Wildfire Smoke Cools Summer River and Stream Water Temperatures
To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath...
Uloženo v:
| Vydáno v: | Water resources research Ročník 54; číslo 10; s. 7273 - 7290 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
01.10.2018
|
| Témata: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water temperatures. Wildfire smoke is difficult to quantify, but we successfully used a newly available daily high‐resolution (1 km) data set of aerosol optical thickness (AOT) derived from satellite imagery to represent smoke density during 6 years with extensive wildfire activity (2006, 2008, and 2012–2015). Smoke reduced solar radiation by 121 W m−2 per 1.0 AOT relative to clear‐sky conditions. Linear mixed‐effects models showed that on average, smoke cooled daily maximum and mean air temperatures by 0.98 °C and 0.47 °C per 1.0 AOT, respectively, across 19 remote automated weather stations. Smoke had a cooling effect on water temperatures at all 12 river and stream locations analyzed. On average, smoke cooled daily maximum and mean water temperatures by 1.32 °C and 0.74 °C per 1.0 AOT, respectively. This smoke‐induced cooling has the potential to benefit cold‐water adapted species, particularly because wildfires are more likely to occur during the warmest and driest years and seasons.
Key Points
Wildfire smoke cools river and stream water temperatures by reducing solar radiation and cooling air temperatures
For both air and water, smoke has a greater cooling effect on daily maximum temperatures than daily mean temperatures
This smoke‐induced cooling has the potential to benefit cold‐water adapted species in fire‐prone watersheds |
|---|---|
| AbstractList | To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water temperatures. Wildfire smoke is difficult to quantify, but we successfully used a newly available daily high‐resolution (1 km) data set of aerosol optical thickness (AOT) derived from satellite imagery to represent smoke density during 6 years with extensive wildfire activity (2006, 2008, and 2012–2015). Smoke reduced solar radiation by 121 W m
−2
per 1.0 AOT relative to clear‐sky conditions. Linear mixed‐effects models showed that on average, smoke cooled daily maximum and mean air temperatures by 0.98 °C and 0.47 °C per 1.0 AOT, respectively, across 19 remote automated weather stations. Smoke had a cooling effect on water temperatures at all 12 river and stream locations analyzed. On average, smoke cooled daily maximum and mean water temperatures by 1.32 °C and 0.74 °C per 1.0 AOT, respectively. This smoke‐induced cooling has the potential to benefit cold‐water adapted species, particularly because wildfires are more likely to occur during the warmest and driest years and seasons.
Wildfire smoke cools river and stream water temperatures by reducing solar radiation and cooling air temperatures
For both air and water, smoke has a greater cooling effect on daily maximum temperatures than daily mean temperatures
This smoke‐induced cooling has the potential to benefit cold‐water adapted species in fire‐prone watersheds To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water temperatures. Wildfire smoke is difficult to quantify, but we successfully used a newly available daily high‐resolution (1 km) data set of aerosol optical thickness (AOT) derived from satellite imagery to represent smoke density during 6 years with extensive wildfire activity (2006, 2008, and 2012–2015). Smoke reduced solar radiation by 121 W m−2 per 1.0 AOT relative to clear‐sky conditions. Linear mixed‐effects models showed that on average, smoke cooled daily maximum and mean air temperatures by 0.98 °C and 0.47 °C per 1.0 AOT, respectively, across 19 remote automated weather stations. Smoke had a cooling effect on water temperatures at all 12 river and stream locations analyzed. On average, smoke cooled daily maximum and mean water temperatures by 1.32 °C and 0.74 °C per 1.0 AOT, respectively. This smoke‐induced cooling has the potential to benefit cold‐water adapted species, particularly because wildfires are more likely to occur during the warmest and driest years and seasons. To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water temperatures. Wildfire smoke is difficult to quantify, but we successfully used a newly available daily high‐resolution (1 km) data set of aerosol optical thickness (AOT) derived from satellite imagery to represent smoke density during 6 years with extensive wildfire activity (2006, 2008, and 2012–2015). Smoke reduced solar radiation by 121 W m⁻² per 1.0 AOT relative to clear‐sky conditions. Linear mixed‐effects models showed that on average, smoke cooled daily maximum and mean air temperatures by 0.98 °C and 0.47 °C per 1.0 AOT, respectively, across 19 remote automated weather stations. Smoke had a cooling effect on water temperatures at all 12 river and stream locations analyzed. On average, smoke cooled daily maximum and mean water temperatures by 1.32 °C and 0.74 °C per 1.0 AOT, respectively. This smoke‐induced cooling has the potential to benefit cold‐water adapted species, particularly because wildfires are more likely to occur during the warmest and driest years and seasons. To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water temperatures. Wildfire smoke is difficult to quantify, but we successfully used a newly available daily high‐resolution (1 km) data set of aerosol optical thickness (AOT) derived from satellite imagery to represent smoke density during 6 years with extensive wildfire activity (2006, 2008, and 2012–2015). Smoke reduced solar radiation by 121 W m−2 per 1.0 AOT relative to clear‐sky conditions. Linear mixed‐effects models showed that on average, smoke cooled daily maximum and mean air temperatures by 0.98 °C and 0.47 °C per 1.0 AOT, respectively, across 19 remote automated weather stations. Smoke had a cooling effect on water temperatures at all 12 river and stream locations analyzed. On average, smoke cooled daily maximum and mean water temperatures by 1.32 °C and 0.74 °C per 1.0 AOT, respectively. This smoke‐induced cooling has the potential to benefit cold‐water adapted species, particularly because wildfires are more likely to occur during the warmest and driest years and seasons. Key Points Wildfire smoke cools river and stream water temperatures by reducing solar radiation and cooling air temperatures For both air and water, smoke has a greater cooling effect on daily maximum temperatures than daily mean temperatures This smoke‐induced cooling has the potential to benefit cold‐water adapted species in fire‐prone watersheds |
| Author | Asarian, J. Eli David, Aaron T. Lake, Frank K. |
| Author_xml | – sequence: 1 givenname: Aaron T. orcidid: 0000-0003-1417-8208 surname: David fullname: David, Aaron T. email: aarontdavid@yahoo.com organization: U.S. Fish and Wildlife Service – sequence: 2 givenname: J. Eli orcidid: 0000-0003-0177-1416 surname: Asarian fullname: Asarian, J. Eli organization: Riverbend Sciences – sequence: 3 givenname: Frank K. orcidid: 0000-0003-3112-1086 surname: Lake fullname: Lake, Frank K. organization: U.S. Forest Service, Pacific Southwest Research Station, Orleans Ranger Station |
| BookMark | eNp9kE1Lw0AQhhepYFu9-QMCXjwY3a9ssieR4hcUhLTSY9juTmBrkq27idJ_70o9SEEvMzA877wz7wSNOtcBQucEXxNM5Q3FpFiVmFIp-BEaE8l5msucjdAYY85SwmR-giYhbDAmPBP5GN2ubGNq6yFZtO4NkplzTUgWQ9uCT0r7EavqTLLoPag2Wak-DpbQbsGrfvAQTtFxrZoAZz99il4f7pezp3T-8vg8u5unikerNMMZpmsjIVOSAhEy49QUpNAY61oKbPgacsGM1KJWmutCEFOsGTEgjKbEsCm63O_devc-QOir1gYNTaM6cEOoaE4KJqiI307RxQG6cYPv4nUVJZHhBY9hTNHVntLeheChrrbetsrvKoKr7zSr32lGnB7g2vaqt67rvbLNXyK2F33aBnb_GlSrclZSlkXVF_WuhlQ |
| CitedBy_id | crossref_primary_10_1002_lno_12057 crossref_primary_10_1002_eap_2431 crossref_primary_10_1073_pnas_2310075121 crossref_primary_10_1002_wat2_1643 crossref_primary_10_5194_acp_22_9681_2022 crossref_primary_10_1016_j_jhydrol_2022_128242 crossref_primary_10_1111_gcb_15655 crossref_primary_10_1111_geb_13555 crossref_primary_10_1089_eco_2019_0055 crossref_primary_10_1038_s43247_024_01732_w crossref_primary_10_1177_26349825221142293 crossref_primary_10_1139_cjfas_2021_0229 crossref_primary_10_1139_cjz_2023_0100 crossref_primary_10_1071_WF22155 crossref_primary_10_1186_s42408_024_00272_0 crossref_primary_10_3390_su14159037 crossref_primary_10_1029_2022WR032915 crossref_primary_10_1002_cft2_20299 crossref_primary_10_1073_pnas_2310072121 crossref_primary_10_1007_s00244_023_00981_8 crossref_primary_10_1071_WF22061 crossref_primary_10_1002_ece3_8026 crossref_primary_10_1029_2021GL097057 crossref_primary_10_1139_cjfr_2023_0268 crossref_primary_10_1016_j_foreco_2021_119597 crossref_primary_10_1371_journal_pwat_0000119 crossref_primary_10_1016_j_ejrh_2025_102373 crossref_primary_10_1038_s43247_024_01404_9 crossref_primary_10_1038_s41598_021_89926_6 crossref_primary_10_1111_gcb_17367 crossref_primary_10_1002_ecs2_4541 |
| Cites_doi | 10.1016/S0378-1127(03)00058-6 10.1136/ewjm.176.3.157 10.5194/acp-12-9679-2012 10.5194/essd-6-1-2014 10.1021/acs.est.5b06121 10.5194/acp-16-6475-2016 10.1002/joc.3413 10.1577/1548-8659(1996)125<0001:TLTSDI>2.3.CO;2 10.1002/2015JD024702 10.1016/j.rse.2012.09.002 10.1002/2016JD025720 10.1016/S0378-1127(98)00342-9 10.2307/1311002 10.1126/science.242.4880.911 10.1002/joc.1688 10.1080/02705060.2003.9663964 10.5194/amt-5-843-2012 10.1890/1051-0761(2003)013[0704:SPACOH]2.0.CO;2 10.1890/ES13-00325.1 10.1525/california/9780520246058.003.0009 10.1093/icb/19.1.319 10.1890/ES14-00224.1 10.1577/M04-007.1 10.1029/2003JD003823 10.5194/acp-10-1491-2010 10.1146/annurev.en.27.010182.000525 10.1002/joc.4127 10.5194/gmd-4-625-2011 10.1016/j.foreco.2015.09.049 10.1007/s002670010188 10.1890/09-0790.1 10.1002/2013JD021067 10.1002/ecs2.1794 10.1073/pnas.1112839109 10.1890/10-2108.1 10.1890/09-0822.1 10.1111/j.1365-2427.2006.01597.x 10.1016/j.foreco.2007.06.005 10.1002/rra.1459 10.3133/ofr20111243 10.2737/RMRS-GTR-150 10.1029/91JD02043 10.1007/s10021-016-0048-1 10.1073/pnas.1609775113 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2 10.1139/f04-040 10.1002/hyp.6994 10.4296/cwrj3203179 10.1139/F10-006 10.1029/2010JD014985 10.1021/es505846r 10.1289/ehp.1409277 10.1007/s10021-007-9029-8 10.1029/2010JD015471 10.3133/ofr20161056 10.1029/2010JD014986 10.5194/gmd-8-1991-2015 10.1577/T09-171.1 10.1071/WF09132 10.1038/nature11205 10.1577/1548-8659(1999)128<0193:FAAEIF>2.0.CO;2 10.3133/ofr20111157 10.1007/BF00893171 10.1890/ES14-00036.1 10.32614/RJ-2016-014 10.5194/amt-2018-141 10.1007/978-0-387-87458-6 |
| ContentType | Journal Article |
| Copyright | 2018. American Geophysical Union. All Rights Reserved. 2018. American Geophysical Union. All rights reserved. |
| Copyright_xml | – notice: 2018. American Geophysical Union. All Rights Reserved. – notice: 2018. American Geophysical Union. All rights reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2018WR022964 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | 7290 |
| ExternalDocumentID | 10_1029_2018WR022964 WRCR23564 |
| Genre | article |
| GeographicLocations | California |
| GeographicLocations_xml | – name: California |
| GrantInformation_xml | – fundername: Klamath Tribal Water Quality Consortium |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a4014-50502bd9e5a92e169542d818c00cf960d4be763d9c6fac4c861d8b31de6dc21d3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450726000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:19:43 EDT 2025 Sat Oct 18 23:50:48 EDT 2025 Tue Nov 18 22:20:50 EST 2025 Sat Nov 29 01:36:41 EST 2025 Wed Jan 22 16:30:32 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4014-50502bd9e5a92e169542d818c00cf960d4be763d9c6fac4c861d8b31de6dc21d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1417-8208 0000-0003-3112-1086 0000-0003-0177-1416 |
| OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2018WR022964 |
| PQID | 2136248404 |
| PQPubID | 105507 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2718362697 proquest_journals_2136248404 crossref_primary_10_1029_2018WR022964 crossref_citationtrail_10_1029_2018WR022964 wiley_primary_10_1029_2018WR022964_WRCR23564 |
| PublicationCentury | 2000 |
| PublicationDate | October 2018 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2011; 116 2015; 35 1993; 25 2010; 10 2017; 8 2004; 61 2017; 3 2012; 487 1991; 96 2003; 13 2003; 18 1999; 128 1998; 111 2007; 32 2013; 5 2012; 12 2012; 127 2005; 25 2010; 67 2010; 20 2014; 5 1982; 27 2015; 49 2001 2007; 251 2008; 28 1987 2011; 20 2016; 113 2016; 359 2012; 28 2008; 22 2017; 122 2012; 22 2014; 6 1989; 39 2014; 119 1979; 19 2017; 20 2015; 6 2006; 51 2012 2011 2002; 176 2010 2016; 124 2009 2008 2007 1996 2006 2016; 121 2016; 50 2005 1988; 242 2004 2001; 27 1991 2004; 109 2011; 4 2007; 10 1996; 125 2015; 8 2016; 16 2003; 178 2012; 109 1999 1990; 119 2013; 33 2018; 116 2010; 139 2018 2017 2016 2015 2014 2013 2010; 91 2012; 5 2016; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Lake F. K. (e_1_2_7_34_1) 2013; 5 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_45_1 e_1_2_7_68_1 Core Team R. (e_1_2_7_17_1) 2015 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 VanderKooi S. (e_1_2_7_81_1) 2011 Beschta R. L. (e_1_2_7_8_1) 1987 e_1_2_7_73_1 e_1_2_7_50_1 Short K. C. (e_1_2_7_66_1) 2017 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 Pinheiro J. (e_1_2_7_57_1) 2017; 3 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_2_1 Brenning A. (e_1_2_7_11_1) 2008 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 Long J. W. (e_1_2_7_35_1) 2018; 116 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Rieman B. E. (e_1_2_7_61_1) 2012 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 Williams J. (e_1_2_7_85_1) 2011 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – year: 2011 – year: 2009 – volume: 113 start-page: 13,684 issue: 48 year: 2016 end-page: 13,689 article-title: Socioecological transitions trigger fire regime shifts and modulate fire‐climate interactions in the Sierra Nevada, USA, 1600‐2015 CE publication-title: Proceedings of the National Academy of Sciences – year: 2005 – year: 2001 – volume: 20 start-page: 1350 issue: 5 year: 2010 end-page: 1371 article-title: Effects of climate change and recent wildfires on stream temperature and thermal habitat for two salmonids in a mountain river network publication-title: Ecological Applications – volume: 242 start-page: 911 issue: 4880 year: 1988 end-page: 913 article-title: Enhancement of surface cooling due to forest fire smoke publication-title: Science – volume: 10 start-page: 1491 issue: 4 year: 2010 end-page: 1510 article-title: Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations publication-title: Atmospheric Chemistry and Physics – volume: 116 year: 2011 article-title: Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm publication-title: Journal of Geophysical Research – start-page: 191 year: 1987 end-page: 232 – volume: 16 start-page: 6475 issue: 10 year: 2016 end-page: 6494 article-title: An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: Observational‐based analysis of surface temperature publication-title: Atmospheric Chemistry and Physics – volume: 119 start-page: 3401 year: 2014 end-page: 3419 article-title: Quantifying the potential for high‐altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel‐based methods publication-title: Journal of Geophysical Research: Atmospheres – volume: 4 start-page: 625 issue: 3 year: 2011 end-page: 641 article-title: The Fire Inventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning publication-title: Geoscientific Model Development – volume: 27 start-page: 97 issue: 1 year: 1982 end-page: 117 article-title: Thermal responses in the evolutionary ecology of aquatic insects publication-title: Annual Review of Entomology – volume: 487 start-page: 472 issue: 7408 year: 2012 end-page: 476 article-title: Reconciling the temperature dependence of respiration across timescales and ecosystem types publication-title: Nature – volume: 8 issue: 5 year: 2017 article-title: Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA publication-title: Ecosphere – volume: 61 start-page: 913 issue: 6 year: 2004 end-page: 923 article-title: Factors influencing stream temperatures in small streams: Substrate effects and a shading experiment publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 96 start-page: 20,869 issue: D11 year: 1991 end-page: 20,878 article-title: Surface cooling due to forest fire smoke publication-title: Journal of Geophysical Research – year: 2014 – volume: 50 start-page: 4712 issue: 9 year: 2016 end-page: 4721 article-title: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States publication-title: Environmental Science & Technology – volume: 6 issue: 1 year: 2015 article-title: The fire frequency‐severity relationship and the legacy of fire suppression in California forests publication-title: Ecosphere – start-page: 37 year: 2011 end-page: 74 – volume: 122 start-page: 3005 year: 2017 end-page: 3022 article-title: Evaluation of the multi‐angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET: MAIAC AOT evaluation publication-title: Journal of Geophysical Research: Atmospheres – volume: 19 start-page: 319 issue: 1 year: 1979 end-page: 329 article-title: Physiological and ecological correlates of preferred temperature in fish publication-title: American Zoologist – start-page: 170 year: 2006 end-page: 194 – volume: 25 start-page: 152 issue: 1 year: 2005 end-page: 162 article-title: Recent water temperature trends in the lower Klamath River, California publication-title: North American Journal of Fisheries Management – start-page: 23 year: 2008 end-page: 32 – volume: 8 start-page: 1991 issue: 7 year: 2015 end-page: 2007 article-title: System for automated geoscientific analyses (SAGA) v. 2.1.4 publication-title: Geoscientific Model Development – volume: 116 year: 2011 article-title: Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and lookup tables publication-title: Journal of Geophysical Research – year: 2004 – volume: 28 start-page: 2031 issue: 15 year: 2008 end-page: 2064 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: International Journal of Climatology – volume: 20 start-page: 240 issue: 2 year: 2011 end-page: 247 article-title: Effects of wildfire on stream temperatures in the Bitterroot River Basin, Montana publication-title: International Journal of Wildland Fire – volume: 139 start-page: 1091 issue: 4 year: 2010 end-page: 1108 article-title: Upper thermal limits to migration in adult Chinook salmon: Evidence from the Klamath River Basin publication-title: Transactions of the American Fisheries Society – volume: 35 start-page: 2258 issue: 9 year: 2015 end-page: 2279 article-title: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature publication-title: International Journal of Climatology – volume: 5 issue: 7 year: 2014 article-title: Spatio‐temporal temperature variation influences juvenile steelhead (Oncorhynchus mykiss) use of thermal refuges publication-title: Ecosphere – year: 2015 – volume: 8 start-page: 204 issue: 1 year: 2016 end-page: 218 article-title: Spatio‐temporal interpolation using Gstat publication-title: The R Journal – volume: 176 start-page: 157 issue: 3 year: 2002 end-page: 162 article-title: Wildland forest fire smoke: Health effects and intervention evaluation, Hoopa, California, 1999 publication-title: Western Journal of Medicine – volume: 178 start-page: 141 issue: 1–2 year: 2003 end-page: 153 article-title: Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA publication-title: Forest Ecology and Management – volume: 13 start-page: 704 issue: 3 year: 2003 end-page: 719 article-title: Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains publication-title: Ecological Applications – volume: 51 start-page: 1389 issue: 8 year: 2006 end-page: 1406 article-title: The thermal regime of rivers: A review publication-title: Freshwater Biology – start-page: 31 year: 2011 end-page: 36 – volume: 49 start-page: 3887 issue: 6 year: 2015 end-page: 3896 article-title: Spatiotemporal prediction of fine particulate matter during the 2008 Northern California wildfires using machine learning publication-title: Environmental Science & Technology – volume: 116 start-page: 76 issue: 1 year: 2018 end-page: 86 article-title: Aligning smoke management with ecological and public health goals publication-title: Journal of Forestry – start-page: 1 year: 2018 end-page: 50 article-title: MODIS collection 6 MAIAC algorithm publication-title: Atmospheric Measurement Techniques Discussions – volume: 12 start-page: 9679 issue: 20 year: 2012 end-page: 9686 article-title: Discrimination of biomass burning smoke and clouds in MAIAC algorithm publication-title: Atmospheric Chemistry and Physics – volume: 124 start-page: 1334 issue: 9 year: 2016 end-page: 1343 article-title: Critical review of health impacts of wildfire smoke exposure publication-title: Environmental Health Perspectives – year: 2007 – volume: 67 start-page: 570 issue: 3 year: 2010 end-page: 579 article-title: The fire pulse: Wildfire stimulates flux of aquatic prey to terrestrial habitats driving increases in riparian consumers publication-title: Canadian Journal of Fishery and Aquatic Sciences – volume: 119 start-page: 314 issue: 2 year: 1990 end-page: 336 article-title: Climate, population viability, and the zoogeography of temperate fishes publication-title: Transactions of the American Fisheries Society – volume: 121 start-page: 7079 year: 2016 end-page: 7087 article-title: Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model publication-title: Journal of Geophysical Research: Atmospheres – volume: 18 start-page: 171 issue: 1 year: 2003 end-page: 173 article-title: Immediate effects of wildfire on stream temperature publication-title: Journal of Freshwater Ecology – volume: 27 start-page: 787 issue: 6 year: 2001 end-page: 802 article-title: An ecological perspective on in‐stream temperature: Natural heat dynamics and mechanisms of human‐caused thermal degradation publication-title: Environmental Management – volume: 5 start-page: 843 issue: 4 year: 2012 end-page: 850 article-title: Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis publication-title: Atmosphere Measurement Techniques – year: 1996 – volume: 10 start-page: 335 issue: 2 year: 2007 end-page: 346 article-title: Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians publication-title: Ecosystems – volume: 33 start-page: 121 issue: 1 year: 2013 end-page: 131 article-title: Development of gridded surface meteorological data for ecological applications and modelling publication-title: International Journal of Climatology – volume: 5 start-page: 1 year: 2013 end-page: 22 article-title: Trails, fires, and tribulations: Tribal resource management and research issues in northern California publication-title: Occasion: Interdisciplinary Studies in the Humanities – volume: 109 start-page: E535 issue: 9 year: 2012 end-page: E543 article-title: Long‐term perspective on wildfires in the western USA publication-title: Proceedings of the National Academy of Sciences – volume: 6 start-page: 1 issue: 1 year: 2014 end-page: 27 article-title: A spatial database of wildfires in the United States, 1992–2011 publication-title: Earth System Science Data – year: 2016 – volume: 3 start-page: 1 year: 2017 end-page: 131 article-title: nlme: Linear and nonlinear mixed effects models publication-title: R package version – volume: 127 start-page: 385 year: 2012 end-page: 393 article-title: Multi‐angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction publication-title: Remote Sensing of Environment – year: 2010 – volume: 25 start-page: 641 issue: 6 year: 1993 end-page: 655 article-title: Interpolation by regularized spline with tension: I. Theory and implementation publication-title: Mathematical Geology – volume: 251 start-page: 205 issue: 3 year: 2007 end-page: 216 article-title: Prehistoric fire area and emissions from California's forests, woodlands, shrublands, and grasslands publication-title: Forest Ecology and Management – volume: 359 start-page: 126 year: 2016 end-page: 140 article-title: Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA publication-title: Forest Ecology and Management – volume: 125 start-page: 1 issue: 1 year: 1996 end-page: 13 article-title: Thermal limits to salmonid distributions in the Rocky Mountain region and potential habitat loss due to global warming: A geographic information system (GIS) approach publication-title: Transactions of the American Fisheries Society – volume: 5 issue: 5 year: 2014 article-title: Wildfire and the effects of shifting stream temperature on salmonids publication-title: Ecosphere – volume: 39 start-page: 707 issue: 10 year: 1989 end-page: 715 article-title: Wildfires and Yellowstone's stream ecosystems publication-title: Bioscience – volume: 91 start-page: 1445 issue: 5 year: 2010 end-page: 1454 article-title: Thermal heterogeneity mediates the effects of pulsed subsidies across a landscape publication-title: Ecology – volume: 111 start-page: 285 issue: 2–3 year: 1998 end-page: 301 article-title: Fire history and landscape dynamics in a late‐successional reserve, Klamath Mountains, California, USA publication-title: Forest Ecology and Management – volume: 128 start-page: 193 issue: 2 year: 1999 end-page: 221 article-title: Fire and aquatic ecosystems in forested biomes of North America publication-title: Transactions of the American Fisheries Society – start-page: 159 year: 2012 end-page: 175 – volume: 32 start-page: 179 issue: 3 year: 2007 end-page: 192 article-title: A review of statistical water temperature models publication-title: Canadian Water Resources Journal – volume: 109 year: 2004 article-title: The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system publication-title: Journal of Geophysical Research – volume: 116 year: 2011 article-title: Empirical determinations of the longwave and shortwave radiative forcing efficiencies of wildfire smoke publication-title: Journal of Geophysical Research – volume: 22 start-page: 902 issue: 7 year: 2008 end-page: 918 article-title: Recent advances in stream and river temperature research publication-title: Hydrological Processes – year: 1991 – year: 2017 – volume: 22 start-page: 184 issue: 1 year: 2012 end-page: 203 article-title: Trends and causes of severity, size, and number of fires in northwestern California, USA publication-title: Ecological Applications – volume: 20 start-page: 717 issue: 4 year: 2017 end-page: 732 article-title: Managed wildfire effects on forest resilience and water in the Sierra Nevada publication-title: Ecosystems – volume: 28 start-page: 338 issue: 3 year: 2012 end-page: 346 article-title: Juvenile coho salmon behavioral characteristics in Klamath River summer thermal refugia publication-title: River Research and Applications – year: 2013 – year: 1999 – ident: e_1_2_7_69_1 doi: 10.1016/S0378-1127(03)00058-6 – ident: e_1_2_7_50_1 doi: 10.1136/ewjm.176.3.157 – ident: e_1_2_7_51_1 – ident: e_1_2_7_36_1 doi: 10.5194/acp-12-9679-2012 – ident: e_1_2_7_65_1 doi: 10.5194/essd-6-1-2014 – ident: e_1_2_7_19_1 doi: 10.1021/acs.est.5b06121 – ident: e_1_2_7_88_1 doi: 10.5194/acp-16-6475-2016 – ident: e_1_2_7_2_1 doi: 10.1002/joc.3413 – ident: e_1_2_7_31_1 doi: 10.1577/1548-8659(1996)125<0001:TLTSDI>2.3.CO;2 – ident: e_1_2_7_86_1 doi: 10.1002/2015JD024702 – ident: e_1_2_7_33_1 – volume: 116 start-page: 76 issue: 1 year: 2018 ident: e_1_2_7_35_1 article-title: Aligning smoke management with ecological and public health goals publication-title: Journal of Forestry – ident: e_1_2_7_41_1 doi: 10.1016/j.rse.2012.09.002 – ident: e_1_2_7_75_1 doi: 10.1002/2016JD025720 – start-page: 191 volume-title: Streamside management: Forestry and fishery interactions year: 1987 ident: e_1_2_7_8_1 – ident: e_1_2_7_77_1 doi: 10.1016/S0378-1127(98)00342-9 – volume: 5 start-page: 1 year: 2013 ident: e_1_2_7_34_1 article-title: Trails, fires, and tribulations: Tribal resource management and research issues in northern California publication-title: Occasion: Interdisciplinary Studies in the Humanities – ident: e_1_2_7_47_1 doi: 10.2307/1311002 – ident: e_1_2_7_52_1 – ident: e_1_2_7_63_1 doi: 10.1126/science.242.4880.911 – volume-title: Spatial wildfire occurrence data for the United States, 1992–2015 [FPA_FOD_20170508] year: 2017 ident: e_1_2_7_66_1 – ident: e_1_2_7_18_1 doi: 10.1002/joc.1688 – ident: e_1_2_7_27_1 doi: 10.1080/02705060.2003.9663964 – ident: e_1_2_7_40_1 doi: 10.5194/amt-5-843-2012 – ident: e_1_2_7_78_1 doi: 10.1890/1051-0761(2003)013[0704:SPACOH]2.0.CO;2 – ident: e_1_2_7_5_1 doi: 10.1890/ES13-00325.1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_68_1 doi: 10.1525/california/9780520246058.003.0009 – ident: e_1_2_7_6_1 doi: 10.1093/icb/19.1.319 – ident: e_1_2_7_32_1 – ident: e_1_2_7_71_1 doi: 10.1890/ES14-00224.1 – ident: e_1_2_7_4_1 doi: 10.1577/M04-007.1 – ident: e_1_2_7_49_1 doi: 10.1029/2003JD003823 – ident: e_1_2_7_80_1 doi: 10.5194/acp-10-1491-2010 – ident: e_1_2_7_82_1 doi: 10.1146/annurev.en.27.010182.000525 – ident: e_1_2_7_54_1 doi: 10.1002/joc.4127 – ident: e_1_2_7_84_1 doi: 10.5194/gmd-4-625-2011 – ident: e_1_2_7_24_1 doi: 10.1016/j.foreco.2015.09.049 – ident: e_1_2_7_58_1 doi: 10.1007/s002670010188 – ident: e_1_2_7_3_1 doi: 10.1890/09-0790.1 – ident: e_1_2_7_56_1 doi: 10.1002/2013JD021067 – ident: e_1_2_7_23_1 doi: 10.1002/ecs2.1794 – ident: e_1_2_7_44_1 doi: 10.1073/pnas.1112839109 – ident: e_1_2_7_46_1 doi: 10.1890/10-2108.1 – ident: e_1_2_7_62_1 – ident: e_1_2_7_70_1 – ident: e_1_2_7_45_1 – ident: e_1_2_7_14_1 – ident: e_1_2_7_28_1 doi: 10.1890/09-0822.1 – ident: e_1_2_7_13_1 doi: 10.1111/j.1365-2427.2006.01597.x – start-page: 23 volume-title: SAGA—Seconds out year: 2008 ident: e_1_2_7_11_1 – ident: e_1_2_7_72_1 doi: 10.1016/j.foreco.2007.06.005 – ident: e_1_2_7_76_1 doi: 10.1002/rra.1459 – ident: e_1_2_7_55_1 doi: 10.3133/ofr20111243 – start-page: 31 volume-title: Proceedings of the Klamath Basin Science Conference, Medford, Oregon, February 1–5, 2010 year: 2011 ident: e_1_2_7_81_1 – ident: e_1_2_7_20_1 doi: 10.2737/RMRS-GTR-150 – ident: e_1_2_7_64_1 doi: 10.1029/91JD02043 – ident: e_1_2_7_10_1 doi: 10.1007/s10021-016-0048-1 – ident: e_1_2_7_79_1 doi: 10.1073/pnas.1609775113 – ident: e_1_2_7_67_1 doi: 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2 – ident: e_1_2_7_29_1 doi: 10.1139/f04-040 – ident: e_1_2_7_83_1 doi: 10.1002/hyp.6994 – ident: e_1_2_7_7_1 doi: 10.4296/cwrj3203179 – ident: e_1_2_7_43_1 doi: 10.1139/F10-006 – start-page: 159 volume-title: Climate change, forests, fire, water, and fish: Building resilient landscapes, streams, and managers year: 2012 ident: e_1_2_7_61_1 – ident: e_1_2_7_37_1 doi: 10.1029/2010JD014985 – ident: e_1_2_7_60_1 doi: 10.1021/es505846r – volume-title: R: A language and environment for statistical computing year: 2015 ident: e_1_2_7_17_1 – ident: e_1_2_7_59_1 doi: 10.1289/ehp.1409277 – ident: e_1_2_7_22_1 doi: 10.1007/s10021-007-9029-8 – volume: 3 start-page: 1 year: 2017 ident: e_1_2_7_57_1 article-title: nlme: Linear and nonlinear mixed effects models publication-title: R package version – ident: e_1_2_7_73_1 doi: 10.1029/2010JD015471 – ident: e_1_2_7_30_1 doi: 10.3133/ofr20161056 – ident: e_1_2_7_39_1 doi: 10.1029/2010JD014986 – ident: e_1_2_7_16_1 doi: 10.5194/gmd-8-1991-2015 – start-page: 37 volume-title: Proceedings of the Klamath Basin Science Conference, Medford, Oregon, February 1–5, 2010 year: 2011 ident: e_1_2_7_85_1 – ident: e_1_2_7_53_1 – ident: e_1_2_7_74_1 doi: 10.1577/T09-171.1 – ident: e_1_2_7_42_1 doi: 10.1071/WF09132 – ident: e_1_2_7_87_1 doi: 10.1038/nature11205 – ident: e_1_2_7_26_1 doi: 10.1577/1548-8659(1999)128<0193:FAAEIF>2.0.CO;2 – ident: e_1_2_7_9_1 doi: 10.3133/ofr20111157 – ident: e_1_2_7_48_1 doi: 10.1007/BF00893171 – ident: e_1_2_7_12_1 doi: 10.1890/ES14-00036.1 – ident: e_1_2_7_25_1 doi: 10.32614/RJ-2016-014 – ident: e_1_2_7_38_1 doi: 10.5194/amt-2018-141 – ident: e_1_2_7_15_1 – ident: e_1_2_7_89_1 doi: 10.1007/978-0-387-87458-6 |
| SSID | ssj0014567 |
| Score | 2.4388742 |
| Snippet | To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7273 |
| SubjectTerms | aerosol optical thickness aerosols air Air temperature automation California combustion Cooling Cooling effects Creeks & streams data collection Data processing heat Imagery Klamath River Basin Optical thickness Precipitation Radiation remote sensing Riparian vegetation River basins River discharge River flow Rivers rivers and streams Satellite imagery Satellites Sky Smoke Solar radiation Spaceborne remote sensing Stream water streams Summer Water Water discharge Water temperature watersheds Weather effects Weather stations wildfire smoke Wildfires |
| Title | Wildfire Smoke Cools Summer River and Stream Water Temperatures |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018WR022964 https://www.proquest.com/docview/2136248404 https://www.proquest.com/docview/2718362697 |
| Volume | 54 |
| WOSCitedRecordID | wos000450726000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6igl78LU7niKAnLbZpmjYnkelQGEPq5nYrbZKiuLXSboL_vS9tV-dBQbyV5oWWJO99X_KSLwidxoxxZUllRLaiBg2Ja3CPC0MBWjEqmGsXUkpPXbfX80Yj_lAtuOmzMKU-RL3gpj2jiNfawcMor8QGtEYmIJc39AGCONNyoBa19AUGw_tenUQAbuDOE8ya6FT73qH65WLl74j0RTMXyWqBNp3N__7nFtqoeCa-LgfGNlpSyQ5amx9DzuG5uv78-WMXXUFskDEEP_w4SV8VbqfpOMd6gUxl2Nc7N3CYSKwz2OEED4GeZrivgHCXgsz5Hhp0bvvtO6O6WcEIYT5FDaA9JokkV07IibIYdyiRAN3CNEUMcxpJIwWBR3LB4lBQ4TFLepENfcqkIJa099FykibqAGF4ZQrhcceThEZxFDkOVNAaOZJTYsoGOp-3biAq2XF9-8U4KNLfhAeLDdRAZ7X1Wym38YNdc95RQeV0eUAsQGMKM1YoPqmLwV10DiRMVDoDG8BircDD3Qa6KLrt1-8EQ7_tE9th9PBv5kdoXReU2_6aaHmazdQxWhXv05c8a6GVG78z6LaK8foJ69_l0w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54A33xLs5rBH3SYpumafMkMhwbziFzur2VNklR1FZWFfz3nrTdnA8K4ltpTmhJcvJ9yUm-A3CYcC60o7QVu5pZLKK-JQIhLY1oxZnkvltIKd21_U4nGAzEdZXn1NyFKfUhxhtuxjOK-do4uNmQrtQGjEgmQlfQ7yIGCc6mYZYh1zC5G_qtzjiMgOzAH4WYDdWpTr5j_dPJ2t8x6YtoTtLVAm8aS__-02VYrKgmOS_HxgpM6XQV5kc3kXN8rjKg33-swRlODyrB-Y_cPGePmtSz7CknZo9MD0nXHN4gUaqICWJHz6SPDHVIeho5d6nJnK_DbeOiV29aVXIFK8IlFbOQ-dg0VkJ7kaDa4cJjVCF6S9uWCS5rFIs1zj1KSJ5EksmAOyqIXexWriR1lLsBM2mW6k0g-MqWMhBeoCiLkzj2PKxgZHKUYNRWNTgeNW8oK-VxkwDjKSwi4FSEkw1Ug6Ox9UupuPGD3c6op8LK7_KQOgjIDBetWHwwLkaPMWGQKNXZG9ogHBsRHuHX4KTot1-_E_a79S51Pc62_ma-D_PN3lU7bLc6l9uwYIzKU4A7MPM6fNO7MCffXx_y4V4xaD8BJbboUQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4aZQIu7BeIAmNGYieISBzHiU9oaleBqKoqtJRblNiOQECCGkDiv-c5cbvuMKSJW5Q8J5Ht5--zn_09gIOcc6E9pZ3M18xhKQ0dEQnpaEQrziQP_VpK6bIfDgbR1ZUY2jyn5ixMow8xX3AznlGP18bB9YPKrdqAEclE6IomMWKQ4GwJlpnJI9OC5W7cG_fngQTkB-EsyGzIjt37jm84Xiz_Nyr9oZqLhLVGnN6nd__rZ1i3ZJP8anrHF_igi6-wOjuLXOG1zYF-_fINTnCAUDmOgOTivrzVpFOWdxUxq2R6SmKzfYOkhSImjJ3ekwly1CkZaWTdjSpztQHj3u9R59Sx6RWcFCdVzEHu49JMCR2kgmqPi4BRhfgtXVfmOLFRLNM4-igheZ5KJiPuqSjzsWG5ktRT_ia0irLQW0DwlitlJIJIUZblWRYEWMAI5SjBqKvacDir3kRa7XGTAuMuqWPgVCSLFdSGn3Prh0Zz4x92u7OWSqznVQn1EJIZTlvx8f78MfqMCYSkhS6f0AYB2cjwiLANR3W7vfmdZBJ3YuoHnG3_n_kPWBl2e0n_bHC-A2vGptkGuAutx-mT_g4f5fPjTTXds732FZDe6Po |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wildfire+Smoke+Cools+Summer+River+and+Stream+Water+Temperatures&rft.jtitle=Water+resources+research&rft.au=David%2C+Aaron+T&rft.au=Asarian%2C+J+Eli&rft.au=Lake%2C+Frank+K&rft.date=2018-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=54&rft.issue=10&rft.spage=7273&rft.epage=7290&rft_id=info:doi/10.1029%2F2018WR022964&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |