A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry‐Standard Algorithms
Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions,...
Uložené v:
| Vydané v: | Water resources research Ročník 54; číslo 11; s. 9637 - 9654 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
01.11.2018
|
| Predmet: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, https://doi.org/10.1029/2017WR022488) introduced the robust Gauss‐Newton (RGN) algorithm, an enhanced version of the standard Gauss‐Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological community, namely, the Levenberg‐Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5–7 times more efficient than Levenberg‐Marquardt by achieving higher robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of robustness‐per‐fixed‐cost. A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems.
Key Points
Robust Gauss‐Newton algorithm achieves similar robustness to evolutionary optimizer SCE and offers efficiency gains of orders of magnitude
Robust Gauss‐Newton algorithm is generally more efficient than the Levenberg‐Marquardt and dynamically dimensioned search algorithms
A median of 5 and 1 RGN invocations are required to find global and tolerable optima with 95% confidence, a tighter range than its competitors |
|---|---|
| AbstractList | Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018,
https://doi.org/10.1029/2017WR022488
) introduced the robust Gauss‐Newton (RGN) algorithm, an enhanced version of the standard Gauss‐Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological community, namely, the Levenberg‐Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5–7 times more efficient than Levenberg‐Marquardt by achieving higher robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of
robustness‐per‐fixed‐cost
. A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems.
Robust Gauss‐Newton algorithm achieves similar robustness to evolutionary optimizer SCE and offers efficiency gains of orders of magnitude
Robust Gauss‐Newton algorithm is generally more efficient than the Levenberg‐Marquardt and dynamically dimensioned search algorithms
A median of 5 and 1 RGN invocations are required to find global and tolerable optima with 95% confidence, a tighter range than its competitors Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, https://doi.org/10.1029/2017WR022488) introduced the robust Gauss‐Newton (RGN) algorithm, an enhanced version of the standard Gauss‐Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological community, namely, the Levenberg‐Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5–7 times more efficient than Levenberg‐Marquardt by achieving higher robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of robustness‐per‐fixed‐cost. A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems. Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton‐type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, https://doi.org/10.1029/2017WR022488) introduced the robust Gauss‐Newton (RGN) algorithm, an enhanced version of the standard Gauss‐Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological community, namely, the Levenberg‐Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5–7 times more efficient than Levenberg‐Marquardt by achieving higher robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of robustness‐per‐fixed‐cost. A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems. Key Points Robust Gauss‐Newton algorithm achieves similar robustness to evolutionary optimizer SCE and offers efficiency gains of orders of magnitude Robust Gauss‐Newton algorithm is generally more efficient than the Levenberg‐Marquardt and dynamically dimensioned search algorithms A median of 5 and 1 RGN invocations are required to find global and tolerable optima with 95% confidence, a tighter range than its competitors |
| Author | Kavetski, Dmitri Qin, Youwei Kuczera, George |
| Author_xml | – sequence: 1 givenname: Youwei orcidid: 0000-0001-5425-539X surname: Qin fullname: Qin, Youwei organization: The University of Newcastle – sequence: 2 givenname: Dmitri orcidid: 0000-0003-4966-9234 surname: Kavetski fullname: Kavetski, Dmitri email: dmitri.kavetski@adelaide.edu.au organization: University of Adelaide – sequence: 3 givenname: George surname: Kuczera fullname: Kuczera, George organization: The University of Newcastle |
| BookMark | eNp9kc9uEzEQxi1UJNLSWx_AUi8cWPC_XdvcQgRtpUKllKrHlWN7E7eOndpeVeGEeAKekSfBJUhUleA0h_nNNzPftw_2QgwWgCOM3mBE5FuCML-eI0KYkM_ABEvGGi453QMThBhtMJX8BdjP-QYhzNqOT8D3KZzHxZgLPFFjzj-__fhs70sMcOqXMbmyWsMhJlhWFl5silu7r6q42o4DPN2aFH1cOq08_BSN9fkdfG-DXq1VunVhCadL5UKVPgumbkjbqn5ZVDAqmb_6-SV4Piif7eGfegCuPn74Mjttzi9OzmbT80YxhHHTSs0tkUPHBmk4N0osRKta1BnJLWX1QWZaiilBQ7uwUiNCRbeQXAiiNDaaHoBXO91NinejzaVfu6yt9yrYOOaecCxoR6QQFT1-gt7EMYV6XU9wyzliLWGVIjtKp5hzskOvXfltT0nK-R6j_iGW_nEsdej1k6FNctWw7b9wusPvnbfb_7L99Xw2J5RJTH8BQtahJA |
| CitedBy_id | crossref_primary_10_1007_s00477_022_02336_6 crossref_primary_10_1039_C9EN00017H crossref_primary_10_2166_nh_2020_048 crossref_primary_10_1016_j_envsoft_2025_106592 crossref_primary_10_1039_C9MH00306A crossref_primary_10_1007_s10462_024_10829_9 crossref_primary_10_3390_w11091858 crossref_primary_10_5194_hess_23_1323_2019 crossref_primary_10_1029_2017WR022488 crossref_primary_10_2166_hydro_2020_016 crossref_primary_10_1029_2020WR028338 crossref_primary_10_3390_w12092324 crossref_primary_10_1029_2019WR025520 crossref_primary_10_1002_hyp_14266 crossref_primary_10_1016_j_jhydrol_2019_124281 crossref_primary_10_1016_j_matcom_2019_07_009 crossref_primary_10_3390_w13091248 crossref_primary_10_1016_j_jclepro_2019_06_052 crossref_primary_10_5194_hess_27_2621_2023 crossref_primary_10_1016_j_cma_2024_116915 crossref_primary_10_3390_w11040812 crossref_primary_10_5194_hess_22_6087_2018 crossref_primary_10_1016_j_electacta_2020_136523 |
| Cites_doi | 10.1016/0022-1694(92)90096-E 10.1007/978-3-642-40457-3_25-1 10.1080/13241583.2017.1298180 10.1029/WR021i004p00473 10.1029/2009WR008896 10.1029/2008WR006862 10.1007/BF00939380 10.1111/gwat.12330 10.1029/2000WR900363 10.1061/(ASCE)HE.1943-5584.0001095 10.1016/0022-1694(70)90255-6 10.1029/WR019i005p01163 10.1029/2009WR008894 10.1029/91WR02985 10.1029/2005WR004723 10.1016/j.ejor.2016.01.001 10.1111/j.1745-6584.2003.tb02580.x 10.1109/TEVC.2008.924428 10.1016/j.jhydrol.2006.02.005 10.1002/2016WR019168 10.1061/(ASCE)HE.1943-5584.0000938 10.1007/978-1-4614-7551-4 10.1029/2006WR005195 10.1029/2007WR006429 10.1029/92WR02617 10.1029/2017WR022051 10.1029/2005WR003995 10.1016/j.jhydrol.2005.11.058 |
| ContentType | Journal Article |
| Copyright | 2018. The Authors. 2018. American Geophysical Union. All rights reserved. |
| Copyright_xml | – notice: 2018. The Authors. – notice: 2018. American Geophysical Union. All rights reserved. |
| DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2017WR022489 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | 9654 |
| ExternalDocumentID | 10_1029_2017WR022489 WRCR23491 |
| Genre | article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2018B55414 – fundername: Australian Research Council funderid: LP100200665 – fundername: China Scholarship Council (CSC) – fundername: National Natural Science Foundation of China funderid: 51879068; 41561134016 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a4011-59c7e29f64f9d77da8b85a506d97e340044d531320f5be9c02386b97882ac1dc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453369400058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:30:31 EDT 2025 Sat Aug 30 11:43:34 EDT 2025 Sat Nov 29 01:36:41 EST 2025 Tue Nov 18 22:01:24 EST 2025 Wed Jan 22 16:37:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4011-59c7e29f64f9d77da8b85a506d97e340044d531320f5be9c02386b97882ac1dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4966-9234 0000-0001-5425-539X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2017WR022489 |
| PQID | 2157704524 |
| PQPubID | 105507 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2718362988 proquest_journals_2157704524 crossref_citationtrail_10_1029_2017WR022489 crossref_primary_10_1029_2017WR022489 wiley_primary_10_1029_2017WR022489_WRCR23491 |
| PublicationCentury | 2000 |
| PublicationDate | November 2018 2018-11-00 20181101 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 20 1993; 29 1983; 19 2015; 54 2005; 41 2007 1970; 10 2006 2005 1985; 21 2017; 53 2009; 13 2006; 329 2010; 46 2001 2015; 20 1993; 76 1992; 135 1992; 28 2018 2017 2001; 37 2016 2014; 19 2008; 44 1981 2013 2007; 43 2006; 327 2018; 54 2003; 41 2016; 251 e_1_2_10_23_1 e_1_2_10_24_1 Chiew F. H. S. (e_1_2_10_7_1) 2005 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Kuczera G. (e_1_2_10_25_1) 2016 Bates D. M. (e_1_2_10_4_1) 2007 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 Doherty J. (e_1_2_10_10_1) 2005 Press W. (e_1_2_10_29_1) 2007 Nocedal J. (e_1_2_10_28_1) 2006 Gill P. E. (e_1_2_10_14_1) 1981 e_1_2_10_27_1 Qin Y. (e_1_2_10_31_1) 2018; 54 Kavetski D. (e_1_2_10_21_1) 2007 e_1_2_10_26_1 |
| References_xml | – volume: 28 start-page: 1015 issue: 4 year: 1992 end-page: 1031 article-title: Effective and efficient global optimization for conceptual rainfall‐runoff models publication-title: Water Resources Research – volume: 41 year: 2005 article-title: A hybrid regularized inversion methodology for highly parameterized environmental models publication-title: Water Resources Research – year: 1981 – volume: 44 year: 2008 article-title: Comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Bryan A. Tolson and Christine A. Shoemaker publication-title: Water Resources Research – volume: 43 year: 2007 article-title: Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration publication-title: Water Resources Research – volume: 21 start-page: 473 issue: 4 year: 1985 end-page: 485 article-title: The automatic calibration of conceptual catchment models using derivative‐based optimization algorithms publication-title: Water Resources Research – year: 2005 – volume: 54 start-page: 159 issue: 2 year: 2015 end-page: 170 article-title: Practical use of computationally frugal model analysis methods publication-title: Groundwater – volume: 20 issue: 7 year: 2015 article-title: Computational procedure for evaluating sampling techniques on watershed model calibration publication-title: Journal of Hydrologic Engineering – volume: 41 start-page: 170 issue: 2 year: 2003 end-page: 177 article-title: Ground water model calibration using pilot points and regularization publication-title: Ground Water – volume: 19 start-page: 1163 issue: 5 year: 1983 end-page: 1172 article-title: Improved parameter inference in catchment models. 2. Combining different kinds of hydrologic data and testing their compatibility publication-title: Water Resources Research – volume: 37 start-page: 937 issue: 4 year: 2001 end-page: 947 article-title: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling publication-title: Water Resources Research – year: 2007 – year: 2001 – volume: 54 year: 2018 article-title: The fast and the robust: Trade‐offs between optimization reliability, cost and efficiency in the calibration of hydrological models publication-title: Water Resources Research – start-page: 2513 year: 2007 end-page: 2519 – volume: 327 start-page: 564 issue: 3–4 year: 2006 end-page: 577 article-title: An advanced regularization methodology for use in watershed model calibration publication-title: Journal of Hydrology – volume: 76 start-page: 501 issue: 3 year: 1993 end-page: 521 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: Journal of Optimization Theory and Applications – year: 2016 – volume: 19 start-page: 1374 issue: 7 year: 2014 end-page: 1384 article-title: Comparison of stochastic optimization algorithms in hydrological model calibration publication-title: Journal of Hydrologic Engineering – volume: 54 year: 2018 article-title: A robust Gauss‐Newton algorithm for the optimization of hydrological models: From Gauss‐Newton to robust Gauss‐Newton publication-title: Water Resources Research – volume: 53 start-page: 2199 year: 2017 end-page: 2239 article-title: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors publication-title: Water Resources Research – volume: 29 start-page: 1185 issue: 4 year: 1993 end-page: 1194 article-title: Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento soil moisture accounting model publication-title: Water Resources Research – volume: 46 year: 2010 article-title: Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes publication-title: Water Resources Research – start-page: 2883 year: 2005 end-page: 2889 – volume: 10 start-page: 282 issue: 3 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models part I—A discussion of principles publication-title: Journal of Hydrology – start-page: 1 year: 2018 end-page: 42 – volume: 20 start-page: 169 issue: 2 year: 2017 end-page: 176 article-title: Comparison of Newton‐type and SCE optimisation algorithms for the calibration of conceptual hydrological models publication-title: Australasian Journal of Water Resources – year: 2006 – volume: 251 start-page: 727 issue: 3 year: 2016 end-page: 738 article-title: Global optimization using q‐gradients publication-title: European Journal of Operational Research – volume: 46 year: 2010 article-title: Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction publication-title: Water Resources Research – volume: 135 start-page: 371 issue: 1‐4 year: 1992 end-page: 381 article-title: The Xinanjiang model applied in China publication-title: Journal of Hydrology – volume: 13 start-page: 243 issue: 2 year: 2009 end-page: 259 article-title: Self‐adaptive multimethod search for global optimization in real‐parameter spaces publication-title: IEEE Transactions on Evolutionary Computation – year: 2017 – volume: 329 start-page: 122 issue: 1–2 year: 2006 end-page: 139 article-title: Efficient accommodation of local minima in watershed model calibration publication-title: Journal of Hydrology – volume: 43 year: 2007 article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration publication-title: Water Resources Research – volume: 44 year: 2008 article-title: Reply to comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Ali Behrangi et al publication-title: Water Resources Research – year: 2013 – ident: e_1_2_10_41_1 doi: 10.1016/0022-1694(92)90096-E – ident: e_1_2_10_18_1 doi: 10.1007/978-3-642-40457-3_25-1 – ident: e_1_2_10_30_1 – ident: e_1_2_10_32_1 doi: 10.1080/13241583.2017.1298180 – ident: e_1_2_10_33_1 – ident: e_1_2_10_16_1 doi: 10.1029/WR021i004p00473 – ident: e_1_2_10_19_1 doi: 10.1029/2009WR008896 – ident: e_1_2_10_37_1 doi: 10.1029/2008WR006862 – ident: e_1_2_10_12_1 doi: 10.1007/BF00939380 – ident: e_1_2_10_17_1 doi: 10.1111/gwat.12330 – ident: e_1_2_10_3_1 doi: 10.1029/2000WR900363 – volume-title: PEST: Model independent parameter estimation year: 2005 ident: e_1_2_10_10_1 – volume-title: Practical optimization year: 1981 ident: e_1_2_10_14_1 – volume-title: Numerical recipes: The art of scientific computing year: 2007 ident: e_1_2_10_29_1 – ident: e_1_2_10_40_1 doi: 10.1061/(ASCE)HE.1943-5584.0001095 – ident: e_1_2_10_27_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_10_24_1 doi: 10.1029/WR019i005p01163 – start-page: 2883 volume-title: Modsim 2005: International Congress on Modelling and Simulation year: 2005 ident: e_1_2_10_7_1 – ident: e_1_2_10_8_1 doi: 10.1029/2009WR008894 – volume-title: Handbook of applied hydrology year: 2016 ident: e_1_2_10_25_1 – ident: e_1_2_10_13_1 doi: 10.1029/91WR02985 – ident: e_1_2_10_36_1 doi: 10.1029/2005WR004723 – ident: e_1_2_10_15_1 doi: 10.1016/j.ejor.2016.01.001 – start-page: 2513 volume-title: Modsim 2007: International Congress on Modelling and Simulation year: 2007 ident: e_1_2_10_21_1 – ident: e_1_2_10_9_1 doi: 10.1111/j.1745-6584.2003.tb02580.x – ident: e_1_2_10_39_1 doi: 10.1109/TEVC.2008.924428 – ident: e_1_2_10_34_1 doi: 10.1016/j.jhydrol.2006.02.005 – volume-title: Nonlinear regression analysis and its applications year: 2007 ident: e_1_2_10_4_1 – ident: e_1_2_10_26_1 doi: 10.1002/2016WR019168 – ident: e_1_2_10_2_1 doi: 10.1061/(ASCE)HE.1943-5584.0000938 – ident: e_1_2_10_23_1 doi: 10.1007/978-1-4614-7551-4 – ident: e_1_2_10_20_1 doi: 10.1029/2006WR005195 – volume-title: Numerical optimization year: 2006 ident: e_1_2_10_28_1 – ident: e_1_2_10_5_1 doi: 10.1029/2007WR006429 – ident: e_1_2_10_6_1 – ident: e_1_2_10_35_1 doi: 10.1029/92WR02617 – ident: e_1_2_10_22_1 doi: 10.1029/2017WR022051 – volume: 54 year: 2018 ident: e_1_2_10_31_1 article-title: A robust Gauss‐Newton algorithm for the optimization of hydrological models: From Gauss‐Newton to robust Gauss‐Newton publication-title: Water Resources Research – ident: e_1_2_10_38_1 doi: 10.1029/2005WR003995 – ident: e_1_2_10_11_1 doi: 10.1016/j.jhydrol.2005.11.058 |
| SSID | ssj0014567 |
| Score | 2.4282172 |
| Snippet | Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9637 |
| SubjectTerms | Algorithms Benchmarks Best practice Case studies Catchments Communities Cost analysis Empirical analysis Environment models Environmental modeling Evolution Evolutionary algorithms evolutionary optimizer global optimization Hydrologic models Hydrology Mathematical models model calibration Modelling Optimization optimization efficiency parameter optimization Problem solving Reliability analysis robust Gauss‐Newton algorithm Robustness water Watersheds |
| Title | A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry‐Standard Algorithms |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2017WR022489 https://www.proquest.com/docview/2157704524 https://www.proquest.com/docview/2718362988 |
| Volume | 54 |
| WOSCitedRecordID | wos000453369400058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231214 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fj9MwDLe4OyR44T9icJyCBE9QsaVpk_A2DsYhoXEqnHZvVZqmt0nbipYNaW-IT8Bn5JNgd-luPICEeGsVN42a2P7Zrm2Ap2j5a5WmIupypyJh0yRSgjK5UtuzVVIJW4mm2YQcDtX5uT4NDjfKhdnUh9g63IgzGnlNDG4KH4oNUI1M1FxylJEKUnoPDiivCo2vgzfZ4OzDNo6A8EC2MWbCOuHXd5zh5e7zvyulS6S5i1cbhTO4-b9LvQU3AtRk_c3ZuA1X3PwOXGszkT1ehw7o4_Vd-N5nWV2s_JK9Myvvf377geIPcSHrTy_qxWQ5njGEtwzhIvuIUmYW0jdZXbGTdbloRSij3mpT_4q9xtM_npnGE8_6F2aCMJSFPiFrnP1TcGFczu_vwdng7efjkyj0Z4iMIM9qoq10XFepqHQpZWlUoRKTdNNSSxeTcBBlQqUhu1VSOG0JHqQFmq2KG9srbXwf9uf13D0AZo2QvBSxJQOP666JYyt5FaM950qRxB143m5QbkPxcuqhMc2bIDrX-e437sCzLfWXTdGOP9AdtnudB9b1OWIgKanQvOjAk-0wMh1FUszc1SukQY2Oml8r1YEXzc7_9T35KDvOeCx07-G_kT-C6zigNrmPh7C_XKzcY7hqvy4nfnEEe1ycHoUjj3ej98NfgJ4BIg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BmDRegG0gCht40nga0VrHiW3eyrTRaVuZyqbtLXIdZ63UNqhpkfo27RfwG_kl3KVOVx6GhHiLlLMT2b677-58dwC7aPlrFcciqHOnAmHjKFCCMrli27BZlAmbibLZhGy31fW1Pvd9TikXZl4fYuFwI84o5TUxODmkfbUBKpKJqktedUgHKf0YnghUTHSnj4vzRRgB0YGsQswEdfzNdxy_vzz6T510DzSX4Wqpb46e__efvoBnHmqy5vxsrMMjN9qAtSoTucBn3wG9N9uEuybr5N1pMWFfzLQoft3-RPGHuJA1Bzf5uD_pDRnCW4ZwkX1FKTP06Zssz1hrlo4rEcqot9qg-MQ-4-nvDU3piWfNG9NHGMp8n5AZzv7NuzDu5y9ewuXR4cVBK_D9GQIjyLMaaSsd11ksMp1KmRrVVZGJ6nGqpQtJOIg0otKQ9SzqOm0JHsRdNFsVN7aR2vAVrIzykXsNzBoheSpCSwYe13UThlbyLER7zqUiCmuwV-1QYn3xcuqhMUjKIDrXyfIa1-DDgvr7vGjHA3Rb1WYnnnWLBDGQlFRoXtRgZ_EamY4iKWbk8inSoEZHza-VqsHHcuv_-p3kqnPQ4aHQjTf_Rv4e1loXZ6fJ6XH75C08RSI1z4PcgpXJeOq2YdX-mPSL8bvy3P8GFQABkQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDQEvjL-isIGR4AkiWseObd7KRhkClaqAtrfI9Z-1UttMTYvUt2mfgM-4T8I5dbryABLiLVLOTpTz3f3uLncH8AI9fyWzjCVN6mTCTMYTyUIlV2ZaxnPPjGfVsAnR7cqTE9WLc05DLcyqP8Q64BYko9LXQcDdmfWx20BokommSxz3gw2S6hrsMC4qyaSst04jIDoQdYo5QJ345zuuf7O5-nebdAU0N-FqZW86u__9pnfgdoSapL06G3dhy03vwc26ErnE6zgBfbi8Dxdt0i8Gi3JOPuhFWV6e_0T1h7iQtMenxWw0H04IwluCcJF8QS0zieWbpPDkaGlntQolYbbauHxL3uHpH050FYkn7VM9QhhK4pyQJe7-NYYwrvYvH8D3zvtvB0dJnM-QaBYiq1wZ4ajyGfPKCmG1HEiueTOzSrg0KAdmeWgN2fR84JQJ8CAboNsqqTYta9KHsD0tpu4REKOZoJalJjh4VDV1mhpBfYr-nLOMpw14VXMoN7F5eZihMc6rJDpV-eY3bsDLNfXZqmnHH-j2ambnUXTLHDGQEKHRPGvA8_VtFLqQSdFTVyyQBi06Wn4lZQNeV6z_63Py4_5Bn6ZMtR7_G_kzuNE77OSfP3Y_PYFbSCNXZZB7sD2fLdw-XDc_5qNy9rQ69r8Am5sBDA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Gauss%E2%80%90Newton+Algorithm+for+the+Optimization+of+Hydrological+Models%3A+Benchmarking+Against+Industry%E2%80%90Standard+Algorithms&rft.jtitle=Water+resources+research&rft.au=Qin%2C+Youwei&rft.au=Kavetski%2C+Dmitri&rft.au=Kuczera%2C+George&rft.date=2018-11-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=54&rft.issue=11&rft.spage=9637&rft.epage=9654&rft_id=info:doi/10.1029%2F2017WR022489&rft.externalDBID=10.1029%252F2017WR022489&rft.externalDocID=WRCR23491 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |