCTC6uCU8paLQc5woFF5NRAqMychTrtJuyKQDhgrXTCrBvJBxqeCo0E6oPNsGnQwkQNmzpJLA5OcI1XXNIxsU-cjxOZORr2VNqrp2JIfva6xKtnprH8iyNjm2yHgMiqrKLBhcvSpZ71M_FzU5fqBb7LExKHdmFqB9itnBrl0lq_3XsKfwokQkOu1mAQPAtgEJcIhtw9Rf_xOcHl0Ce-s-n_8b-QoZPb46bwWtk_bZAhlDoiIKbZFU8k5XL5ER-ZLHWWe5FOtPlZX3Nw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIl58oOL6jKCgaNFN05c3UeuTZREF8VLSJNWitrLtevDkT_A3-kucSeu6HhTEW6HTNGRm8s0k8yBk1Y2FtJUA7wTAyeLM7IMeA4ZoRGt_RwfCNJvwWi3_-jpo131OMRemqg_RO3BDzTD7NSq4flLJ9lfVUIAu7zQ0Ugc--xB3Ahc0c-jgIrw67x2zYF-JwNx5Mniw8NyuDn-HQbb7h_gOTF_WZr_NakAnHP_3dCfIWG1v0r1KQCbJgM6mSLmXUdEtc7BWtaL3WSrvX_JM08I0xQFOUfFwm3fS8u6Rrp_dvL--tVMMv9igZU4FljF50bRElMNsSmrShTGQqtilmOsVV1IFlIqCIKdV26ZpchUeXu4fW3X7BUuA08Ut4SuVxL7jJLHwmyJR4EwmvvKU9mImHXBUuGZSCebHjEsFW4V2YuXbNthkIAHKniGDGUx-llDtap7YYMgnTsCZTAItm1K52pEcvm-yBtn8XPtI1rXJsUXGQ1RVVWZR_-o1yFqP-qmqyfED3cInG6NaM4sI_VPMDvbsBlnpvQadwosSkem8W0QMANsGJMAhtgxTf_1PdHp0Aex1Az73N_JlMtI-CKPzk9bZPBlFmioIbYEMlp2uXiTD8rlMi85SLdUfK_n2sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automated+knickzone+selection+algorithm+%28KZ-Picker%29+to+analyze+transient+landscapes%3A+Calibration+and+validation&rft.jtitle=Journal+of+geophysical+research.+Earth+surface&rft.au=Neely%2C+A+B&rft.au=Bookhagen%2C+B&rft.au=Burbank%2C+D+W&rft.date=2017-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9003&rft.eissn=2169-9011&rft.volume=122&rft.issue=6&rft.spage=1236&rft_id=info:doi/10.1002%2F2017JF004250&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9003&client=summon