A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss‐Newton to Robust Gauss‐Newton

Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources research Ročník 54; číslo 11; s. 9655 - 9683
Hlavní autori: Qin, Youwei, Kavetski, Dmitri, Kuczera, George
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.11.2018
Predmet:
ISSN:0043-1397, 1944-7973
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation (sampling scale) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms. Key Points Robust Gauss‐Newton (RGN) optimization algorithm is introduced for least squares model calibration RGN employs several heuristics including coarse gradient approximations to favor exploration over exploitation RGN heuristics provide synergistic benefits, increasing overall efficiency by factors of 1.4–18 in 11 of 12 hydrological modeling scenarios
AbstractList Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation (sampling scale) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms.
Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation ( sampling scale ) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms. Robust Gauss‐Newton (RGN) optimization algorithm is introduced for least squares model calibration RGN employs several heuristics including coarse gradient approximations to favor exploration over exploitation RGN heuristics provide synergistic benefits, increasing overall efficiency by factors of 1.4–18 in 11 of 12 hydrological modeling scenarios
Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation (sampling scale) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms. Key Points Robust Gauss‐Newton (RGN) optimization algorithm is introduced for least squares model calibration RGN employs several heuristics including coarse gradient approximations to favor exploration over exploitation RGN heuristics provide synergistic benefits, increasing overall efficiency by factors of 1.4–18 in 11 of 12 hydrological modeling scenarios
Author Kavetski, Dmitri
Qin, Youwei
Kuczera, George
Author_xml – sequence: 1
  givenname: Youwei
  orcidid: 0000-0001-5425-539X
  surname: Qin
  fullname: Qin, Youwei
  email: youwei.qin@uon.edu.au
  organization: The University of Newcastle
– sequence: 2
  givenname: Dmitri
  orcidid: 0000-0003-4966-9234
  surname: Kavetski
  fullname: Kavetski, Dmitri
  organization: University of Adelaide
– sequence: 3
  givenname: George
  surname: Kuczera
  fullname: Kuczera, George
  organization: The University of Newcastle
BookMark eNp9kc1OGzEUha0KpCbQHQ9giU0XDPXfjMfsoggIUlqktIjlyOOxE0eecWp7hMKKBQ_AM_IkTJsuqqhldRf3O-denTMGB53vNAAnGJ1jRMQXgjC_XyBCWFl-ACMsGMu44PQAjBBiNMNU8I9gHOMaIczygo_A8wQufN3HBK9lH-Pr08s3_ZB8Bydu6YNNqxYaH2BaaXi7Sba1jzLZYe0NnG2b4J1fWiUd_Oob7eIFvAq-hd-T7BoZmn3P5P997BgcGumi_vRnHoG7q8sf01k2v72-mU7mmWQIk0znda1ZI1RucsY5E4YJUhSoLhBGUqlGlEZqjgsh6looTBtkaiUEJoKRhht6BD7vfDfB_-x1TFVro9LOyU77PlaE45IWRBR8QE_30LXvQzd8VxGcc44QF-VAkR2lgo8xaFMpm34HlIK0rsKo-lVM9Xcxg-hsT7QJtpVh-z-c7vAH6_T2Xba6X0wXhA6p0DcKjKMG
CitedBy_id crossref_primary_10_1039_C9EN00017H
crossref_primary_10_2166_nh_2020_048
crossref_primary_10_1016_j_jhydrol_2020_125793
crossref_primary_10_1039_C9MH00306A
crossref_primary_10_1162_dint_a_00221
crossref_primary_10_1016_j_cnsns_2024_108129
crossref_primary_10_3390_w11091858
crossref_primary_10_5194_hess_23_1323_2019
crossref_primary_10_1029_2019WR025520
crossref_primary_10_1016_j_jhydrol_2020_125036
crossref_primary_10_1016_j_watres_2021_117556
crossref_primary_10_1109_TGRS_2022_3226581
crossref_primary_10_1007_s12145_025_01885_y
crossref_primary_10_5194_hess_22_6087_2018
crossref_primary_10_1016_j_jhydrol_2023_129347
crossref_primary_10_1016_j_firesaf_2021_103333
crossref_primary_10_3390_nano11071688
crossref_primary_10_3390_w11122435
crossref_primary_10_1016_j_jhydrol_2025_132918
crossref_primary_10_3390_w12092324
crossref_primary_10_1016_j_jhydrol_2019_124281
crossref_primary_10_1016_j_jhydrol_2024_132273
crossref_primary_10_1016_j_jclepro_2019_06_052
crossref_primary_10_1109_LRA_2022_3193632
crossref_primary_10_1016_j_jallcom_2021_159422
crossref_primary_10_3390_w11040812
Cites_doi 10.1016/j.jhydrol.2005.09.008
10.1002/2014WR016520
10.1029/WR012i003p00477
10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O
10.13031/2013.42256
10.1029/2008WR007327
10.1029/91WR02985
10.1016/j.jhydrol.2005.07.013
10.2991/jnmp.2003.10.4.5
10.1016/j.ejor.2016.01.001
10.1016/j.envsoft.2014.09.013
10.1063/1.4826022
10.1613/jair.301
10.1029/2009WR008894
10.1016/j.envsoft.2013.09.031
10.1137/S1052623493253991
10.1002/2015WR017198
10.1029/2006WR005195
10.1109/JSYST.2011.2158682
10.1029/WR019i005p01163
10.1016/j.paerosci.2005.02.001
10.1029/2000WR900363
10.1002/hyp.6592
10.1016/S0022-1694(96)03277-5
10.1007/978-3-642-40457-3_25-1
10.1029/2009WR008896
10.5194/hess-20-3561-2016
10.1029/2004WR003059
10.1002/hyp.5611
10.1016/j.jhydrol.2015.02.013
10.1007/978-1-4614-7551-4
10.1137/0801008
10.1137/050635225
10.1016/S0266-9838(96)00019-6
10.1029/2005WR004723
10.1287/ijoc.1060.0182
10.1111/j.1745-6584.2003.tb02580.x
10.1016/j.envsoft.2017.05.005
10.1029/2017WR022489
10.1029/2017WR022051
10.1002/2015WR016907
10.1016/j.jhydrol.2006.02.005
10.1029/WR024i005p00691
10.1016/0022-1694(70)90255-6
10.1080/13241583.2017.1298180
10.2514/6.2008-5802
10.1061/(ASCE)HE.1943-5584.0000938
10.1016/S0022-1694(97)00041-3
10.1002/2016WR019168
10.1111/gwat.12330
10.1016/S0022-1694(03)00225-7
10.1029/91WR01305
10.1029/WR021i004p00473
10.1090/S0025-5718-1979-0537969-8
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
2018. American Geophysical Union. All rights reserved.
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
– notice: 2018. American Geophysical Union. All rights reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2017WR022488
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 9683
ExternalDocumentID 10_1029_2017WR022488
WRCR23492
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2018B55414
– fundername: Australian Research Council
– fundername: Department of Education and Training | Australian Research Council (ARC)
  funderid: LP100200665
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 41561134016; 51879068
– fundername: China Scholarship Council (CSC)
  funderid: LP100200665
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4012-e5bbe4d9c5f547749f492660b6010accd98fae71699bb9c13d0fbc9912942d7f3
IEDL.DBID WIN
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453369400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:25:01 EDT 2025
Sat Aug 30 11:43:35 EDT 2025
Tue Nov 18 21:49:49 EST 2025
Sat Nov 29 01:36:41 EST 2025
Wed Jan 22 16:37:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4012-e5bbe4d9c5f547749f492660b6010accd98fae71699bb9c13d0fbc9912942d7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5425-539X
0000-0003-4966-9234
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2017WR022488
PQID 2157700798
PQPubID 105507
PageCount 29
ParticipantIDs proquest_miscellaneous_2718362967
proquest_journals_2157700798
crossref_citationtrail_10_1029_2017WR022488
crossref_primary_10_1029_2017WR022488
wiley_primary_10_1029_2017WR022488_WRCR23492
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1983; 19
1997; 197
2014; 62
2003; 279
1979; 33
2012; 55
1985; 21
2003; 10
2006; 329
1997; 11
2001
2014; 19
2008; 22
1981
1996; 4
2014; 51
2006; 324
2003; 41
2006; 320
2013; 1558
2017; 20
2007; 19
1991; 1
2015; 523
2011
2015; 51
2006; 17
2015; 54
2005; 41
2008
2007
1970; 10
2006
2005
2011; 5
1996; 11
2017; 95
1997; 201
2017; 53
2005; 19
1991; 27
1976; 12
2010; 46
1992; 28
2016; 20
2018
1988; 24
2017
2001; 37
2013
2007; 43
2018; 54
2016; 251
1998; 8
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
Kavetski D. (e_1_2_12_33_1) 2007
e_1_2_12_41_1
e_1_2_12_66_1
e_1_2_12_22_1
e_1_2_12_24_1
Gill P. E. (e_1_2_12_20_1) 1981
e_1_2_12_26_1
e_1_2_12_47_1
Chiew F. H. S. (e_1_2_12_9_1) 2005
e_1_2_12_62_1
e_1_2_12_60_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
Bates D. M. (e_1_2_12_6_1) 2007
e_1_2_12_3_1
e_1_2_12_5_1
Nocedal J. (e_1_2_12_43_1) 2006
e_1_2_12_18_1
Tuteja N. (e_1_2_12_64_1) 2011
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_61_1
e_1_2_12_40_1
Doherty J. (e_1_2_12_15_1) 2005
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
Press W. (e_1_2_12_45_1) 2007
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
References_xml – year: 2011
– volume: 324
  start-page: 10
  issue: 1‐4
  year: 2006
  end-page: 23
  article-title: A global sensitivity analysis tool for the parameters of multi‐variable catchment models
  publication-title: Journal of Hydrology
– year: 1981
– volume: 4
  start-page: 237
  year: 1996
  end-page: 285
  article-title: Reinforcement learning: A survey
  publication-title: Journal of Artificial Intelligence Research
– volume: 43
  year: 2007
  article-title: Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration
  publication-title: Water Resources Research
– volume: 21
  start-page: 473
  issue: 4
  year: 1985
  end-page: 485
  article-title: The automatic calibration of conceptual catchment models using derivative‐based optimization algorithms
  publication-title: Water Resources Research
– year: 2005
– volume: 54
  start-page: 159
  issue: 2
  year: 2015
  end-page: 170
  article-title: Practical use of computationally frugal model analysis methods
  publication-title: Groundwater
– volume: 46
  year: 2010
  article-title: Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale
  publication-title: Water Resources Research
– volume: 41
  start-page: 170
  issue: 2
  year: 2003
  end-page: 177
  article-title: Ground water model calibration using pilot points and regularization
  publication-title: Ground Water
– year: 2001
– volume: 5
  start-page: 362
  issue: 3
  year: 2011
  end-page: 373
  article-title: A solution to the crucial problem of population degeneration in high‐dimensional evolutionary optimization
  publication-title: IEEE Systems Journal
– volume: 51
  start-page: 6417
  year: 2015
  end-page: 6441
  article-title: Computationally inexpensive identification of noninformative model parameters by sequential screening
  publication-title: Water Resources Research
– volume: 20
  start-page: 3561
  issue: 9
  year: 2016
  end-page: 3579
  article-title: Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting
  publication-title: Hydrology and Earth System Sciences
– volume: 41
  start-page: 1
  issue: 1
  year: 2005
  end-page: 28
  article-title: Surrogate‐based analysis and optimization
  publication-title: Progress in Aerospace Sciences
– volume: 19
  start-page: 1163
  issue: 5
  year: 1983
  end-page: 1172
  article-title: Improved parameter inference in catchment models.2. Combining different kinds of hydrologic data and testing their compatibility
  publication-title: Water Resources Research
– volume: 320
  start-page: 187
  issue: 1–2
  year: 2006
  end-page: 201
  article-title: Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 1374
  issue: 7
  year: 2014
  end-page: 1384
  article-title: Comparison of stochastic optimization algorithms in hydrological model calibration
  publication-title: Journal of Hydrologic Engineering
– volume: 53
  start-page: 2199
  year: 2017
  end-page: 2239
  article-title: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors
  publication-title: Water Resources Research
– volume: 1
  start-page: 93
  issue: 1
  year: 1991
  end-page: 113
  article-title: On the solution of large quadratic programming problems with bound constraints
  publication-title: SIAM Journal on Optimization
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: Journal of Hydrology
– volume: 27
  start-page: 2467
  issue: 9
  year: 1991
  end-page: 2471
  article-title: The genetic algorithm and its application to calibrating conceptual rainfall‐runoff models
  publication-title: Water Resources Research
– year: 2008
– volume: 41
  year: 2005
  article-title: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
  publication-title: Water Resources Research
– volume: 33
  start-page: 1257
  issue: 148
  year: 1979
  end-page: 1264
  article-title: Adaptive numerical differentiation
  publication-title: Mathematics of Computation
– volume: 46
  year: 2010
  article-title: Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction
  publication-title: Water Resources Research
– volume: 51
  start-page: 269
  issue: C
  year: 2014
  end-page: 285
  article-title: A comprehensive evaluation of various sensitivity analysis methods
  publication-title: Environmental Modelling and Software
– volume: 24
  start-page: 691
  issue: 5
  year: 1988
  end-page: 700
  article-title: Comparison of Newton‐type and direct search algorithms for calibration of conceptual rainfall‐runoff models
  publication-title: Water Resources Research
– volume: 62
  start-page: 271
  year: 2014
  end-page: 299
  article-title: Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions
  publication-title: Environmental Modelling & Software
– volume: 197
  start-page: 166
  issue: 1–4
  year: 1997
  end-page: 188
  article-title: Calibration of a modified SFB model for twenty‐five Australian catchments using simulated annealing
  publication-title: Journal of Hydrology
– volume: 17
  start-page: 526
  issue: 2
  year: 2006
  end-page: 557
  article-title: A new active set algorithm for box constrained optimization
  publication-title: SIAM Journal on Optimization
– volume: 279
  start-page: 275
  issue: 1–4
  year: 2003
  end-page: 289
  article-title: Improvement of a parsimonious model for streamflow simulation
  publication-title: Journal of Hydrology
– volume: 523
  start-page: 739
  year: 2015
  end-page: 757
  article-title: Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications
  publication-title: Journal of Hydrology
– volume: 28
  start-page: 1015
  issue: 4
  year: 1992
  end-page: 1031
  article-title: Effective and efficient global optimization for conceptual rainfall‐runoff models
  publication-title: Water Resources Research
– volume: 19
  start-page: 497
  issue: 4
  year: 2007
  end-page: 509
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS Journal on Computing
– volume: 8
  start-page: 158
  issue: 1
  year: 1998
  end-page: 186
  article-title: An active set Newton algorithm for large‐scale nonlinear programs with box constraints
  publication-title: SIAM Journal on Optimization
– volume: 37
  start-page: 937
  issue: 4
  year: 2001
  end-page: 947
  article-title: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling
  publication-title: Water Resources Research
– volume: 54
  year: 2018
– year: 2007
– volume: 95
  start-page: 61
  year: 2017
  end-page: 75
  article-title: An adaptive surrogate modeling‐based sampling strategy for parameter optimization and distribution estimation (ASMO‐PODE)
  publication-title: Environmental Modelling & Software
– volume: 51
  start-page: 2498
  year: 2015
  end-page: 2514
  article-title: A unified approach for process‐based hydrologic modeling: 1. Modeling concept
  publication-title: Water Resources Research
– volume: 22
  start-page: 275
  issue: 2
  year: 2008
  end-page: 287
  article-title: Instance‐based learning compared to other data‐driven methods in hydrological forecasting
  publication-title: Hydrological Processes
– start-page: 2513
  year: 2007
  end-page: 2519
– volume: 11
  start-page: 1069
  issue: 9
  year: 1997
  end-page: 1085
  article-title: TOPMODEL: A critique
  publication-title: Hydrological Processes
– volume: 46
  year: 2010
  article-title: Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes
  publication-title: Water Resources Research
– volume: 51
  start-page: 3796
  year: 2015
  end-page: 3814
  article-title: Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives
  publication-title: Water Resources Research
– start-page: 2883
  year: 2005
  end-page: 2889
– volume: 1558
  start-page: 2389
  issue: 1
  year: 2013
  end-page: 2393
  article-title: The q‐gradient method for continuous global optimization
  publication-title: AIP Conference Proceedings
– volume: 19
  start-page: 563
  issue: 3
  year: 2005
  end-page: 572
  article-title: SWAT2000: Current capabilities and research opportunities in applied watershed modelling
  publication-title: Hydrological Processes
– volume: 12
  start-page: 477
  issue: 3
  year: 1976
  end-page: 486
  article-title: Parameter optimization for watershed models
  publication-title: Water Resources Research
– volume: 10
  start-page: 487
  issue: 4
  year: 2003
  end-page: 525
  article-title: A method for q‐calculus
  publication-title: Journal of Nonlinear Mathematical Physics
– volume: 55
  start-page: 1491
  issue: 4
  year: 2012
  end-page: 1508
  article-title: SWAT: Model use, calibration, and validation
  publication-title: Transactions of the ASABE
– volume: 11
  start-page: 185
  issue: 1–3
  year: 1996
  end-page: 192
  article-title: IQQM—A hydrologic modelling tool for water resource and salinity management
  publication-title: Environmental Software
– start-page: 1
  year: 2018
  end-page: 42
– volume: 20
  start-page: 169
  issue: 2
  year: 2017
  end-page: 176
  article-title: Comparison of Newton‐type and SCE optimisation algorithms for the calibration of conceptual hydrological models
  publication-title: Australasian Journal of Water Resources
– year: 2006
– volume: 251
  start-page: 727
  issue: 3
  year: 2016
  end-page: 738
  article-title: Global optimization using q‐gradients
  publication-title: European Journal of Operational Research
– year: 2017
– volume: 329
  start-page: 122
  issue: 1–2
  year: 2006
  end-page: 139
  article-title: Efficient accommodation of local minima in watershed model calibration
  publication-title: Journal of Hydrology
– volume: 43
  year: 2007
  article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration
  publication-title: Water Resources Research
– volume: 201
  start-page: 272
  issue: 1–4
  year: 1997
  end-page: 288
  article-title: Development and test of the distributed HBV‐96 hydrological model
  publication-title: Journal of Hydrology
– year: 2013
– ident: e_1_2_12_65_1
  doi: 10.1016/j.jhydrol.2005.09.008
– volume-title: Numerical recipes: The art of scientific computing
  year: 2007
  ident: e_1_2_12_45_1
– ident: e_1_2_12_54_1
  doi: 10.1002/2014WR016520
– volume-title: Practical optimization
  year: 1981
  ident: e_1_2_12_20_1
– ident: e_1_2_12_27_1
  doi: 10.1029/WR012i003p00477
– ident: e_1_2_12_7_1
  doi: 10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O
– ident: e_1_2_12_2_1
  doi: 10.13031/2013.42256
– volume-title: Numerical optimization
  year: 2006
  ident: e_1_2_12_43_1
– ident: e_1_2_12_52_1
  doi: 10.1029/2008WR007327
– ident: e_1_2_12_16_1
  doi: 10.1029/91WR02985
– ident: e_1_2_12_32_1
  doi: 10.1016/j.jhydrol.2005.07.013
– ident: e_1_2_12_17_1
  doi: 10.2991/jnmp.2003.10.4.5
– ident: e_1_2_12_22_1
  doi: 10.1016/j.ejor.2016.01.001
– ident: e_1_2_12_39_1
  doi: 10.1016/j.envsoft.2014.09.013
– ident: e_1_2_12_51_1
– ident: e_1_2_12_60_1
  doi: 10.1063/1.4826022
– ident: e_1_2_12_28_1
  doi: 10.1613/jair.301
– ident: e_1_2_12_11_1
  doi: 10.1029/2009WR008894
– ident: e_1_2_12_19_1
  doi: 10.1016/j.envsoft.2013.09.031
– ident: e_1_2_12_18_1
  doi: 10.1137/S1052623493253991
– ident: e_1_2_12_12_1
  doi: 10.1002/2015WR017198
– ident: e_1_2_12_31_1
  doi: 10.1029/2006WR005195
– volume-title: Nonlinear regression analysis and its applications
  year: 2007
  ident: e_1_2_12_6_1
– ident: e_1_2_12_10_1
  doi: 10.1109/JSYST.2011.2158682
– ident: e_1_2_12_36_1
  doi: 10.1029/WR019i005p01163
– ident: e_1_2_12_53_1
– ident: e_1_2_12_49_1
  doi: 10.1016/j.paerosci.2005.02.001
– ident: e_1_2_12_5_1
  doi: 10.1029/2000WR900363
– ident: e_1_2_12_58_1
  doi: 10.1002/hyp.6592
– ident: e_1_2_12_62_1
  doi: 10.1016/S0022-1694(96)03277-5
– ident: e_1_2_12_29_1
  doi: 10.1007/978-3-642-40457-3_25-1
– ident: e_1_2_12_30_1
  doi: 10.1029/2009WR008896
– ident: e_1_2_12_37_1
  doi: 10.5194/hess-20-3561-2016
– ident: e_1_2_12_66_1
  doi: 10.1029/2004WR003059
– ident: e_1_2_12_3_1
  doi: 10.1002/hyp.5611
– ident: e_1_2_12_59_1
  doi: 10.1016/j.jhydrol.2015.02.013
– ident: e_1_2_12_35_1
  doi: 10.1007/978-1-4614-7551-4
– ident: e_1_2_12_41_1
  doi: 10.1137/0801008
– ident: e_1_2_12_24_1
  doi: 10.1137/050635225
– ident: e_1_2_12_55_1
  doi: 10.1016/S0266-9838(96)00019-6
– ident: e_1_2_12_63_1
  doi: 10.1029/2005WR004723
– ident: e_1_2_12_50_1
  doi: 10.1287/ijoc.1060.0182
– ident: e_1_2_12_46_1
– ident: e_1_2_12_14_1
  doi: 10.1111/j.1745-6584.2003.tb02580.x
– ident: e_1_2_12_21_1
  doi: 10.1016/j.envsoft.2017.05.005
– ident: e_1_2_12_47_1
  doi: 10.1029/2017WR022489
– ident: e_1_2_12_34_1
  doi: 10.1029/2017WR022051
– ident: e_1_2_12_13_1
  doi: 10.1002/2015WR016907
– ident: e_1_2_12_57_1
  doi: 10.1016/j.jhydrol.2006.02.005
– ident: e_1_2_12_25_1
  doi: 10.1029/WR024i005p00691
– ident: e_1_2_12_8_1
– ident: e_1_2_12_42_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_12_48_1
  doi: 10.1080/13241583.2017.1298180
– ident: e_1_2_12_56_1
  doi: 10.2514/6.2008-5802
– ident: e_1_2_12_4_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000938
– ident: e_1_2_12_38_1
  doi: 10.1016/S0022-1694(97)00041-3
– ident: e_1_2_12_40_1
  doi: 10.1002/2016WR019168
– volume-title: Experimental evaluation of the dynamic seasonal streamflow forecasting approach
  year: 2011
  ident: e_1_2_12_64_1
– ident: e_1_2_12_26_1
  doi: 10.1111/gwat.12330
– start-page: 2513
  volume-title: Modsim 2007: International congress on modelling and simulation
  year: 2007
  ident: e_1_2_12_33_1
– ident: e_1_2_12_44_1
  doi: 10.1016/S0022-1694(03)00225-7
– ident: e_1_2_12_67_1
  doi: 10.1029/91WR01305
– start-page: 2883
  volume-title: Modsim 2005: International Congress on Modelling and Simulation
  year: 2005
  ident: e_1_2_12_9_1
– volume-title: PEST: Model independent parameter estimation
  year: 2005
  ident: e_1_2_12_15_1
– ident: e_1_2_12_23_1
  doi: 10.1029/WR021i004p00473
– ident: e_1_2_12_61_1
  doi: 10.1090/S0025-5718-1979-0537969-8
SSID ssj0014567
Score 2.4218287
Snippet Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9655
SubjectTerms algorithm efficiency
Algorithms
Approximation
Case studies
Catchments
coarse gradient approximation
Cost analysis
Costs
Efficiency
Empirical analysis
empirical research
Exploitation
Exploration
Hydrologic models
hydrological model calibration
Hydrology
industry
Industry standards
Mathematical models
Modelling
Objective function
Optimization
Optimization algorithms
parameter optimization
Problem solving
reliability‐cost tradeoffs
robust Gauss‐Newton algorithm
Robustness
Sampling
Tradeoffs
water
Watersheds
Title A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss‐Newton to Robust Gauss‐Newton
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2017WR022488
https://www.proquest.com/docview/2157700798
https://www.proquest.com/docview/2718362967
Volume 54
WOSCitedRecordID wos000453369400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231213
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEF6CW0gvTZqk1I0TttCeElFLlrTa3oxTNQXjFCXGvon9U22wrSLJBd966AP0GfskmZVWqhuSQOlNsLOS0OzMfLuj-Qahtz0ftlWS-Bblrme51FEWEzKwpKfDg2TCrrqWDMloFEyn9Is5cNO1MBU_RHPgpi2j9NfawBnPDdmA5siEyEUmkQ5Bga71td3SLiefR00SAbABqRPMGuiY_95h-vvtyX9HpD8wcxusltEm3Pvf99xHzw3OxP1qYbxAO2p1gHbrMuQcrk3789nmEP3s4yjl67zAn9g6z3__-AW-D0Ah7i--ptm8mC0xYFsMWBFfgYtZmtpNnCb4ciOz2n9i3VhtkX_AYZYu8bU5pLh7zyK9_2FHaBx-vBlcWqY9g8VgU-ZYyuNcuZIKL_FcQJE00eSDfpfrPR4TQtIgYUqz8VDOKShddhMuAI861HUkSXovUWuVrtQrhG3B_MQmXUmocGngMcJcW4qeYF0lfea00VmtolgY7nLdQmMRlzl0h8bbX7mN3jXS3yrOjgfkOrW2Y2O5eQwQiBAAThSG3zTDYHM6kcJWKl2DDAR0CPzUJ210Xur-0efEk2gQOZoG8vW_iR-jZzAQVKWPHdQqsrU6QU_F92KeZ6foyUUUjoen5aK_BRtIAq8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xQIIXBmyIso4ZCZ5GRJsmcby3ClGKKAV1IHiLHNuhSG2DknRS33jgB-w37pfsnDilTDAJ8RYp5zjK-e4--3LfAew2PNxWSepZLHRcy2G2sriQviVdHR4kF_Wia0mHdrv-zQ27MH1OdS1MwQ8xPXDTlpH7a23g-kDasA1okkwMXfS6p2OQ73-ABcfDmXRJyUl3mkZAdEDLFLOGOubPdxx_MDv6eUx6ApqzcDWPN62P737TVVgxUJM0i7WxBnNqtA5LZSVyitemA3p_8gkem6QXh-M0I8d8nKZ_Hn6j-0NcSJqD2zi5y_pDgvCWIFwk5-hlhqZ8k8QRaU9kUrpQonurDdIfpJXEQ_LTnFP8-8wsfnmyz3DVOro8bFumQ4PFcV9mW8oNQ-VIJtzIdRBIskjzD3q1UG_zuBCS-RFXmpCHhSFDvctaFAqEpDZzbEmjxgbMj-KR2gRSF9yL6rQmKRMO811OuVOXoiF4TUmP2xX4XuooEIa-XHfRGAR5Gt1mwexXrsDeVPq-oO14Ra5aqjswxpsGiIIoRezE8PbO9Daanc6l8JGKxyiDMR1jP_NoBfZz5f93nuC6d9izNRPk1tvEv8FS-_KsE3ROuqdfYBmF_KISsgrzWTJWX2FR_Mru0mQ7X_l_ATxWBTg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB7xswIusAuLKH_rleAEEW2axDG3CiigRQWVReUWObazRWoblKRI3DjwADwjT8I4cboFLUhob5E8jqOMx_PZ4_kGYKvu4bZKUs9ioeNaDrOVxYX0Lelq9yC5qBVVS85oq-VfX7MLU-dU58IU_BCjAzdtGfl6rQ1c3crIsA1okkx0XbTT1j7I9ydh2kEoru90dU5bozACogNahpg11DE337H_3njv1z7pL9Ach6u5v2ku_PeXfoV5AzVJo5gb32BCDRZhtsxETvHZVEDv3i_BY4O043CYZuSYD9P0-eEJlz_EhaTR-xMnN1m3TxDeEoSL5BxXmb5J3yRxRE7uZVIuoUTXVuul-6SZxH1yac4p3r4zi_892He4ah79PjixTIUGi-O-zLaUG4bKkUy4kesgkGSR5h_0qqHe5nEhJPMjrjQhDwtDhnqX1SgUCElt5tiSRvVlmBrEA7UCpCa4F9VoVVImHOa7nHKnJkVd8KqSHrcrsFPqKBCGvlxX0egFeRjdZsH4X67A9kj6tqDteEduvVR3YIw3DRAFUYrYiWHzz1Ezmp2OpfCBiocogz4dfT_zaAV2c-V_OE7QaR-0bc0Eufo58R8wc3HYDM5OW7_WYA5l_CIRch2msmSoNuCLuMtu0mQzn_gvvx4Esw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Gauss%E2%80%90Newton+Algorithm+for+the+Optimization+of+Hydrological+Models%3A+From+Standard+Gauss%E2%80%90Newton+to+Robust+Gauss%E2%80%90Newton&rft.jtitle=Water+resources+research&rft.au=Qin%2C+Youwei&rft.au=Kavetski%2C+Dmitri&rft.au=Kuczera%2C+George&rft.date=2018-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=54&rft.issue=11&rft.spage=9655&rft.epage=9683&rft_id=info:doi/10.1029%2F2017WR022488&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon