A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry‐Standard Algorithms

Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources research Ročník 54; číslo 11; s. 9637 - 9654
Hlavní autori: Qin, Youwei, Kavetski, Dmitri, Kuczera, George
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.11.2018
Predmet:
ISSN:0043-1397, 1944-7973
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, https://doi.org/10.1029/2017WR022488) introduced the robust Gauss‐Newton (RGN) algorithm, an enhanced version of the standard Gauss‐Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological community, namely, the Levenberg‐Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5–7 times more efficient than Levenberg‐Marquardt by achieving higher robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of robustness‐per‐fixed‐cost. A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems. Key Points Robust Gauss‐Newton algorithm achieves similar robustness to evolutionary optimizer SCE and offers efficiency gains of orders of magnitude Robust Gauss‐Newton algorithm is generally more efficient than the Levenberg‐Marquardt and dynamically dimensioned search algorithms A median of 5 and 1 RGN invocations are required to find global and tolerable optima with 95% confidence, a tighter range than its competitors
AbstractList Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, https://doi.org/10.1029/2017WR022488 ) introduced the robust Gauss‐Newton (RGN) algorithm, an enhanced version of the standard Gauss‐Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological community, namely, the Levenberg‐Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5–7 times more efficient than Levenberg‐Marquardt by achieving higher robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of robustness‐per‐fixed‐cost . A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems. Robust Gauss‐Newton algorithm achieves similar robustness to evolutionary optimizer SCE and offers efficiency gains of orders of magnitude Robust Gauss‐Newton algorithm is generally more efficient than the Levenberg‐Marquardt and dynamically dimensioned search algorithms A median of 5 and 1 RGN invocations are required to find global and tolerable optima with 95% confidence, a tighter range than its competitors
Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, https://doi.org/10.1029/2017WR022488) introduced the robust Gauss‐Newton (RGN) algorithm, an enhanced version of the standard Gauss‐Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological community, namely, the Levenberg‐Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5–7 times more efficient than Levenberg‐Marquardt by achieving higher robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of robustness‐per‐fixed‐cost. A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems.
Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, https://doi.org/10.1029/2017WR022488) introduced the robust Gauss‐Newton (RGN) algorithm, an enhanced version of the standard Gauss‐Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological community, namely, the Levenberg‐Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5–7 times more efficient than Levenberg‐Marquardt by achieving higher robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of robustness‐per‐fixed‐cost. A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems. Key Points Robust Gauss‐Newton algorithm achieves similar robustness to evolutionary optimizer SCE and offers efficiency gains of orders of magnitude Robust Gauss‐Newton algorithm is generally more efficient than the Levenberg‐Marquardt and dynamically dimensioned search algorithms A median of 5 and 1 RGN invocations are required to find global and tolerable optima with 95% confidence, a tighter range than its competitors
Author Kavetski, Dmitri
Qin, Youwei
Kuczera, George
Author_xml – sequence: 1
  givenname: Youwei
  orcidid: 0000-0001-5425-539X
  surname: Qin
  fullname: Qin, Youwei
  organization: The University of Newcastle
– sequence: 2
  givenname: Dmitri
  orcidid: 0000-0003-4966-9234
  surname: Kavetski
  fullname: Kavetski, Dmitri
  email: dmitri.kavetski@adelaide.edu.au
  organization: University of Adelaide
– sequence: 3
  givenname: George
  surname: Kuczera
  fullname: Kuczera, George
  organization: The University of Newcastle
BookMark eNp9kc9uEzEQxi1UJNLSWx_AUi8cWPC_XdvcQgRtpUKllKrHlWN7E7eOndpeVeGEeAKekSfBJUhUleA0h_nNNzPftw_2QgwWgCOM3mBE5FuCML-eI0KYkM_ABEvGGi453QMThBhtMJX8BdjP-QYhzNqOT8D3KZzHxZgLPFFjzj-__fhs70sMcOqXMbmyWsMhJlhWFl5silu7r6q42o4DPN2aFH1cOq08_BSN9fkdfG-DXq1VunVhCadL5UKVPgumbkjbqn5ZVDAqmb_6-SV4Piif7eGfegCuPn74Mjttzi9OzmbT80YxhHHTSs0tkUPHBmk4N0osRKta1BnJLWX1QWZaiilBQ7uwUiNCRbeQXAiiNDaaHoBXO91NinejzaVfu6yt9yrYOOaecCxoR6QQFT1-gt7EMYV6XU9wyzliLWGVIjtKp5hzskOvXfltT0nK-R6j_iGW_nEsdej1k6FNctWw7b9wusPvnbfb_7L99Xw2J5RJTH8BQtahJA
CitedBy_id crossref_primary_10_1007_s00477_022_02336_6
crossref_primary_10_1039_C9EN00017H
crossref_primary_10_2166_nh_2020_048
crossref_primary_10_1016_j_envsoft_2025_106592
crossref_primary_10_1039_C9MH00306A
crossref_primary_10_1007_s10462_024_10829_9
crossref_primary_10_3390_w11091858
crossref_primary_10_5194_hess_23_1323_2019
crossref_primary_10_1029_2017WR022488
crossref_primary_10_2166_hydro_2020_016
crossref_primary_10_1029_2020WR028338
crossref_primary_10_3390_w12092324
crossref_primary_10_1029_2019WR025520
crossref_primary_10_1002_hyp_14266
crossref_primary_10_1016_j_jhydrol_2019_124281
crossref_primary_10_1016_j_matcom_2019_07_009
crossref_primary_10_3390_w13091248
crossref_primary_10_1016_j_jclepro_2019_06_052
crossref_primary_10_5194_hess_27_2621_2023
crossref_primary_10_1016_j_cma_2024_116915
crossref_primary_10_3390_w11040812
crossref_primary_10_5194_hess_22_6087_2018
crossref_primary_10_1016_j_electacta_2020_136523
Cites_doi 10.1016/0022-1694(92)90096-E
10.1007/978-3-642-40457-3_25-1
10.1080/13241583.2017.1298180
10.1029/WR021i004p00473
10.1029/2009WR008896
10.1029/2008WR006862
10.1007/BF00939380
10.1111/gwat.12330
10.1029/2000WR900363
10.1061/(ASCE)HE.1943-5584.0001095
10.1016/0022-1694(70)90255-6
10.1029/WR019i005p01163
10.1029/2009WR008894
10.1029/91WR02985
10.1029/2005WR004723
10.1016/j.ejor.2016.01.001
10.1111/j.1745-6584.2003.tb02580.x
10.1109/TEVC.2008.924428
10.1016/j.jhydrol.2006.02.005
10.1002/2016WR019168
10.1061/(ASCE)HE.1943-5584.0000938
10.1007/978-1-4614-7551-4
10.1029/2006WR005195
10.1029/2007WR006429
10.1029/92WR02617
10.1029/2017WR022051
10.1029/2005WR003995
10.1016/j.jhydrol.2005.11.058
ContentType Journal Article
Copyright 2018. The Authors.
2018. American Geophysical Union. All rights reserved.
Copyright_xml – notice: 2018. The Authors.
– notice: 2018. American Geophysical Union. All rights reserved.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2017WR022489
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Civil Engineering Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 9654
ExternalDocumentID 10_1029_2017WR022489
WRCR23491
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2018B55414
– fundername: Australian Research Council
  funderid: LP100200665
– fundername: China Scholarship Council (CSC)
– fundername: National Natural Science Foundation of China
  funderid: 51879068; 41561134016
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4011-59c7e29f64f9d77da8b85a506d97e340044d531320f5be9c02386b97882ac1dc3
IEDL.DBID DRFUL
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453369400058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:30:31 EDT 2025
Sat Aug 30 11:43:34 EDT 2025
Sat Nov 29 01:36:41 EST 2025
Tue Nov 18 22:01:24 EST 2025
Wed Jan 22 16:37:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4011-59c7e29f64f9d77da8b85a506d97e340044d531320f5be9c02386b97882ac1dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4966-9234
0000-0001-5425-539X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2017WR022489
PQID 2157704524
PQPubID 105507
PageCount 18
ParticipantIDs proquest_miscellaneous_2718362988
proquest_journals_2157704524
crossref_citationtrail_10_1029_2017WR022489
crossref_primary_10_1029_2017WR022489
wiley_primary_10_1029_2017WR022489_WRCR23491
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 20
1993; 29
1983; 19
2015; 54
2005; 41
2007
1970; 10
2006
2005
1985; 21
2017; 53
2009; 13
2006; 329
2010; 46
2001
2015; 20
1993; 76
1992; 135
1992; 28
2018
2017
2001; 37
2016
2014; 19
2008; 44
1981
2013
2007; 43
2006; 327
2018; 54
2003; 41
2016; 251
e_1_2_10_23_1
e_1_2_10_24_1
Chiew F. H. S. (e_1_2_10_7_1) 2005
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Kuczera G. (e_1_2_10_25_1) 2016
Bates D. M. (e_1_2_10_4_1) 2007
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
Doherty J. (e_1_2_10_10_1) 2005
Press W. (e_1_2_10_29_1) 2007
Nocedal J. (e_1_2_10_28_1) 2006
Gill P. E. (e_1_2_10_14_1) 1981
e_1_2_10_27_1
Qin Y. (e_1_2_10_31_1) 2018; 54
Kavetski D. (e_1_2_10_21_1) 2007
e_1_2_10_26_1
References_xml – volume: 28
  start-page: 1015
  issue: 4
  year: 1992
  end-page: 1031
  article-title: Effective and efficient global optimization for conceptual rainfall‐runoff models
  publication-title: Water Resources Research
– volume: 41
  year: 2005
  article-title: A hybrid regularized inversion methodology for highly parameterized environmental models
  publication-title: Water Resources Research
– year: 1981
– volume: 44
  year: 2008
  article-title: Comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Bryan A. Tolson and Christine A. Shoemaker
  publication-title: Water Resources Research
– volume: 43
  year: 2007
  article-title: Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration
  publication-title: Water Resources Research
– volume: 21
  start-page: 473
  issue: 4
  year: 1985
  end-page: 485
  article-title: The automatic calibration of conceptual catchment models using derivative‐based optimization algorithms
  publication-title: Water Resources Research
– year: 2005
– volume: 54
  start-page: 159
  issue: 2
  year: 2015
  end-page: 170
  article-title: Practical use of computationally frugal model analysis methods
  publication-title: Groundwater
– volume: 20
  issue: 7
  year: 2015
  article-title: Computational procedure for evaluating sampling techniques on watershed model calibration
  publication-title: Journal of Hydrologic Engineering
– volume: 41
  start-page: 170
  issue: 2
  year: 2003
  end-page: 177
  article-title: Ground water model calibration using pilot points and regularization
  publication-title: Ground Water
– volume: 19
  start-page: 1163
  issue: 5
  year: 1983
  end-page: 1172
  article-title: Improved parameter inference in catchment models. 2. Combining different kinds of hydrologic data and testing their compatibility
  publication-title: Water Resources Research
– volume: 37
  start-page: 937
  issue: 4
  year: 2001
  end-page: 947
  article-title: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling
  publication-title: Water Resources Research
– year: 2007
– year: 2001
– volume: 54
  year: 2018
  article-title: The fast and the robust: Trade‐offs between optimization reliability, cost and efficiency in the calibration of hydrological models
  publication-title: Water Resources Research
– start-page: 2513
  year: 2007
  end-page: 2519
– volume: 327
  start-page: 564
  issue: 3–4
  year: 2006
  end-page: 577
  article-title: An advanced regularization methodology for use in watershed model calibration
  publication-title: Journal of Hydrology
– volume: 76
  start-page: 501
  issue: 3
  year: 1993
  end-page: 521
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: Journal of Optimization Theory and Applications
– year: 2016
– volume: 19
  start-page: 1374
  issue: 7
  year: 2014
  end-page: 1384
  article-title: Comparison of stochastic optimization algorithms in hydrological model calibration
  publication-title: Journal of Hydrologic Engineering
– volume: 54
  year: 2018
  article-title: A robust Gauss‐Newton algorithm for the optimization of hydrological models: From Gauss‐Newton to robust Gauss‐Newton
  publication-title: Water Resources Research
– volume: 53
  start-page: 2199
  year: 2017
  end-page: 2239
  article-title: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors
  publication-title: Water Resources Research
– volume: 29
  start-page: 1185
  issue: 4
  year: 1993
  end-page: 1194
  article-title: Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento soil moisture accounting model
  publication-title: Water Resources Research
– volume: 46
  year: 2010
  article-title: Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes
  publication-title: Water Resources Research
– start-page: 2883
  year: 2005
  end-page: 2889
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: Journal of Hydrology
– start-page: 1
  year: 2018
  end-page: 42
– volume: 20
  start-page: 169
  issue: 2
  year: 2017
  end-page: 176
  article-title: Comparison of Newton‐type and SCE optimisation algorithms for the calibration of conceptual hydrological models
  publication-title: Australasian Journal of Water Resources
– year: 2006
– volume: 251
  start-page: 727
  issue: 3
  year: 2016
  end-page: 738
  article-title: Global optimization using q‐gradients
  publication-title: European Journal of Operational Research
– volume: 46
  year: 2010
  article-title: Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction
  publication-title: Water Resources Research
– volume: 135
  start-page: 371
  issue: 1‐4
  year: 1992
  end-page: 381
  article-title: The Xinanjiang model applied in China
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 243
  issue: 2
  year: 2009
  end-page: 259
  article-title: Self‐adaptive multimethod search for global optimization in real‐parameter spaces
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2017
– volume: 329
  start-page: 122
  issue: 1–2
  year: 2006
  end-page: 139
  article-title: Efficient accommodation of local minima in watershed model calibration
  publication-title: Journal of Hydrology
– volume: 43
  year: 2007
  article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration
  publication-title: Water Resources Research
– volume: 44
  year: 2008
  article-title: Reply to comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Ali Behrangi et al
  publication-title: Water Resources Research
– year: 2013
– ident: e_1_2_10_41_1
  doi: 10.1016/0022-1694(92)90096-E
– ident: e_1_2_10_18_1
  doi: 10.1007/978-3-642-40457-3_25-1
– ident: e_1_2_10_30_1
– ident: e_1_2_10_32_1
  doi: 10.1080/13241583.2017.1298180
– ident: e_1_2_10_33_1
– ident: e_1_2_10_16_1
  doi: 10.1029/WR021i004p00473
– ident: e_1_2_10_19_1
  doi: 10.1029/2009WR008896
– ident: e_1_2_10_37_1
  doi: 10.1029/2008WR006862
– ident: e_1_2_10_12_1
  doi: 10.1007/BF00939380
– ident: e_1_2_10_17_1
  doi: 10.1111/gwat.12330
– ident: e_1_2_10_3_1
  doi: 10.1029/2000WR900363
– volume-title: PEST: Model independent parameter estimation
  year: 2005
  ident: e_1_2_10_10_1
– volume-title: Practical optimization
  year: 1981
  ident: e_1_2_10_14_1
– volume-title: Numerical recipes: The art of scientific computing
  year: 2007
  ident: e_1_2_10_29_1
– ident: e_1_2_10_40_1
  doi: 10.1061/(ASCE)HE.1943-5584.0001095
– ident: e_1_2_10_27_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_10_24_1
  doi: 10.1029/WR019i005p01163
– start-page: 2883
  volume-title: Modsim 2005: International Congress on Modelling and Simulation
  year: 2005
  ident: e_1_2_10_7_1
– ident: e_1_2_10_8_1
  doi: 10.1029/2009WR008894
– volume-title: Handbook of applied hydrology
  year: 2016
  ident: e_1_2_10_25_1
– ident: e_1_2_10_13_1
  doi: 10.1029/91WR02985
– ident: e_1_2_10_36_1
  doi: 10.1029/2005WR004723
– ident: e_1_2_10_15_1
  doi: 10.1016/j.ejor.2016.01.001
– start-page: 2513
  volume-title: Modsim 2007: International Congress on Modelling and Simulation
  year: 2007
  ident: e_1_2_10_21_1
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1745-6584.2003.tb02580.x
– ident: e_1_2_10_39_1
  doi: 10.1109/TEVC.2008.924428
– ident: e_1_2_10_34_1
  doi: 10.1016/j.jhydrol.2006.02.005
– volume-title: Nonlinear regression analysis and its applications
  year: 2007
  ident: e_1_2_10_4_1
– ident: e_1_2_10_26_1
  doi: 10.1002/2016WR019168
– ident: e_1_2_10_2_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000938
– ident: e_1_2_10_23_1
  doi: 10.1007/978-1-4614-7551-4
– ident: e_1_2_10_20_1
  doi: 10.1029/2006WR005195
– volume-title: Numerical optimization
  year: 2006
  ident: e_1_2_10_28_1
– ident: e_1_2_10_5_1
  doi: 10.1029/2007WR006429
– ident: e_1_2_10_6_1
– ident: e_1_2_10_35_1
  doi: 10.1029/92WR02617
– ident: e_1_2_10_22_1
  doi: 10.1029/2017WR022051
– volume: 54
  year: 2018
  ident: e_1_2_10_31_1
  article-title: A robust Gauss‐Newton algorithm for the optimization of hydrological models: From Gauss‐Newton to robust Gauss‐Newton
  publication-title: Water Resources Research
– ident: e_1_2_10_38_1
  doi: 10.1029/2005WR003995
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jhydrol.2005.11.058
SSID ssj0014567
Score 2.4282172
Snippet Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9637
SubjectTerms Algorithms
Benchmarks
Best practice
Case studies
Catchments
Communities
Cost analysis
Empirical analysis
Environment models
Environmental modeling
Evolution
Evolutionary algorithms
evolutionary optimizer
global optimization
Hydrologic models
Hydrology
Mathematical models
model calibration
Modelling
Optimization
optimization efficiency
parameter optimization
Problem solving
Reliability analysis
robust Gauss‐Newton algorithm
Robustness
water
Watersheds
Title A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry‐Standard Algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2017WR022489
https://www.proquest.com/docview/2157704524
https://www.proquest.com/docview/2718362988
Volume 54
WOSCitedRecordID wos000453369400058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231214
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fj9MwDLe4OyR44T9icJyCBE9QsaVpk_A2DsYhoXEqnHZvVZqmt0nbipYNaW-IT8Bn5JNgd-luPICEeGsVN42a2P7Zrm2Ap2j5a5WmIupypyJh0yRSgjK5UtuzVVIJW4mm2YQcDtX5uT4NDjfKhdnUh9g63IgzGnlNDG4KH4oNUI1M1FxylJEKUnoPDiivCo2vgzfZ4OzDNo6A8EC2MWbCOuHXd5zh5e7zvyulS6S5i1cbhTO4-b9LvQU3AtRk_c3ZuA1X3PwOXGszkT1ehw7o4_Vd-N5nWV2s_JK9Myvvf377geIPcSHrTy_qxWQ5njGEtwzhIvuIUmYW0jdZXbGTdbloRSij3mpT_4q9xtM_npnGE8_6F2aCMJSFPiFrnP1TcGFczu_vwdng7efjkyj0Z4iMIM9qoq10XFepqHQpZWlUoRKTdNNSSxeTcBBlQqUhu1VSOG0JHqQFmq2KG9srbXwf9uf13D0AZo2QvBSxJQOP666JYyt5FaM950qRxB143m5QbkPxcuqhMc2bIDrX-e437sCzLfWXTdGOP9AdtnudB9b1OWIgKanQvOjAk-0wMh1FUszc1SukQY2Oml8r1YEXzc7_9T35KDvOeCx07-G_kT-C6zigNrmPh7C_XKzcY7hqvy4nfnEEe1ycHoUjj3ej98NfgJ4BIg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BmDRegG0gCht40nga0VrHiW3eyrTRaVuZyqbtLXIdZ63UNqhpkfo27RfwG_kl3KVOVx6GhHiLlLMT2b677-58dwC7aPlrFcciqHOnAmHjKFCCMrli27BZlAmbibLZhGy31fW1Pvd9TikXZl4fYuFwI84o5TUxODmkfbUBKpKJqktedUgHKf0YnghUTHSnj4vzRRgB0YGsQswEdfzNdxy_vzz6T510DzSX4Wqpb46e__efvoBnHmqy5vxsrMMjN9qAtSoTucBn3wG9N9uEuybr5N1pMWFfzLQoft3-RPGHuJA1Bzf5uD_pDRnCW4ZwkX1FKTP06Zssz1hrlo4rEcqot9qg-MQ-4-nvDU3piWfNG9NHGMp8n5AZzv7NuzDu5y9ewuXR4cVBK_D9GQIjyLMaaSsd11ksMp1KmRrVVZGJ6nGqpQtJOIg0otKQ9SzqOm0JHsRdNFsVN7aR2vAVrIzykXsNzBoheSpCSwYe13UThlbyLER7zqUiCmuwV-1QYn3xcuqhMUjKIDrXyfIa1-DDgvr7vGjHA3Rb1WYnnnWLBDGQlFRoXtRgZ_EamY4iKWbk8inSoEZHza-VqsHHcuv_-p3kqnPQ4aHQjTf_Rv4e1loXZ6fJ6XH75C08RSI1z4PcgpXJeOq2YdX-mPSL8bvy3P8GFQABkQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDQEvjL-isIGR4AkiWseObd7KRhkClaqAtrfI9Z-1UttMTYvUt2mfgM-4T8I5dbryABLiLVLOTpTz3f3uLncH8AI9fyWzjCVN6mTCTMYTyUIlV2ZaxnPPjGfVsAnR7cqTE9WLc05DLcyqP8Q64BYko9LXQcDdmfWx20BokommSxz3gw2S6hrsMC4qyaSst04jIDoQdYo5QJ345zuuf7O5-nebdAU0N-FqZW86u__9pnfgdoSapL06G3dhy03vwc26ErnE6zgBfbi8Dxdt0i8Gi3JOPuhFWV6e_0T1h7iQtMenxWw0H04IwluCcJF8QS0zieWbpPDkaGlntQolYbbauHxL3uHpH050FYkn7VM9QhhK4pyQJe7-NYYwrvYvH8D3zvtvB0dJnM-QaBYiq1wZ4ajyGfPKCmG1HEiueTOzSrg0KAdmeWgN2fR84JQJ8CAboNsqqTYta9KHsD0tpu4REKOZoJalJjh4VDV1mhpBfYr-nLOMpw14VXMoN7F5eZihMc6rJDpV-eY3bsDLNfXZqmnHH-j2ambnUXTLHDGQEKHRPGvA8_VtFLqQSdFTVyyQBi06Wn4lZQNeV6z_63Py4_5Bn6ZMtR7_G_kzuNE77OSfP3Y_PYFbSCNXZZB7sD2fLdw-XDc_5qNy9rQ69r8Am5sBDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Gauss%E2%80%90Newton+Algorithm+for+the+Optimization+of+Hydrological+Models%3A+Benchmarking+Against+Industry%E2%80%90Standard+Algorithms&rft.jtitle=Water+resources+research&rft.au=Qin%2C+Youwei&rft.au=Kavetski%2C+Dmitri&rft.au=Kuczera%2C+George&rft.date=2018-11-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=54&rft.issue=11&rft.spage=9637&rft.epage=9654&rft_id=info:doi/10.1029%2F2017WR022489&rft.externalDBID=10.1029%252F2017WR022489&rft.externalDocID=WRCR23491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon