An automated knickzone selection algorithm (KZ‐Picker) to analyze transient landscapes: Calibration and validation
Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help...
Uložené v:
| Vydané v: | Journal of geophysical research. Earth surface Ročník 122; číslo 6; s. 1236 - 1261 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
Blackwell Publishing Ltd
01.06.2017
|
| Predmet: | |
| ISSN: | 2169-9003, 2169-9011 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base‐level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a χ‐space (drainage‐area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30 m resolution digital elevation models (DEMs) of six catchments (trunk‐stream lengths: 2.1–5.4 km) on Santa Cruz Island, southern California. On the 1 m DEM, algorithm‐selected knickzones confirm 93% of handpicked knickzone positions (n = 178) to a spatial accuracy of ≤100 m, 88% to an accuracy within 50 m, and 46% to an accuracy within 10 m. Using 10 and 30 m DEMs, accuracy is similar: 88–86% to ≤100 m and 82% to ≤50 m (n = 38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes.
Plain Language Summary
The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land‐use, or changes in climate, all factors that can produce measurable differences in river morphology over time.
Key Points
Algorithm uses a training data set to objectively select and measure river knickzones as bounded reaches of sustained high channel steepness index
Algorithm‐selected knickzones confirm ~80–90% of 178 manually selected knickzones on 1 to 30 m DEMs, and the measured height of confirmed knickzones matches to >90%
Algorithm is embedded in a set of automated scripts and can be applied to any region with DEM coverage |
|---|---|
| AbstractList | Streams commonly respond to base-level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base-level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a χ-space (drainage-area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30 m resolution digital elevation models (DEMs) of six catchments (trunk-stream lengths: 2.1-5.4 km) on Santa Cruz Island, southern California. On the 1 m DEM, algorithm-selected knickzones confirm 93% of handpicked knickzone positions (n = 178) to a spatial accuracy of ≤100 m, 88% to an accuracy within 50 m, and 46% to an accuracy within 10 m. Using 10 and 30 m DEMs, accuracy is similar: 88-86% to ≤100 m and 82% to ≤50 m (n = 38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land-use, or changes in climate, all factors that can produce measurable differences in river morphology over time. Key Points Algorithm uses a training data set to objectively select and measure river knickzones as bounded reaches of sustained high channel steepness index Algorithm-selected knickzones confirm ~80-90% of 178 manually selected knickzones on 1 to 30 m DEMs, and the measured height of confirmed knickzones matches to >90% Algorithm is embedded in a set of automated scripts and can be applied to any region with DEM coverage Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base‐level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a χ‐space (drainage‐area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30 m resolution digital elevation models (DEMs) of six catchments (trunk‐stream lengths: 2.1–5.4 km) on Santa Cruz Island, southern California. On the 1 m DEM, algorithm‐selected knickzones confirm 93% of handpicked knickzone positions (n = 178) to a spatial accuracy of ≤100 m, 88% to an accuracy within 50 m, and 46% to an accuracy within 10 m. Using 10 and 30 m DEMs, accuracy is similar: 88–86% to ≤100 m and 82% to ≤50 m (n = 38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land‐use, or changes in climate, all factors that can produce measurable differences in river morphology over time. Key Points Algorithm uses a training data set to objectively select and measure river knickzones as bounded reaches of sustained high channel steepness index Algorithm‐selected knickzones confirm ~80–90% of 178 manually selected knickzones on 1 to 30 m DEMs, and the measured height of confirmed knickzones matches to >90% Algorithm is embedded in a set of automated scripts and can be applied to any region with DEM coverage Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base‐level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a χ‐space (drainage‐area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30 m resolution digital elevation models (DEMs) of six catchments (trunk‐stream lengths: 2.1–5.4 km) on Santa Cruz Island, southern California. On the 1 m DEM, algorithm‐selected knickzones confirm 93% of handpicked knickzone positions (n = 178) to a spatial accuracy of ≤100 m, 88% to an accuracy within 50 m, and 46% to an accuracy within 10 m. Using 10 and 30 m DEMs, accuracy is similar: 88–86% to ≤100 m and 82% to ≤50 m (n = 38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. |
| Author | Neely, A. B. Burbank, D. W. Bookhagen, B. |
| Author_xml | – sequence: 1 givenname: A. B. surname: Neely fullname: Neely, A. B. email: abn5031@psu.edu organization: University of California – sequence: 2 givenname: B. orcidid: 0000-0003-1323-6453 surname: Bookhagen fullname: Bookhagen, B. organization: University of California – sequence: 3 givenname: D. W. orcidid: 0000-0001-8497-3296 surname: Burbank fullname: Burbank, D. W. organization: University of California |
| BookMark | eNp9kc1OGzEQxy1EJShw4wEs9UKlhvpjnXV6Q1EDpUhFVXvhspq1Z6nBsYPttAonHqHPyJNgSIUqpHYu8-Hf_DXjeU02QwxIyD5nh5wx8V4w3p7OGGuEYhtkW_DxZDRhnG8-x0xukb2cr1g1XUtcbJNyFCgsS5xDQUuvgzPXt1WXZvRoiov11V_G5MqPOT34fHF_9_u8Ipje0hIpBPCrW6QlQcgOQ6Eegs0GFpg_0Cl41ydYiwRLf9bcPqW75NUAPuPeH79Dvs8-fpuejM6-HH-aHp2NoGG8GYG2dui1UkMPmsNgtVCDtq3FthdGqXbcoDAWhO5FY2wrGareaikbNe7BWLlDDta6ixRvlphLN3fZoK9TYlzmTrRcSyW1YhV98wK9istU98sdn_BWKi1aWSmxpkyKOSccOuPK00r1C5zvOOseb9H9fYva9O5F0yK5OaTVv3C5xn85j6v_st3p8deZYONJIx8ALqWccw |
| CitedBy_id | crossref_primary_10_1111_bre_12687 crossref_primary_10_1007_s10064_024_04038_5 crossref_primary_10_5194_esurf_7_475_2019 crossref_primary_10_1029_2020JF005970 crossref_primary_10_17738_ajes_2021_0003 crossref_primary_10_5194_esurf_7_211_2019 crossref_primary_10_1016_j_geomorph_2022_108162 crossref_primary_10_1016_j_geomorph_2022_108580 crossref_primary_10_1016_j_quaint_2020_11_022 crossref_primary_10_1080_14702541_2023_2205853 crossref_primary_10_3390_geosciences8120443 crossref_primary_10_5194_esurf_7_87_2019 crossref_primary_10_1016_j_geomorph_2021_107890 crossref_primary_10_1029_2021JF006218 crossref_primary_10_1016_j_geomorph_2020_107551 crossref_primary_10_1016_j_tecto_2022_229638 crossref_primary_10_1016_j_geomorph_2024_109574 crossref_primary_10_1029_2019JF005025 crossref_primary_10_1080_10106049_2025_2480307 crossref_primary_10_1002_gj_4669 crossref_primary_10_1016_j_geomorph_2023_108937 crossref_primary_10_1016_j_geomorph_2019_03_034 crossref_primary_10_1016_j_geomorph_2021_107669 crossref_primary_10_1002_gj_3791 crossref_primary_10_1007_s41324_020_00345_7 crossref_primary_10_5194_esurf_12_973_2024 crossref_primary_10_1016_j_jseaes_2021_104751 crossref_primary_10_1016_j_earscirev_2020_103116 crossref_primary_10_1016_j_jseaes_2021_104877 crossref_primary_10_3389_feart_2022_821707 crossref_primary_10_1007_s10346_020_01549_6 crossref_primary_10_1080_24749508_2024_2338973 crossref_primary_10_1016_j_geomorph_2022_108132 crossref_primary_10_1016_j_geomorph_2018_12_024 crossref_primary_10_1029_2018JF004827 crossref_primary_10_5194_esurf_5_821_2017 crossref_primary_10_5194_esurf_7_681_2019 |
| Cites_doi | 10.1130/0016-7606(1998)110<0711:LQSOTS>2.3.CO;2 10.1130/G23641A.1 10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2 10.1016/j.jsg.2012.07.009 10.1038/379505a0 10.1016/j.geomorph.2013.04.011 10.1029/2008JF001187 10.1029/2003WR002496 10.1029/2009JF001562 10.1016/j.geomorph.2008.10.017 10.1130/RF.L003.1 10.1016/j.earscirev.2014.05.016 10.1029/2005JF000294 10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2 10.1086/621620 10.1130/L135.1 10.1086/629686 10.1177/030913339501900402 10.1130/2006.2398(18) 10.1130/G21959.1 10.1029/2006JF000516 10.1002/2013WR015167 10.1002/grl.50253 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2 10.1016/j.cageo.2014.11.004 10.1002/2015JF003678 10.1016/j.geomorph.2015.03.003 10.1016/j.epsl.2015.06.034 10.1029/2006JF000461 10.5194/esurf‐5‐211‐2017 10.1130/G23106A.1 10.1016/j.geomorph.2005.08.023 10.1029/2001JB000550 10.1130/G32008.1 10.5194/esurf-3-201-2015 10.1130/0016-7606(1983)94<664:ESOKAL>2.0.CO;2 10.1029/2011JF002157 10.1029/2001JB000162 10.1130/G37530.1 10.1130/B31113.1 10.1130/B25986.1 10.1002/esp.272 10.1002/2014JF003318 10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2 10.1016/j.quascirev.2014.09.017 10.1002/esp.3462 10.1002/2016JF003973 10.1029/2003JF000086 10.1029/2006JF000570 10.1029/2010WR009648 10.1890/14-0649.1 10.1002/2013JF002981 10.1130/1052-5173(2005)015[4:TNLOTS]2.0.CO;2 10.1002/2013JF003004 10.1130/B25364.1 10.1038/ngeo1159 10.1029/2006JF000567 10.1029/WR010i005p00969 10.1029/94JB00744 10.1029/2005TC001935 10.1002/esp.1191 10.1002/esp.2150 10.1016/B978-0-12-374739-6.00254-2 10.1130/G24681A.1 10.1029/2011JF002057 10.1130/G38831.1 10.1029/2006JF000553 10.1002/jgrf.20031 10.1029/2006JF000566 10.1130/B26482.1 10.1002/esp.3205 10.1002/esp.3302 10.1046/j.1365-2117.2002.00169.x 10.5194/esurf‐5‐145‐2017 10.1016/j.epsl.2013.04.007 10.1038/ngeo413 10.1029/1999JB900120 10.1016/j.epsl.2009.10.036 10.1029/93WR02463 10.1111/j.1749-6632.1977.tb33618.x 10.1016/j.geomorph.2012.09.007 10.1016/j.geomorph.2011.07.013 10.1038/ngeo1479 10.2475/ajs.301.4-5.313 10.1002/2016GL069262 10.5194/esurf-2-1-2014 10.1029/2008JF001044 10.1130/G32018.1 10.1130/B30930.1 10.1038/41056 10.1130/0091-7613(1997)025<0631:IORSPO>2.3.CO;2 10.3133/pp294B 10.1146/annurev.earth.32.101802.120356 10.1130/G24517A.1 10.1126/science.1248765 |
| ContentType | Journal Article |
| Copyright | 2017. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2017. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M SOI 7S9 L.6 |
| DOI | 10.1002/2017JF004250 |
| DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2169-9011 |
| EndPage | 1261 |
| ExternalDocumentID | 10_1002_2017JF004250 JGRF20694 |
| Genre | article |
| GeographicLocations | California |
| GeographicLocations_xml | – name: California |
| GrantInformation_xml | – fundername: German Federal Ministry of Education and Research funderid: PROGRESS initiative – fundername: NSF Geomorphology Land use Dynamics Program funderid: EAR‐1148268 – fundername: NSF funderid: EAR‐1148268 – fundername: German Federal Ministry of Education and Research |
| GroupedDBID | 05W 0R~ 1OC 31~ 33P 50Y 52M 702 7XC 8-1 88I 8FE 8FG 8FH 8G5 AAESR AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJCF ABJNI ACAHQ ACCZN ACGFS ACGOD ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEUYN AEUYR AEYWJ AFBPY AFFHD AFFPM AFGKR AFKRA AFRAH AFWVQ AGHNM AGYGG AHBTC AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE BRXPI CCPQU DPXWK DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W P62 PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PYCSY R.K RNS ROL SUPJJ WBKPD WIN WXSBR ~OA ~~A AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-a4014-a8ddfb855fba81afd825f8d7de7b2c55764e2cda28b24cd730e5bd833456bacd3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405203900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-9003 |
| IngestDate | Fri Jul 11 18:36:45 EDT 2025 Sat Aug 23 05:21:14 EDT 2025 Tue Nov 18 19:39:29 EST 2025 Sat Nov 29 03:38:39 EST 2025 Tue Nov 11 03:08:59 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4014-a8ddfb855fba81afd825f8d7de7b2c55764e2cda28b24cd730e5bd833456bacd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1323-6453 0000-0001-8497-3296 |
| OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2017JF004250 |
| PQID | 1917358273 |
| PQPubID | 54727 |
| PageCount | 26 |
| ParticipantIDs | proquest_miscellaneous_2718353850 proquest_journals_1917358273 crossref_citationtrail_10_1002_2017JF004250 crossref_primary_10_1002_2017JF004250 wiley_primary_10_1002_2017JF004250_JGRF20694 |
| PublicationCentury | 2000 |
| PublicationDate | June 2017 2017-06-00 20170601 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Journal of geophysical research. Earth surface |
| PublicationYear | 2017 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2017; 5 2006b; 25 2002; 14 1993; 29 1974; 10 2006; 34 2013; 369 2015; 76 2008; 36 2015; 428 1983; 94 1977; 288 1998; 110 2005; 28 2007; 506 2007; 35 2009; 114 2014; 136 2001; 301 2013; 9 1997; 388 2004; 32 2014; 2 2010; 115 2013; 118 2009; 121 2016; 43 2005; 30 2002; 107 1996; 379 2017; 122 2014; 50 2013; 194 1948 2014; 126 2016; 44 2014; 119 2004; 40 2015; 3 2015; 127 2013; 40 2015; 244 2015; 96 1997; 25 2015; 120 2010; 289 1996 2016; 121 2001; 26 1994 1995; 19 2012; 37 2011; 36 2001; 29 2000; 112 2004; 109 2011; 39 2011; 4 2013; 180 2006c; 111 1999; 104 2006; 398 2011; 134 2006; 111 1957 1909; 17 2006; 82 2007; 112 2014; 105 2003; 108 2004; 116 2007; 119 2013; 38 1994; 99 2000; 81 2017 2014; 39 2011; 47 2005; 15 2009; 2 2012; 4 2006a; 398 2012; 117 2012; 44 2012; 5 1992; 23 1969 2014; 343 2009; 106 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_94_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 Whipple K. X. (e_1_2_9_95_1) 2007; 506 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 Orfanidis S. J. (e_1_2_9_67_1) 1996 e_1_2_9_76_1 e_1_2_9_91_1 Brocard G. (e_1_2_9_10_1) 2006; 398 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 Gasparini N. M. (e_1_2_9_29_1) 2006; 398 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 Seidl M. A. (e_1_2_9_79_1) 1992; 23 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 Harbor D. (e_1_2_9_36_1) 2005; 28 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 Wobus C. (e_1_2_9_104_1) 2006; 398 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 Royden L. H. (e_1_2_9_74_1) 2000; 81 Meyer‐Peter E. (e_1_2_9_56_1) 1948 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 |
| References_xml | – volume: 14 start-page: 105 issue: 2 year: 2002 end-page: 127 article-title: Interactions between onshore bedrock‐channel incision and nearshore wave‐base erosion forced by eustasy and tectonics publication-title: Basin Res. – volume: 35 start-page: 103 issue: 2 year: 2007 end-page: 106 article-title: Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates publication-title: Geology – volume: 47 year: 2011 article-title: On the prediction of channel heads in a complex alpine terrain using gridded elevation data publication-title: Water Resour. Res. – volume: 94 start-page: 664 issue: 5 year: 1983 end-page: 672 article-title: Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material publication-title: Geol. Soc. Am. Bull. – volume: 105 start-page: 209 year: 2014 end-page: 238 article-title: Coastal tectonics on the eastern margin of the Pacific Rim: Late Quaternary sea‐level history and uplift rates, Channel Islands National Park, California, USA publication-title: Quat. Sci. Rev. – volume: 111 year: 2006c article-title: Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution publication-title: J. Geophys. Res. – volume: 119 start-page: 138 year: 2014 end-page: 152 article-title: A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis publication-title: J. Geophys. Res. Earth Surf. – volume: 120 start-page: 137 year: 2015 end-page: 158 article-title: Geomorphic constraints on fault throw rates and linkage times: Examples from the Northern Gulf of Evia, Greece publication-title: J. Geophys. Res. Earth Surf. – volume: 43 start-page: 5070 year: 2016 end-page: 5078 article-title: Hillslope‐derived blocks retard river incision publication-title: Geophys. Res. Lett. – volume: 180 start-page: 66 year: 2013 end-page: 81 article-title: Relationships between block quarrying, bed shear stress, and stream power: A physical model of block quarrying of a jointed bedrock channel publication-title: Geomorphology – volume: 398 start-page: 295 year: 2006 end-page: 307 article-title: Knickpoints and hillslope failures: Interactions in a steady‐state experimental landscape publication-title: GSA Spec. Pap. – start-page: 97 year: 1957 – volume: 106 start-page: 376 issue: 3 year: 2009 end-page: 382 article-title: Wave train model for knickpoint migration publication-title: Geomorphology – volume: 117 year: 2012 article-title: Using hilltop curvature to derive the spatial distribution of erosion rates publication-title: J. Geophys. Res. – volume: 116 start-page: 895 issue: 7–8 year: 2004 end-page: 909 article-title: Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China publication-title: Geol. Soc. Am. Bull. – volume: 110 start-page: 711 issue: 6 year: 1998 end-page: 722 article-title: Late quaternary slip on the Santa Cruz Island fault, California publication-title: Geol. Soc. Am. Bull. – year: 1969 – volume: 118 start-page: 497 year: 2013 end-page: 518 article-title: Solutions of the stream power equation and application to the evolution of river longitudinal profiles publication-title: J. Geophys. Res. Earth Surf. – volume: 94 start-page: 739 issue: 6 year: 1983 end-page: 752 article-title: Channel changes in badlands publication-title: Geol. Soc. Am. Bull. – volume: 301 start-page: 313 issue: 4–5 year: 2001 end-page: 325 article-title: Fluvial landscape response time: How plausible is steady‐state denudation? publication-title: Am. J. Sci. – volume: 38 start-page: 570 issue: 6 year: 2013 end-page: 576 article-title: An integral approach to bedrock river profile analysis publication-title: Earth Surf. Processes Landforms – volume: 506 year: 2007 article-title: New tools for quantitative geomorphology: Extraction and interpretation of stream profiles from digital topographic data publication-title: GSA Short Course – volume: 25 start-page: 631 issue: 7 year: 1997 end-page: 634 article-title: Influence of rock strength properties on escarpment retreat across passive continental margins publication-title: Geology – volume: 19 start-page: 449 issue: 4 year: 1995 end-page: 473 article-title: Drainage rearrangement by river capture, beheading and diversion publication-title: Prog. Phys. Geogr. – volume: 121 start-page: 1123 issue: 7–8 year: 2009 end-page: 1134 article-title: The persistence of waterfalls in fractured rock publication-title: Geol. Soc. Am. Bull. – volume: 108 issue: B3 year: 2003 article-title: Implications of the shear stress river incision model for the timescale of postorogenic decay of topography publication-title: J. Geophys. Res. – volume: 39 start-page: 38 issue: 1 year: 2014 end-page: 61 article-title: The stream power river incision model: Evidence, theory and beyond publication-title: Earth Surf. Processes Landforms – volume: 112 year: 2007 article-title: Responses of soil‐mantled hillslopes to transient channel incision rates publication-title: J. Geophys. Res. – volume: 9 year: 2013 – volume: 119 start-page: 1395 year: 2014 end-page: 1417 article-title: Diagenetic variation in the Oregon Coast Range: Implications for rock strength, soil production, hillslope form, and landscape evolution publication-title: J. Geophys. Res. Earth Surf. – volume: 29 start-page: 3925 issue: 12 year: 1993 end-page: 3934 article-title: Channel network source representation using digital elevation models publication-title: Water Resour. Res. – volume: 44 start-page: 363 issue: 5 year: 2016 end-page: 366 article-title: Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction publication-title: Geology – volume: 44 start-page: 54 year: 2012 end-page: 75 article-title: Expression of active tectonics in erosional landscapes publication-title: J. Struct. Geol. – volume: 34 start-page: 45 issue: 1 year: 2006 end-page: 48 article-title: Rock‐slope failure and the river long profile publication-title: Geology – volume: 117 year: 2012 article-title: Tectonic and climatic controls on knickpoint retreat rates and landscape response times publication-title: J. Geophys. Res. – volume: 134 start-page: 394 issue: 3–4 year: 2011 end-page: 407 article-title: An automated method for producing synoptic regional maps of river gradient variation: Procedure, accuracy tests, and comparison with other knickpoint mapping methods publication-title: Geomorphology – volume: 369 start-page: 1 year: 2013 end-page: 12 article-title: Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates publication-title: Earth Planet. Sci. Lett. – volume: 99 start-page: 13,971 year: 1994 end-page: 13,986 article-title: Modeling fluvial erosion on regional to continental scales publication-title: J. Geophys. Res. – volume: 35 start-page: 743 issue: 8 year: 2007 end-page: 746 article-title: Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range publication-title: Geology – volume: 112 start-page: 1250 issue: 8 year: 2000 end-page: 1263 article-title: Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California publication-title: Geol. Soc. Am. Bull. – volume: 127 start-page: 539 issue: 3–4 year: 2015 end-page: 559 article-title: The role of waterfalls and knickzones in controlling the style and pace of landscape adjustment in the western San Gabriel Mountains, California publication-title: Geol. Soc. Am. Bull. – volume: 36 start-page: 535 issue: 7 year: 2008 end-page: 538 article-title: New constraints on sediment‐flux‐dependent river incision: Implications for extracting tectonic signals from river profiles publication-title: Geology – volume: 28 start-page: 23 year: 2005 end-page: 36 article-title: Capturing variable knickpoint retreat in the Central Appalachians, USA publication-title: Geogr. Fis. Din. Quat. – volume: 112 year: 2007 article-title: Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China publication-title: J. Geophys. Res. – volume: 36 year: 2011 article-title: Hillslope response to knickpoint migration in the southern Appalachians: Implications for the evolution of post‐orogenic landscapes publication-title: Earth Surf. Processes Landforms – volume: 5 start-page: 468 year: 2012 end-page: 473 article-title: Landslide erosion coupled to tectonics and river incision publication-title: Nat. Geosci. – year: 2017 article-title: Controls and feedbacks in the coupling of mountain channels and hillslopes publication-title: Geology – volume: 136 start-page: 202 year: 2014 end-page: 225 article-title: Roughness in the earth sciences publication-title: Earth Sci. Rev. – volume: 2 start-page: 97 issue: 2 year: 2009 end-page: 104 article-title: The influence of climate on the tectonic evolution of mountain belts publication-title: Nat. Geosci. – volume: 112 year: 2007 article-title: Formation of fluvial hanging valleys: Theory and simulation publication-title: J. Geophys. Res. – volume: 2 start-page: 1 issue: 1 year: 2014 end-page: 7 article-title: Short communication: TopoToolbox 2–MATLAB‐based software for topographic analysis and modeling in Earth surface sciences publication-title: Earth Surf. Dyn. – volume: 10 start-page: 969 issue: 5 year: 1974 end-page: 973 article-title: Stream gradient as a function of order, magnitude, and discharge publication-title: Water Resour. Res. – volume: 126 start-page: 925 issue: 7–8 year: 2014 end-page: 942 article-title: Knickpoint formation, rapid propagation, and landscape response following coastal cliff retreat at the last interglacial sea‐level highstand: Kaua'i, Hawai'i publication-title: Geol. Soc. Am. Bull. – volume: 39 start-page: 823 issue: 9 year: 2011 end-page: 826 article-title: Stream capture as driver of transient landscape evolution in a tectonically quiescent setting publication-title: Geology – volume: 23 start-page: 101 year: 1992 end-page: 124 article-title: The problem of channel erosion into bedrock publication-title: Funct. Geomorphol. – volume: 37 start-page: 855 issue: 8 year: 2012 end-page: 865 article-title: Hillslope response to tectonic forcing in threshold landscapes publication-title: Earth Surf. Processes Landforms – volume: 111 year: 2006 article-title: Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau publication-title: J. Geophys. Res. – volume: 4 start-page: 131 issue: 2 year: 2012 end-page: 149 article-title: Transient fluvial incision and active surface uplift in the Woodlark Rift of eastern Papua New Guinea publication-title: Lithosphere – volume: 81 start-page: 48 year: 2000 article-title: Evolution of river elevation profiles by bedrock incision: Analytical solutions for transient river profiles related to changing uplift and precipitation rates publication-title: Eos Trans. AGU – volume: 15 start-page: 4 year: 2005 end-page: 10 article-title: The non‐equilibrium landscape of the southern Sierra Nevada, California publication-title: GSA Today – volume: 30 start-page: 767 issue: 6 year: 2005 end-page: 778 article-title: Knickpoint recession rate and catchment area: The case of uplifted rivers in Eastern Scotland publication-title: Earth Surf. Processes Landforms – volume: 111 year: 2006 article-title: Amplified erosion above waterfalls and oversteepened bedrock reaches publication-title: J. Geophys. Res. – volume: 25 year: 2006b article-title: Neotectonics of the central Nepalese Himalaya: Constraints from geomorphology, detrital 40Ar/39Ar thermochronology, and thermal modeling publication-title: Tectonics – volume: 112 start-page: 490 issue: 3 year: 2000 end-page: 503 article-title: River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation publication-title: Geol. Soc. Am. Bull. – volume: 244 start-page: 33 year: 2015 end-page: 55 article-title: New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory publication-title: Geomorphology – volume: 122 start-page: 248 year: 2017 end-page: 273 article-title: Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution publication-title: J. Geophys. Res. Earth Surf. – volume: 29 start-page: 1087 issue: 12 year: 2001 end-page: 1090 article-title: Sediment and rock strength controls on river incision into bedrock publication-title: Geology – volume: 194 start-page: 46 year: 2013 end-page: 56 article-title: Channel planform geometry and slopes from freely available high‐spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes publication-title: Geomorphology – volume: 104 start-page: 17,661 year: 1999 end-page: 17,674 article-title: Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs publication-title: J. Geophys. Res. – volume: 289 start-page: 134 issue: 1 year: 2010 end-page: 144 article-title: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA publication-title: Earth Planet. Sci. Lett. – volume: 428 start-page: 255 year: 2015 end-page: 266 article-title: Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India publication-title: Earth Planet. Sci. Lett. – volume: 109 year: 2004 article-title: Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California publication-title: J. Geophys. Res. – volume: 26 start-page: 1317 year: 2001 end-page: 1332 article-title: A quantitative evaluation of Playfair's law and its use in testing long‐term stream erosion models publication-title: Earth Surf. Processes Landforms – volume: 112 year: 2007 article-title: Predictions of steady state and transient landscape morphology using sediment‐flux‐dependent river incision models publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Evolution of vertical knickpoints (waterfalls) with resistant caprock: Insights from numerical modeling publication-title: J. Geophys. Res. – volume: 388 start-page: 358 issue: 6640 year: 1997 end-page: 361 article-title: The soil production function and landscape equilibrium publication-title: Nature – start-page: 457 year: 1994 end-page: 474 article-title: Longitudinal profile development into bedrock: An analysis of Hawaiian channels publication-title: J. Geol. – start-page: 39 year: 1948 end-page: 64 – volume: 5 start-page: 145 year: 2017 end-page: 160 article-title: Coupling slope‐area analysis, integral approach and statistic tests to steady‐state bedrock river profile analysis publication-title: Earth Surf. Dyn. – volume: 4 start-page: 469 issue: 7 year: 2011 end-page: 473 article-title: Climatic control of denudation in the deglaciated landscape of the Washington cascades publication-title: Nat. Geosci. – volume: 76 start-page: 80 year: 2015 end-page: 87 article-title: Knickpoint finder: A software tool that improves neotectonic analysis publication-title: Comput. Geosci. – volume: 17 start-page: 344 year: 1909 end-page: 350 article-title: The convexity of hilltops publication-title: J. Geol. – volume: 4 start-page: 160 issue: 2 year: 2012 end-page: 164 article-title: How do landscapes record tectonics and climate? publication-title: Lithosphere – volume: 39 start-page: 543 issue: 6 year: 2011 end-page: 546 article-title: Does decreasing paraglacial sediment supply slow knickpoint retreat? publication-title: Geology – volume: 114 year: 2009 article-title: Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Modeling of knickpoint retreat on the Roan Plateau, western Colorado publication-title: J. Geophys. Res. – volume: 398 start-page: 127 year: 2006 end-page: 141 article-title: Numerical modeling of non‐steady‐state river profile evolution using a sediment‐flux‐dependent incision model publication-title: Geol. Soc. Am. Spec. Pap. – year: 1996 – volume: 107 issue: B9 year: 2002 article-title: Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Does climate change create distinctive patterns of landscape incision? publication-title: J. Geophys. Res. – volume: 343 issue: 6175 year: 2014 article-title: Dynamic reorganization of river basins publication-title: Science – volume: 379 start-page: 505 year: 1996 end-page: 510 article-title: Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas publication-title: Nature – volume: 40 year: 2004 article-title: A mechanistic model for river incision into bedrock by saltating bed load publication-title: Water Resour. Res. – volume: 119 start-page: 805 issue: 7–8 year: 2007 end-page: 822 article-title: Formation of amphitheater‐headed valleys by waterfall erosion after large‐scale slumping on Hawai'i publication-title: Geol. Soc. Am. Bull. – volume: 82 start-page: 16 issue: 1 year: 2006 end-page: 38 article-title: Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand publication-title: Geomorphology – volume: 40 start-page: 859 year: 2013 end-page: 863 article-title: Frequency‐dependent landscape response to climatic forcing publication-title: Geophys. Res. Lett. – volume: 96 start-page: 31 issue: 1 year: 2015 end-page: 38 article-title: Erosion rates as a potential bottom‐up control of forest structural characteristics in the Sierra Nevada Mountains publication-title: Ecology – volume: 121 start-page: 1182 year: 2016 end-page: 1203 article-title: Relict landscape resistance to dissection by upstream migrating knickpoints publication-title: J. Geophys. Res. Earth Surf. – volume: 36 start-page: 367 issue: 5 year: 2008 end-page: 370 article-title: Geomorphic response to uplift along the Dragon's back pressure ridge, Carrizo plain, California publication-title: Geology – volume: 5 start-page: 211 year: 2017 end-page: 237 article-title: Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau publication-title: Earth Surf. Dyn. – volume: 398 start-page: 55 year: 2006a end-page: 74 article-title: Tectonics from topography: Procedures, promise, and pitfalls publication-title: Geol. Soc. Am. Spec. Pap. – volume: 288 start-page: 223 issue: 1 year: 1977 end-page: 233 article-title: Late glacial and early postglacial environments in western New York publication-title: Ann. N. Y. Acad. Sci. – volume: 32 start-page: 151 year: 2004 end-page: 185 article-title: Bedrock rivers and the geomorphology of active orogens publication-title: Annu. Rev. Earth Planet. Sci. – volume: 50 start-page: 4283 year: 2014 end-page: 4304 article-title: Objective extraction of channel heads from high‐resolution topographic data publication-title: Water Resour. Res. – volume: 3 start-page: 201 year: 2015 end-page: 222 article-title: Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California) publication-title: Earth Surf. Dyn. – volume: 398 start-page: 101 year: 2006 end-page: 126 article-title: Influence of incision rate, rock strength, and bedload supply on bedrock river gradients and valley‐flat widths: Field‐based evidence and calibrations from western Alpine rivers (southeast France) publication-title: Geol. Soc. Am. Spec. Pap. – volume: 398 start-page: 55 year: 2006 ident: e_1_2_9_104_1 article-title: Tectonics from topography: Procedures, promise, and pitfalls publication-title: Geol. Soc. Am. Spec. Pap. – ident: e_1_2_9_70_1 doi: 10.1130/0016-7606(1998)110<0711:LQSOTS>2.3.CO;2 – ident: e_1_2_9_7_1 doi: 10.1130/G23641A.1 – ident: e_1_2_9_82_1 doi: 10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2 – ident: e_1_2_9_46_1 doi: 10.1016/j.jsg.2012.07.009 – ident: e_1_2_9_12_1 doi: 10.1038/379505a0 – ident: e_1_2_9_25_1 doi: 10.1016/j.geomorph.2013.04.011 – ident: e_1_2_9_39_1 doi: 10.1029/2008JF001187 – ident: e_1_2_9_83_1 doi: 10.1029/2003WR002496 – ident: e_1_2_9_107_1 doi: 10.1029/2009JF001562 – ident: e_1_2_9_53_1 doi: 10.1016/j.geomorph.2008.10.017 – ident: e_1_2_9_99_1 doi: 10.1130/RF.L003.1 – ident: e_1_2_9_84_1 doi: 10.1016/j.earscirev.2014.05.016 – ident: e_1_2_9_15_1 doi: 10.1029/2005JF000294 – ident: e_1_2_9_42_1 doi: 10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2 – ident: e_1_2_9_31_1 doi: 10.1086/621620 – ident: e_1_2_9_57_1 doi: 10.1130/L135.1 – volume: 81 start-page: 48 year: 2000 ident: e_1_2_9_74_1 article-title: Evolution of river elevation profiles by bedrock incision: Analytical solutions for transient river profiles related to changing uplift and precipitation rates publication-title: Eos Trans. AGU – volume: 398 start-page: 127 year: 2006 ident: e_1_2_9_29_1 article-title: Numerical modeling of non‐steady‐state river profile evolution using a sediment‐flux‐dependent incision model publication-title: Geol. Soc. Am. Spec. Pap. – ident: e_1_2_9_80_1 doi: 10.1086/629686 – ident: e_1_2_9_8_1 doi: 10.1177/030913339501900402 – ident: e_1_2_9_6_1 doi: 10.1130/2006.2398(18) – ident: e_1_2_9_47_1 doi: 10.1130/G21959.1 – ident: e_1_2_9_62_1 doi: 10.1029/2006JF000516 – volume: 398 start-page: 101 year: 2006 ident: e_1_2_9_10_1 article-title: Influence of incision rate, rock strength, and bedload supply on bedrock river gradients and valley‐flat widths: Field‐based evidence and calibrations from western Alpine rivers (southeast France) publication-title: Geol. Soc. Am. Spec. Pap. – ident: e_1_2_9_16_1 doi: 10.1002/2013WR015167 – ident: e_1_2_9_32_1 doi: 10.1002/grl.50253 – ident: e_1_2_9_85_1 doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2 – ident: e_1_2_9_73_1 doi: 10.1016/j.cageo.2014.11.004 – ident: e_1_2_9_11_1 doi: 10.1002/2015JF003678 – ident: e_1_2_9_51_1 doi: 10.1016/j.geomorph.2015.03.003 – ident: e_1_2_9_76_1 doi: 10.1016/j.epsl.2015.06.034 – ident: e_1_2_9_38_1 doi: 10.1029/2006JF000461 – ident: e_1_2_9_72_1 doi: 10.5194/esurf‐5‐211‐2017 – ident: e_1_2_9_102_1 doi: 10.1130/G23106A.1 – ident: e_1_2_9_18_1 doi: 10.1016/j.geomorph.2005.08.023 – ident: e_1_2_9_3_1 doi: 10.1029/2001JB000550 – ident: e_1_2_9_71_1 doi: 10.1130/G32008.1 – ident: e_1_2_9_2_1 doi: 10.5194/esurf-3-201-2015 – ident: e_1_2_9_28_1 doi: 10.1130/0016-7606(1983)94<664:ESOKAL>2.0.CO;2 – ident: e_1_2_9_100_1 doi: 10.1029/2011JF002157 – ident: e_1_2_9_87_1 doi: 10.1029/2001JB000162 – ident: e_1_2_9_5_1 doi: 10.1130/G37530.1 – volume-title: Introduction to Signal Processing year: 1996 ident: e_1_2_9_67_1 – ident: e_1_2_9_22_1 doi: 10.1130/B31113.1 – ident: e_1_2_9_50_1 doi: 10.1130/B25986.1 – ident: e_1_2_9_66_1 doi: 10.1002/esp.272 – ident: e_1_2_9_101_1 doi: 10.1002/2014JF003318 – ident: e_1_2_9_92_1 doi: 10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2 – ident: e_1_2_9_64_1 doi: 10.1016/j.quascirev.2014.09.017 – ident: e_1_2_9_48_1 doi: 10.1002/esp.3462 – ident: e_1_2_9_98_1 doi: 10.1002/2016JF003973 – ident: e_1_2_9_24_1 doi: 10.1029/2003JF000086 – ident: e_1_2_9_37_1 doi: 10.1029/2006JF000570 – ident: e_1_2_9_68_1 doi: 10.1029/2010WR009648 – ident: e_1_2_9_59_1 doi: 10.1890/14-0649.1 – ident: e_1_2_9_63_1 doi: 10.1002/2013JF002981 – volume: 23 start-page: 101 year: 1992 ident: e_1_2_9_79_1 article-title: The problem of channel erosion into bedrock publication-title: Funct. Geomorphol. – ident: e_1_2_9_14_1 doi: 10.1130/1052-5173(2005)015[4:TNLOTS]2.0.CO;2 – ident: e_1_2_9_55_1 doi: 10.1002/2013JF003004 – ident: e_1_2_9_77_1 doi: 10.1130/B25364.1 – ident: e_1_2_9_61_1 doi: 10.1038/ngeo1159 – ident: e_1_2_9_30_1 doi: 10.1029/2006JF000567 – ident: e_1_2_9_26_1 doi: 10.1029/WR010i005p00969 – ident: e_1_2_9_43_1 doi: 10.1029/94JB00744 – ident: e_1_2_9_105_1 doi: 10.1029/2005TC001935 – ident: e_1_2_9_9_1 doi: 10.1002/esp.1191 – ident: e_1_2_9_27_1 doi: 10.1002/esp.2150 – ident: e_1_2_9_97_1 doi: 10.1016/B978-0-12-374739-6.00254-2 – ident: e_1_2_9_17_1 doi: 10.1130/G24681A.1 – ident: e_1_2_9_44_1 doi: 10.1029/2011JF002057 – ident: e_1_2_9_33_1 doi: 10.1130/G38831.1 – ident: e_1_2_9_4_1 doi: 10.1029/2006JF000553 – volume: 28 start-page: 23 year: 2005 ident: e_1_2_9_36_1 article-title: Capturing variable knickpoint retreat in the Central Appalachians, USA publication-title: Geogr. Fis. Din. Quat. – volume: 506 year: 2007 ident: e_1_2_9_95_1 article-title: New tools for quantitative geomorphology: Extraction and interpretation of stream profiles from digital topographic data publication-title: GSA Short Course – ident: e_1_2_9_75_1 doi: 10.1002/jgrf.20031 – ident: e_1_2_9_19_1 doi: 10.1029/2006JF000566 – ident: e_1_2_9_49_1 doi: 10.1130/B26482.1 – ident: e_1_2_9_21_1 doi: 10.1002/esp.3205 – ident: e_1_2_9_69_1 doi: 10.1002/esp.3302 – ident: e_1_2_9_86_1 doi: 10.1046/j.1365-2117.2002.00169.x – ident: e_1_2_9_88_1 doi: 10.5194/esurf‐5‐145‐2017 – ident: e_1_2_9_58_1 doi: 10.1016/j.epsl.2013.04.007 – ident: e_1_2_9_96_1 doi: 10.1038/ngeo413 – ident: e_1_2_9_106_1 doi: 10.1029/2005TC001935 – start-page: 39 volume-title: Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research year: 1948 ident: e_1_2_9_56_1 – ident: e_1_2_9_91_1 doi: 10.1029/1999JB900120 – ident: e_1_2_9_20_1 doi: 10.1016/j.epsl.2009.10.036 – ident: e_1_2_9_89_1 – ident: e_1_2_9_60_1 doi: 10.1029/93WR02463 – ident: e_1_2_9_65_1 doi: 10.1111/j.1749-6632.1977.tb33618.x – ident: e_1_2_9_23_1 doi: 10.1016/j.geomorph.2012.09.007 – ident: e_1_2_9_34_1 doi: 10.1016/j.geomorph.2011.07.013 – ident: e_1_2_9_52_1 doi: 10.1038/ngeo1479 – ident: e_1_2_9_93_1 doi: 10.2475/ajs.301.4-5.313 – ident: e_1_2_9_81_1 doi: 10.1002/2016GL069262 – ident: e_1_2_9_78_1 doi: 10.5194/esurf-2-1-2014 – ident: e_1_2_9_13_1 doi: 10.1029/2008JF001044 – ident: e_1_2_9_45_1 doi: 10.1130/G32018.1 – ident: e_1_2_9_54_1 doi: 10.1130/B30930.1 – ident: e_1_2_9_40_1 doi: 10.1038/41056 – ident: e_1_2_9_90_1 doi: 10.1130/0091-7613(1997)025<0631:IORSPO>2.3.CO;2 – ident: e_1_2_9_35_1 doi: 10.3133/pp294B – ident: e_1_2_9_94_1 doi: 10.1146/annurev.earth.32.101802.120356 – ident: e_1_2_9_41_1 doi: 10.1130/G24517A.1 – ident: e_1_2_9_103_1 doi: 10.1126/science.1248765 |
| SSID | ssj0000816912 |
| Score | 2.2395568 |
| Snippet | Streams commonly respond to base‐level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to... Streams commonly respond to base-level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1236 |
| SubjectTerms | Accuracy Algorithms Automation Balances (scales) California Catchments Climate Climate change Convergence Digital Elevation Models Drainage Dynamics Earthquake construction Earthquakes Efficiency Environmental changes Environmental conditions Erosion Fluvial morphology Frameworks Geological structures geophysics Gradients Height incision knickpoint knickzone Land use Landforms Landscape landscapes Mathematical models Morphology Mountains Oceans Parameter identification Parameters Position (location) relict landscape River channels River morphology Rivers Santa Cruz Island Scripts Sea level changes Seismic activity Shape Slopes Streams Structures Technology Tectonics topographic slope Training transient Uplift Upstream Watersheds |
| Title | An automated knickzone selection algorithm (KZ‐Picker) to analyze transient landscapes: Calibration and validation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017JF004250 https://www.proquest.com/docview/1917358273 https://www.proquest.com/docview/2718353850 |
| Volume | 122 |
| WOSCitedRecordID | wos000405203900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 2169-9011 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816912 issn: 2169-9003 databaseCode: DRFUL dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2169-9011 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816912 issn: 2169-9003 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTtww0EKUQy-liFYsUGQkKrVqI7qOs_H2hoClpWiFUBGol8j22BABSbXJcuDEJ_Qb-RJmnLBsDyBVvUXy2LE8M56H58HYhvPKWZ9K8gF8iSRoiJQ1PjJWJsIaaYUOJfMP0uFQnZ72D1uHG-XCNPUhJg434oxwXxODa1NtPhYNRcmV7g8C0ZHJ3pWBL0--DycuFuop0Q_vnQI_IvLZtaHvuMLm9Py_hdKjpjmtrwaBM5j_362-Zq9aVZNvNbSxwGZcscjqrYLrcV2iouqAXxS5vbgpC8er0A8HkcT15Vk5yuvzK_7hx6-72z-HOUVefOR1yTVVMLlxvCYBR4mUPGQKUwxV9ZVTmpdpCAohgSMN503HpjfseLD7c_tb1HZeiDTaWzLSCsAblSTeaNXVHtCO9ApScKkRNkEbRTphQQtlhLSAt4RLDKg4RnXMaAvxWzZb4OaXGIfUgvWgZYKqDohE254zPU9x2iZRse-wTw9Hn9m2LDl1x7jMmoLKIps-vQ57P4H-3ZTjeAJu9QGLWcuUVUamKSUGp3GHrU-GkZ3ojUQXrhxXmUBZHaMQoCU-B5w--59sf-8I0dvry-V_A19hL2mgCTpbZbP1aOzesTl7XefVaI292DkaHB-sBXq-B7gn9jA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEN-Yw0RfQAPGA9QlwQSDDbrdve75RtTj33khBBLiS7O7s6sN0JJrzwee-Ah8Rj-JM205jgdNiG9NOtluOjM7f3bmN4yt-6C9C4mkHMCHSIKBSDsbIuukEs5KJ0wNmT9MRiN9eto_bOecUi9Mgw8xTbiRZtTnNSk4JaS37lBD0XQl-4Na6jBmn5MoSarD5r4cDU6G0zQLzZXo13eeAh8iytu15e-4yNbsEvcN0523Oeuz1kZnsPDf233G5lt_k283AvKcPfL5Iqu2c24mVYHeqgd-lmfu7KrIPS_roTjIKW7OfxTjrPp5wTcOvv--vjnMqPziHa8KbgjG5MrziqwcdVPyul2YCqnKT5x6vWwjVUgJHAU5a8Y2LbGTwdfjz7tRO34hMhh0ychogGC1UsEa_dEEwGAyaEjAJ1Y4hYGK9MKBEdoK6QCPCq8s6DhGn8waB_EL1slx8y8Zh8SBC2CkQn8HhDKu520vULG2VToOXbZ5--9T12KT04iM87RBVRbp7N_rsrdT6ssGk-MvdKu3bExbzSxTik-pOziJu2xt-hp1ii5KTO6LSZkKNNgxWgJa4n3N1H9-J93fOUL29vpy-WHkb9iT3eNvw3S4NzpYYU-JqKlCW2Wdajzxr9hj96vKyvHrVqz_AFRq-dw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEN8QIMYXlajxEHBNNNFoA2x3r3u8EbEqXC4XIgnxpdnd2YUGbMm1xwNPfgQ_I5-EmbYcx4MmxrcmnWw3nZmdPzvzG8be-KC9C4mkHMBWJMFApJ0NkXVSCWelE6aBzB8mo5E-Ph6Muzmn1AvT4kPMEm6kGc15TQruLyBs3qGGoulK9tNG6jBmX5Jq0EfNXNo7TI-GszQLzZUYNHeeAh8iytt15e-4yOb8EvcN0523Oe-zNkYnffzf233CHnX-Jt9tBWSFLfjiKat3C26mdYneqgd-VuTu7KosPK-aoTjIKW7OT8pJXp_-5O8Oflz_-j3OqfziPa9LbgjG5MrzmqwcdVPypl2YCqmqHU69XraVKqQEjoKct2ObnrGj9PP3T1-jbvxCZDDokpHRAMFqpYI1etsEwGAyaEjAJ1Y4hYGK9MKBEdoK6QCPCq8s6DhGn8waB_Fztljg5l8wDokDF8BIhf4OCGVc39t-oGJtq3QceuzD7b_PXIdNTiMyzrMWVVlk83-vx97OqC9aTI4_0K3dsjHrNLPKKD6l7uAk7rHXs9eoU3RRYgpfTqtMoMGO0RLQEh8bpv71O9n-l0Nkb38gV_-N_BV7MN5Ls-G30cFL9pBo2iK0NbZYT6Z-nS27yzqvJhudVN8A6Br5Vw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automated+knickzone+selection+algorithm+%28KZ-Picker%29+to+analyze+transient+landscapes%3A+Calibration+and+validation&rft.jtitle=Journal+of+geophysical+research.+Earth+surface&rft.au=Neely%2C+A+B&rft.au=Bookhagen%2C+B&rft.au=Burbank%2C+D+W&rft.date=2017-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9003&rft.eissn=2169-9011&rft.volume=122&rft.issue=6&rft.spage=1236&rft_id=info:doi/10.1002%2F2017JF004250&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9003&client=summon |