A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss‐Newton to Robust Gauss‐Newton
Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and...
Uložené v:
| Vydané v: | Water resources research Ročník 54; číslo 11; s. 9655 - 9683 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
01.11.2018
|
| Predmet: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation (sampling scale) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms.
Key Points
Robust Gauss‐Newton (RGN) optimization algorithm is introduced for least squares model calibration
RGN employs several heuristics including coarse gradient approximations to favor exploration over exploitation
RGN heuristics provide synergistic benefits, increasing overall efficiency by factors of 1.4–18 in 11 of 12 hydrological modeling scenarios |
|---|---|
| AbstractList | Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation (sampling scale) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms. Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation ( sampling scale ) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms. Robust Gauss‐Newton (RGN) optimization algorithm is introduced for least squares model calibration RGN employs several heuristics including coarse gradient approximations to favor exploration over exploitation RGN heuristics provide synergistic benefits, increasing overall efficiency by factors of 1.4–18 in 11 of 12 hydrological modeling scenarios Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation (sampling scale) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms. Key Points Robust Gauss‐Newton (RGN) optimization algorithm is introduced for least squares model calibration RGN employs several heuristics including coarse gradient approximations to favor exploration over exploitation RGN heuristics provide synergistic benefits, increasing overall efficiency by factors of 1.4–18 in 11 of 12 hydrological modeling scenarios |
| Author | Kavetski, Dmitri Qin, Youwei Kuczera, George |
| Author_xml | – sequence: 1 givenname: Youwei orcidid: 0000-0001-5425-539X surname: Qin fullname: Qin, Youwei email: youwei.qin@uon.edu.au organization: The University of Newcastle – sequence: 2 givenname: Dmitri orcidid: 0000-0003-4966-9234 surname: Kavetski fullname: Kavetski, Dmitri organization: University of Adelaide – sequence: 3 givenname: George surname: Kuczera fullname: Kuczera, George organization: The University of Newcastle |
| BookMark | eNp9kc1OGzEUha0KpCbQHQ9giU0XDPXfjMfsoggIUlqktIjlyOOxE0eecWp7hMKKBQ_AM_IkTJsuqqhldRf3O-denTMGB53vNAAnGJ1jRMQXgjC_XyBCWFl-ACMsGMu44PQAjBBiNMNU8I9gHOMaIczygo_A8wQufN3HBK9lH-Pr08s3_ZB8Bydu6YNNqxYaH2BaaXi7Sba1jzLZYe0NnG2b4J1fWiUd_Oob7eIFvAq-hd-T7BoZmn3P5P997BgcGumi_vRnHoG7q8sf01k2v72-mU7mmWQIk0znda1ZI1RucsY5E4YJUhSoLhBGUqlGlEZqjgsh6looTBtkaiUEJoKRhht6BD7vfDfB_-x1TFVro9LOyU77PlaE45IWRBR8QE_30LXvQzd8VxGcc44QF-VAkR2lgo8xaFMpm34HlIK0rsKo-lVM9Xcxg-hsT7QJtpVh-z-c7vAH6_T2Xba6X0wXhA6p0DcKjKMG |
| CitedBy_id | crossref_primary_10_1039_C9EN00017H crossref_primary_10_2166_nh_2020_048 crossref_primary_10_1016_j_jhydrol_2020_125793 crossref_primary_10_1039_C9MH00306A crossref_primary_10_1162_dint_a_00221 crossref_primary_10_1016_j_cnsns_2024_108129 crossref_primary_10_3390_w11091858 crossref_primary_10_5194_hess_23_1323_2019 crossref_primary_10_1029_2019WR025520 crossref_primary_10_1016_j_jhydrol_2020_125036 crossref_primary_10_1016_j_watres_2021_117556 crossref_primary_10_1109_TGRS_2022_3226581 crossref_primary_10_1007_s12145_025_01885_y crossref_primary_10_5194_hess_22_6087_2018 crossref_primary_10_1016_j_jhydrol_2023_129347 crossref_primary_10_1016_j_firesaf_2021_103333 crossref_primary_10_3390_nano11071688 crossref_primary_10_3390_w11122435 crossref_primary_10_1016_j_jhydrol_2025_132918 crossref_primary_10_3390_w12092324 crossref_primary_10_1016_j_jhydrol_2019_124281 crossref_primary_10_1016_j_jhydrol_2024_132273 crossref_primary_10_1016_j_jclepro_2019_06_052 crossref_primary_10_1109_LRA_2022_3193632 crossref_primary_10_1016_j_jallcom_2021_159422 crossref_primary_10_3390_w11040812 |
| Cites_doi | 10.1016/j.jhydrol.2005.09.008 10.1002/2014WR016520 10.1029/WR012i003p00477 10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O 10.13031/2013.42256 10.1029/2008WR007327 10.1029/91WR02985 10.1016/j.jhydrol.2005.07.013 10.2991/jnmp.2003.10.4.5 10.1016/j.ejor.2016.01.001 10.1016/j.envsoft.2014.09.013 10.1063/1.4826022 10.1613/jair.301 10.1029/2009WR008894 10.1016/j.envsoft.2013.09.031 10.1137/S1052623493253991 10.1002/2015WR017198 10.1029/2006WR005195 10.1109/JSYST.2011.2158682 10.1029/WR019i005p01163 10.1016/j.paerosci.2005.02.001 10.1029/2000WR900363 10.1002/hyp.6592 10.1016/S0022-1694(96)03277-5 10.1007/978-3-642-40457-3_25-1 10.1029/2009WR008896 10.5194/hess-20-3561-2016 10.1029/2004WR003059 10.1002/hyp.5611 10.1016/j.jhydrol.2015.02.013 10.1007/978-1-4614-7551-4 10.1137/0801008 10.1137/050635225 10.1016/S0266-9838(96)00019-6 10.1029/2005WR004723 10.1287/ijoc.1060.0182 10.1111/j.1745-6584.2003.tb02580.x 10.1016/j.envsoft.2017.05.005 10.1029/2017WR022489 10.1029/2017WR022051 10.1002/2015WR016907 10.1016/j.jhydrol.2006.02.005 10.1029/WR024i005p00691 10.1016/0022-1694(70)90255-6 10.1080/13241583.2017.1298180 10.2514/6.2008-5802 10.1061/(ASCE)HE.1943-5584.0000938 10.1016/S0022-1694(97)00041-3 10.1002/2016WR019168 10.1111/gwat.12330 10.1016/S0022-1694(03)00225-7 10.1029/91WR01305 10.1029/WR021i004p00473 10.1090/S0025-5718-1979-0537969-8 |
| ContentType | Journal Article |
| Copyright | 2018. American Geophysical Union. All Rights Reserved. 2018. American Geophysical Union. All rights reserved. |
| Copyright_xml | – notice: 2018. American Geophysical Union. All Rights Reserved. – notice: 2018. American Geophysical Union. All rights reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2017WR022488 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | 9683 |
| ExternalDocumentID | 10_1029_2017WR022488 WRCR23492 |
| Genre | article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2018B55414 – fundername: Australian Research Council – fundername: Department of Education and Training | Australian Research Council (ARC) funderid: LP100200665 – fundername: National Natural Science Foundation of China (NSFC) funderid: 41561134016; 51879068 – fundername: China Scholarship Council (CSC) funderid: LP100200665 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a4012-e5bbe4d9c5f547749f492660b6010accd98fae71699bb9c13d0fbc9912942d7f3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453369400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:25:01 EDT 2025 Sat Aug 30 11:43:35 EDT 2025 Tue Nov 18 21:49:49 EST 2025 Sat Nov 29 01:36:41 EST 2025 Wed Jan 22 16:37:18 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4012-e5bbe4d9c5f547749f492660b6010accd98fae71699bb9c13d0fbc9912942d7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5425-539X 0000-0003-4966-9234 |
| OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2017WR022488 |
| PQID | 2157700798 |
| PQPubID | 105507 |
| PageCount | 29 |
| ParticipantIDs | proquest_miscellaneous_2718362967 proquest_journals_2157700798 crossref_citationtrail_10_1029_2017WR022488 crossref_primary_10_1029_2017WR022488 wiley_primary_10_1029_2017WR022488_WRCR23492 |
| PublicationCentury | 2000 |
| PublicationDate | November 2018 2018-11-00 20181101 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 1983; 19 1997; 197 2014; 62 2003; 279 1979; 33 2012; 55 1985; 21 2003; 10 2006; 329 1997; 11 2001 2014; 19 2008; 22 1981 1996; 4 2014; 51 2006; 324 2003; 41 2006; 320 2013; 1558 2017; 20 2007; 19 1991; 1 2015; 523 2011 2015; 51 2006; 17 2015; 54 2005; 41 2008 2007 1970; 10 2006 2005 2011; 5 1996; 11 2017; 95 1997; 201 2017; 53 2005; 19 1991; 27 1976; 12 2010; 46 1992; 28 2016; 20 2018 1988; 24 2017 2001; 37 2013 2007; 43 2018; 54 2016; 251 1998; 8 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 Kavetski D. (e_1_2_12_33_1) 2007 e_1_2_12_41_1 e_1_2_12_66_1 e_1_2_12_22_1 e_1_2_12_24_1 Gill P. E. (e_1_2_12_20_1) 1981 e_1_2_12_26_1 e_1_2_12_47_1 Chiew F. H. S. (e_1_2_12_9_1) 2005 e_1_2_12_62_1 e_1_2_12_60_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_54_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 Bates D. M. (e_1_2_12_6_1) 2007 e_1_2_12_3_1 e_1_2_12_5_1 Nocedal J. (e_1_2_12_43_1) 2006 e_1_2_12_18_1 Tuteja N. (e_1_2_12_64_1) 2011 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_61_1 e_1_2_12_40_1 Doherty J. (e_1_2_12_15_1) 2005 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 Press W. (e_1_2_12_45_1) 2007 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_51_1 |
| References_xml | – year: 2011 – volume: 324 start-page: 10 issue: 1‐4 year: 2006 end-page: 23 article-title: A global sensitivity analysis tool for the parameters of multi‐variable catchment models publication-title: Journal of Hydrology – year: 1981 – volume: 4 start-page: 237 year: 1996 end-page: 285 article-title: Reinforcement learning: A survey publication-title: Journal of Artificial Intelligence Research – volume: 43 year: 2007 article-title: Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration publication-title: Water Resources Research – volume: 21 start-page: 473 issue: 4 year: 1985 end-page: 485 article-title: The automatic calibration of conceptual catchment models using derivative‐based optimization algorithms publication-title: Water Resources Research – year: 2005 – volume: 54 start-page: 159 issue: 2 year: 2015 end-page: 170 article-title: Practical use of computationally frugal model analysis methods publication-title: Groundwater – volume: 46 year: 2010 article-title: Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale publication-title: Water Resources Research – volume: 41 start-page: 170 issue: 2 year: 2003 end-page: 177 article-title: Ground water model calibration using pilot points and regularization publication-title: Ground Water – year: 2001 – volume: 5 start-page: 362 issue: 3 year: 2011 end-page: 373 article-title: A solution to the crucial problem of population degeneration in high‐dimensional evolutionary optimization publication-title: IEEE Systems Journal – volume: 51 start-page: 6417 year: 2015 end-page: 6441 article-title: Computationally inexpensive identification of noninformative model parameters by sequential screening publication-title: Water Resources Research – volume: 20 start-page: 3561 issue: 9 year: 2016 end-page: 3579 article-title: Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting publication-title: Hydrology and Earth System Sciences – volume: 41 start-page: 1 issue: 1 year: 2005 end-page: 28 article-title: Surrogate‐based analysis and optimization publication-title: Progress in Aerospace Sciences – volume: 19 start-page: 1163 issue: 5 year: 1983 end-page: 1172 article-title: Improved parameter inference in catchment models.2. Combining different kinds of hydrologic data and testing their compatibility publication-title: Water Resources Research – volume: 320 start-page: 187 issue: 1–2 year: 2006 end-page: 201 article-title: Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis publication-title: Journal of Hydrology – volume: 19 start-page: 1374 issue: 7 year: 2014 end-page: 1384 article-title: Comparison of stochastic optimization algorithms in hydrological model calibration publication-title: Journal of Hydrologic Engineering – volume: 53 start-page: 2199 year: 2017 end-page: 2239 article-title: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors publication-title: Water Resources Research – volume: 1 start-page: 93 issue: 1 year: 1991 end-page: 113 article-title: On the solution of large quadratic programming problems with bound constraints publication-title: SIAM Journal on Optimization – volume: 10 start-page: 282 issue: 3 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models part I—A discussion of principles publication-title: Journal of Hydrology – volume: 27 start-page: 2467 issue: 9 year: 1991 end-page: 2471 article-title: The genetic algorithm and its application to calibrating conceptual rainfall‐runoff models publication-title: Water Resources Research – year: 2008 – volume: 41 year: 2005 article-title: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation publication-title: Water Resources Research – volume: 33 start-page: 1257 issue: 148 year: 1979 end-page: 1264 article-title: Adaptive numerical differentiation publication-title: Mathematics of Computation – volume: 46 year: 2010 article-title: Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction publication-title: Water Resources Research – volume: 51 start-page: 269 issue: C year: 2014 end-page: 285 article-title: A comprehensive evaluation of various sensitivity analysis methods publication-title: Environmental Modelling and Software – volume: 24 start-page: 691 issue: 5 year: 1988 end-page: 700 article-title: Comparison of Newton‐type and direct search algorithms for calibration of conceptual rainfall‐runoff models publication-title: Water Resources Research – volume: 62 start-page: 271 year: 2014 end-page: 299 article-title: Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions publication-title: Environmental Modelling & Software – volume: 197 start-page: 166 issue: 1–4 year: 1997 end-page: 188 article-title: Calibration of a modified SFB model for twenty‐five Australian catchments using simulated annealing publication-title: Journal of Hydrology – volume: 17 start-page: 526 issue: 2 year: 2006 end-page: 557 article-title: A new active set algorithm for box constrained optimization publication-title: SIAM Journal on Optimization – volume: 279 start-page: 275 issue: 1–4 year: 2003 end-page: 289 article-title: Improvement of a parsimonious model for streamflow simulation publication-title: Journal of Hydrology – volume: 523 start-page: 739 year: 2015 end-page: 757 article-title: Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications publication-title: Journal of Hydrology – volume: 28 start-page: 1015 issue: 4 year: 1992 end-page: 1031 article-title: Effective and efficient global optimization for conceptual rainfall‐runoff models publication-title: Water Resources Research – volume: 19 start-page: 497 issue: 4 year: 2007 end-page: 509 article-title: A stochastic radial basis function method for the global optimization of expensive functions publication-title: INFORMS Journal on Computing – volume: 8 start-page: 158 issue: 1 year: 1998 end-page: 186 article-title: An active set Newton algorithm for large‐scale nonlinear programs with box constraints publication-title: SIAM Journal on Optimization – volume: 37 start-page: 937 issue: 4 year: 2001 end-page: 947 article-title: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling publication-title: Water Resources Research – volume: 54 year: 2018 – year: 2007 – volume: 95 start-page: 61 year: 2017 end-page: 75 article-title: An adaptive surrogate modeling‐based sampling strategy for parameter optimization and distribution estimation (ASMO‐PODE) publication-title: Environmental Modelling & Software – volume: 51 start-page: 2498 year: 2015 end-page: 2514 article-title: A unified approach for process‐based hydrologic modeling: 1. Modeling concept publication-title: Water Resources Research – volume: 22 start-page: 275 issue: 2 year: 2008 end-page: 287 article-title: Instance‐based learning compared to other data‐driven methods in hydrological forecasting publication-title: Hydrological Processes – start-page: 2513 year: 2007 end-page: 2519 – volume: 11 start-page: 1069 issue: 9 year: 1997 end-page: 1085 article-title: TOPMODEL: A critique publication-title: Hydrological Processes – volume: 46 year: 2010 article-title: Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes publication-title: Water Resources Research – volume: 51 start-page: 3796 year: 2015 end-page: 3814 article-title: Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives publication-title: Water Resources Research – start-page: 2883 year: 2005 end-page: 2889 – volume: 1558 start-page: 2389 issue: 1 year: 2013 end-page: 2393 article-title: The q‐gradient method for continuous global optimization publication-title: AIP Conference Proceedings – volume: 19 start-page: 563 issue: 3 year: 2005 end-page: 572 article-title: SWAT2000: Current capabilities and research opportunities in applied watershed modelling publication-title: Hydrological Processes – volume: 12 start-page: 477 issue: 3 year: 1976 end-page: 486 article-title: Parameter optimization for watershed models publication-title: Water Resources Research – volume: 10 start-page: 487 issue: 4 year: 2003 end-page: 525 article-title: A method for q‐calculus publication-title: Journal of Nonlinear Mathematical Physics – volume: 55 start-page: 1491 issue: 4 year: 2012 end-page: 1508 article-title: SWAT: Model use, calibration, and validation publication-title: Transactions of the ASABE – volume: 11 start-page: 185 issue: 1–3 year: 1996 end-page: 192 article-title: IQQM—A hydrologic modelling tool for water resource and salinity management publication-title: Environmental Software – start-page: 1 year: 2018 end-page: 42 – volume: 20 start-page: 169 issue: 2 year: 2017 end-page: 176 article-title: Comparison of Newton‐type and SCE optimisation algorithms for the calibration of conceptual hydrological models publication-title: Australasian Journal of Water Resources – year: 2006 – volume: 251 start-page: 727 issue: 3 year: 2016 end-page: 738 article-title: Global optimization using q‐gradients publication-title: European Journal of Operational Research – year: 2017 – volume: 329 start-page: 122 issue: 1–2 year: 2006 end-page: 139 article-title: Efficient accommodation of local minima in watershed model calibration publication-title: Journal of Hydrology – volume: 43 year: 2007 article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration publication-title: Water Resources Research – volume: 201 start-page: 272 issue: 1–4 year: 1997 end-page: 288 article-title: Development and test of the distributed HBV‐96 hydrological model publication-title: Journal of Hydrology – year: 2013 – ident: e_1_2_12_65_1 doi: 10.1016/j.jhydrol.2005.09.008 – volume-title: Numerical recipes: The art of scientific computing year: 2007 ident: e_1_2_12_45_1 – ident: e_1_2_12_54_1 doi: 10.1002/2014WR016520 – volume-title: Practical optimization year: 1981 ident: e_1_2_12_20_1 – ident: e_1_2_12_27_1 doi: 10.1029/WR012i003p00477 – ident: e_1_2_12_7_1 doi: 10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O – ident: e_1_2_12_2_1 doi: 10.13031/2013.42256 – volume-title: Numerical optimization year: 2006 ident: e_1_2_12_43_1 – ident: e_1_2_12_52_1 doi: 10.1029/2008WR007327 – ident: e_1_2_12_16_1 doi: 10.1029/91WR02985 – ident: e_1_2_12_32_1 doi: 10.1016/j.jhydrol.2005.07.013 – ident: e_1_2_12_17_1 doi: 10.2991/jnmp.2003.10.4.5 – ident: e_1_2_12_22_1 doi: 10.1016/j.ejor.2016.01.001 – ident: e_1_2_12_39_1 doi: 10.1016/j.envsoft.2014.09.013 – ident: e_1_2_12_51_1 – ident: e_1_2_12_60_1 doi: 10.1063/1.4826022 – ident: e_1_2_12_28_1 doi: 10.1613/jair.301 – ident: e_1_2_12_11_1 doi: 10.1029/2009WR008894 – ident: e_1_2_12_19_1 doi: 10.1016/j.envsoft.2013.09.031 – ident: e_1_2_12_18_1 doi: 10.1137/S1052623493253991 – ident: e_1_2_12_12_1 doi: 10.1002/2015WR017198 – ident: e_1_2_12_31_1 doi: 10.1029/2006WR005195 – volume-title: Nonlinear regression analysis and its applications year: 2007 ident: e_1_2_12_6_1 – ident: e_1_2_12_10_1 doi: 10.1109/JSYST.2011.2158682 – ident: e_1_2_12_36_1 doi: 10.1029/WR019i005p01163 – ident: e_1_2_12_53_1 – ident: e_1_2_12_49_1 doi: 10.1016/j.paerosci.2005.02.001 – ident: e_1_2_12_5_1 doi: 10.1029/2000WR900363 – ident: e_1_2_12_58_1 doi: 10.1002/hyp.6592 – ident: e_1_2_12_62_1 doi: 10.1016/S0022-1694(96)03277-5 – ident: e_1_2_12_29_1 doi: 10.1007/978-3-642-40457-3_25-1 – ident: e_1_2_12_30_1 doi: 10.1029/2009WR008896 – ident: e_1_2_12_37_1 doi: 10.5194/hess-20-3561-2016 – ident: e_1_2_12_66_1 doi: 10.1029/2004WR003059 – ident: e_1_2_12_3_1 doi: 10.1002/hyp.5611 – ident: e_1_2_12_59_1 doi: 10.1016/j.jhydrol.2015.02.013 – ident: e_1_2_12_35_1 doi: 10.1007/978-1-4614-7551-4 – ident: e_1_2_12_41_1 doi: 10.1137/0801008 – ident: e_1_2_12_24_1 doi: 10.1137/050635225 – ident: e_1_2_12_55_1 doi: 10.1016/S0266-9838(96)00019-6 – ident: e_1_2_12_63_1 doi: 10.1029/2005WR004723 – ident: e_1_2_12_50_1 doi: 10.1287/ijoc.1060.0182 – ident: e_1_2_12_46_1 – ident: e_1_2_12_14_1 doi: 10.1111/j.1745-6584.2003.tb02580.x – ident: e_1_2_12_21_1 doi: 10.1016/j.envsoft.2017.05.005 – ident: e_1_2_12_47_1 doi: 10.1029/2017WR022489 – ident: e_1_2_12_34_1 doi: 10.1029/2017WR022051 – ident: e_1_2_12_13_1 doi: 10.1002/2015WR016907 – ident: e_1_2_12_57_1 doi: 10.1016/j.jhydrol.2006.02.005 – ident: e_1_2_12_25_1 doi: 10.1029/WR024i005p00691 – ident: e_1_2_12_8_1 – ident: e_1_2_12_42_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_12_48_1 doi: 10.1080/13241583.2017.1298180 – ident: e_1_2_12_56_1 doi: 10.2514/6.2008-5802 – ident: e_1_2_12_4_1 doi: 10.1061/(ASCE)HE.1943-5584.0000938 – ident: e_1_2_12_38_1 doi: 10.1016/S0022-1694(97)00041-3 – ident: e_1_2_12_40_1 doi: 10.1002/2016WR019168 – volume-title: Experimental evaluation of the dynamic seasonal streamflow forecasting approach year: 2011 ident: e_1_2_12_64_1 – ident: e_1_2_12_26_1 doi: 10.1111/gwat.12330 – start-page: 2513 volume-title: Modsim 2007: International congress on modelling and simulation year: 2007 ident: e_1_2_12_33_1 – ident: e_1_2_12_44_1 doi: 10.1016/S0022-1694(03)00225-7 – ident: e_1_2_12_67_1 doi: 10.1029/91WR01305 – start-page: 2883 volume-title: Modsim 2005: International Congress on Modelling and Simulation year: 2005 ident: e_1_2_12_9_1 – volume-title: PEST: Model independent parameter estimation year: 2005 ident: e_1_2_12_15_1 – ident: e_1_2_12_23_1 doi: 10.1029/WR021i004p00473 – ident: e_1_2_12_61_1 doi: 10.1090/S0025-5718-1979-0537969-8 |
| SSID | ssj0014567 |
| Score | 2.4218287 |
| Snippet | Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9655 |
| SubjectTerms | algorithm efficiency Algorithms Approximation Case studies Catchments coarse gradient approximation Cost analysis Costs Efficiency Empirical analysis empirical research Exploitation Exploration Hydrologic models hydrological model calibration Hydrology industry Industry standards Mathematical models Modelling Objective function Optimization Optimization algorithms parameter optimization Problem solving reliability‐cost tradeoffs robust Gauss‐Newton algorithm Robustness Sampling Tradeoffs water Watersheds |
| Title | A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss‐Newton to Robust Gauss‐Newton |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2017WR022488 https://www.proquest.com/docview/2157700798 https://www.proquest.com/docview/2718362967 |
| Volume | 54 |
| WOSCitedRecordID | wos000453369400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231213 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEF6CW0gvTZqk1I0TttCeElFLlrTa3oxTNQXjFCXGvon9U22wrSLJBd966AP0GfskmZVWqhuSQOlNsLOS0OzMfLuj-Qahtz0ftlWS-Bblrme51FEWEzKwpKfDg2TCrrqWDMloFEyn9Is5cNO1MBU_RHPgpi2j9NfawBnPDdmA5siEyEUmkQ5Bga71td3SLiefR00SAbABqRPMGuiY_95h-vvtyX9HpD8wcxusltEm3Pvf99xHzw3OxP1qYbxAO2p1gHbrMuQcrk3789nmEP3s4yjl67zAn9g6z3__-AW-D0Ah7i--ptm8mC0xYFsMWBFfgYtZmtpNnCb4ciOz2n9i3VhtkX_AYZYu8bU5pLh7zyK9_2FHaBx-vBlcWqY9g8VgU-ZYyuNcuZIKL_FcQJE00eSDfpfrPR4TQtIgYUqz8VDOKShddhMuAI861HUkSXovUWuVrtQrhG3B_MQmXUmocGngMcJcW4qeYF0lfea00VmtolgY7nLdQmMRlzl0h8bbX7mN3jXS3yrOjgfkOrW2Y2O5eQwQiBAAThSG3zTDYHM6kcJWKl2DDAR0CPzUJ210Xur-0efEk2gQOZoG8vW_iR-jZzAQVKWPHdQqsrU6QU_F92KeZ6foyUUUjoen5aK_BRtIAq8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xQIIXBmyIso4ZCZ5GRJsmcby3ClGKKAV1IHiLHNuhSG2DknRS33jgB-w37pfsnDilTDAJ8RYp5zjK-e4--3LfAew2PNxWSepZLHRcy2G2sriQviVdHR4kF_Wia0mHdrv-zQ27MH1OdS1MwQ8xPXDTlpH7a23g-kDasA1okkwMXfS6p2OQ73-ABcfDmXRJyUl3mkZAdEDLFLOGOubPdxx_MDv6eUx6ApqzcDWPN62P737TVVgxUJM0i7WxBnNqtA5LZSVyitemA3p_8gkem6QXh-M0I8d8nKZ_Hn6j-0NcSJqD2zi5y_pDgvCWIFwk5-hlhqZ8k8QRaU9kUrpQonurDdIfpJXEQ_LTnFP8-8wsfnmyz3DVOro8bFumQ4PFcV9mW8oNQ-VIJtzIdRBIskjzD3q1UG_zuBCS-RFXmpCHhSFDvctaFAqEpDZzbEmjxgbMj-KR2gRSF9yL6rQmKRMO811OuVOXoiF4TUmP2xX4XuooEIa-XHfRGAR5Gt1mwexXrsDeVPq-oO14Ra5aqjswxpsGiIIoRezE8PbO9Daanc6l8JGKxyiDMR1jP_NoBfZz5f93nuC6d9izNRPk1tvEv8FS-_KsE3ROuqdfYBmF_KISsgrzWTJWX2FR_Mru0mQ7X_l_ATxWBTg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB7xswIusAuLKH_rleAEEW2axDG3CiigRQWVReUWObazRWoblKRI3DjwADwjT8I4cboFLUhob5E8jqOMx_PZ4_kGYKvu4bZKUs9ioeNaDrOVxYX0Lelq9yC5qBVVS85oq-VfX7MLU-dU58IU_BCjAzdtGfl6rQ1c3crIsA1okkx0XbTT1j7I9ydh2kEoru90dU5bozACogNahpg11DE337H_3njv1z7pL9Ach6u5v2ku_PeXfoV5AzVJo5gb32BCDRZhtsxETvHZVEDv3i_BY4O043CYZuSYD9P0-eEJlz_EhaTR-xMnN1m3TxDeEoSL5BxXmb5J3yRxRE7uZVIuoUTXVuul-6SZxH1yac4p3r4zi_892He4ah79PjixTIUGi-O-zLaUG4bKkUy4kesgkGSR5h_0qqHe5nEhJPMjrjQhDwtDhnqX1SgUCElt5tiSRvVlmBrEA7UCpCa4F9VoVVImHOa7nHKnJkVd8KqSHrcrsFPqKBCGvlxX0egFeRjdZsH4X67A9kj6tqDteEduvVR3YIw3DRAFUYrYiWHzz1Ezmp2OpfCBiocogz4dfT_zaAV2c-V_OE7QaR-0bc0Eufo58R8wc3HYDM5OW7_WYA5l_CIRch2msmSoNuCLuMtu0mQzn_gvvx4Esw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Gauss%E2%80%90Newton+Algorithm+for+the+Optimization+of+Hydrological+Models%3A+From+Standard+Gauss%E2%80%90Newton+to+Robust+Gauss%E2%80%90Newton&rft.jtitle=Water+resources+research&rft.au=Qin%2C+Youwei&rft.au=Kavetski%2C+Dmitri&rft.au=Kuczera%2C+George&rft.date=2018-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=54&rft.issue=11&rft.spage=9655&rft.epage=9683&rft_id=info:doi/10.1029%2F2017WR022488&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |