Automatic Calibration of Groundwater Models With Bias Correction and Data Filtering: Working With Drawdown Data
The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawd...
Uloženo v:
| Vydáno v: | Water resources research Ročník 57; číslo 3 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
01.03.2021
|
| Témata: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawdowns are not measured directly but derived from measurements of head fluctuations. Resulting drawdowns may suffer persistent inaccuracies in complex systems with uncertain long‐acting external stresses, so that they are affected not only by errors in head measurements, but also in estimates of the natural head evolution. This hinders the use of drawdowns in groundwater models, and forces modelers to employ absolute heads and soft information. In this context, we present a method to filter systematic errors in drawdown data during the calibration of a groundwater model. To do this, we introduce a bias correction term in a composite inverse problem that combines a natural head model with a drawdown model. Since these two models share the same parameters, a two‐stage iterative optimization algorithm is developed to jointly estimate the bias, natural trends, and parameters. The method is illustrated by a synthetic example in a heterogeneous aquifer. The example shows that the method converges to the best conditional estimate even when absolute head data is strongly biased. In the same example, we demonstrate that the use of biased absolute head data in the traditional inverse problem can also provide good fittings but, in this case, the bias leads to an incorrect estimation of the transmissivity field.
Key Points
We estimates drawdowns caused by hydraulic testing to characterize a complex aquifer system
We employ a numerical groundwater model to calculate natural heads to de‐trend head measurements
We introduce a corrective factor to remove errors that arise in the modeling and measuring process |
|---|---|
| AbstractList | The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawdowns are not measured directly but derived from measurements of head fluctuations. Resulting drawdowns may suffer persistent inaccuracies in complex systems with uncertain long‐acting external stresses, so that they are affected not only by errors in head measurements, but also in estimates of the natural head evolution. This hinders the use of drawdowns in groundwater models, and forces modelers to employ absolute heads and soft information. In this context, we present a method to filter systematic errors in drawdown data during the calibration of a groundwater model. To do this, we introduce a bias correction term in a composite inverse problem that combines a natural head model with a drawdown model. Since these two models share the same parameters, a two‐stage iterative optimization algorithm is developed to jointly estimate the bias, natural trends, and parameters. The method is illustrated by a synthetic example in a heterogeneous aquifer. The example shows that the method converges to the best conditional estimate even when absolute head data is strongly biased. In the same example, we demonstrate that the use of biased absolute head data in the traditional inverse problem can also provide good fittings but, in this case, the bias leads to an incorrect estimation of the transmissivity field.
We estimates drawdowns caused by hydraulic testing to characterize a complex aquifer system We employ a numerical groundwater model to calculate natural heads to de‐trend head measurements We introduce a corrective factor to remove errors that arise in the modeling and measuring process The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawdowns are not measured directly but derived from measurements of head fluctuations. Resulting drawdowns may suffer persistent inaccuracies in complex systems with uncertain long‐acting external stresses, so that they are affected not only by errors in head measurements, but also in estimates of the natural head evolution. This hinders the use of drawdowns in groundwater models, and forces modelers to employ absolute heads and soft information. In this context, we present a method to filter systematic errors in drawdown data during the calibration of a groundwater model. To do this, we introduce a bias correction term in a composite inverse problem that combines a natural head model with a drawdown model. Since these two models share the same parameters, a two‐stage iterative optimization algorithm is developed to jointly estimate the bias, natural trends, and parameters. The method is illustrated by a synthetic example in a heterogeneous aquifer. The example shows that the method converges to the best conditional estimate even when absolute head data is strongly biased. In the same example, we demonstrate that the use of biased absolute head data in the traditional inverse problem can also provide good fittings but, in this case, the bias leads to an incorrect estimation of the transmissivity field. The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawdowns are not measured directly but derived from measurements of head fluctuations. Resulting drawdowns may suffer persistent inaccuracies in complex systems with uncertain long‐acting external stresses, so that they are affected not only by errors in head measurements, but also in estimates of the natural head evolution. This hinders the use of drawdowns in groundwater models, and forces modelers to employ absolute heads and soft information. In this context, we present a method to filter systematic errors in drawdown data during the calibration of a groundwater model. To do this, we introduce a bias correction term in a composite inverse problem that combines a natural head model with a drawdown model. Since these two models share the same parameters, a two‐stage iterative optimization algorithm is developed to jointly estimate the bias, natural trends, and parameters. The method is illustrated by a synthetic example in a heterogeneous aquifer. The example shows that the method converges to the best conditional estimate even when absolute head data is strongly biased. In the same example, we demonstrate that the use of biased absolute head data in the traditional inverse problem can also provide good fittings but, in this case, the bias leads to an incorrect estimation of the transmissivity field. Key Points We estimates drawdowns caused by hydraulic testing to characterize a complex aquifer system We employ a numerical groundwater model to calculate natural heads to de‐trend head measurements We introduce a corrective factor to remove errors that arise in the modeling and measuring process |
| Author | Trabucchi, Michela Fernàndez‐Garcia, Daniel Carrera, Jesús |
| Author_xml | – sequence: 1 givenname: Michela orcidid: 0000-0003-1198-8184 surname: Trabucchi fullname: Trabucchi, Michela email: trabucchi.michela@gmail.com organization: Universitat Politècnica de Catalunya (UPC) – sequence: 2 givenname: Daniel orcidid: 0000-0002-4667-3003 surname: Fernàndez‐Garcia fullname: Fernàndez‐Garcia, Daniel organization: Universitat Politècnica de Catalunya (UPC) – sequence: 3 givenname: Jesús orcidid: 0000-0002-8054-4352 surname: Carrera fullname: Carrera, Jesús organization: Institute of Environmental Assessment and Water Research (IDAEA), CSIC |
| BookMark | eNp90EFLwzAUB_AgE9zUmx8g4MWD1ZekbRpvWt0UJsJQdixpmmpml2jSMvbtrZsHGegp7_D7vxf-IzSwzmqETghcEKDikgKF-QxoBoLvoSERcRxxwdkADQFiFhEm-AEahbAAIHGS8iFy113rlrI1CueyMaXvR2exq_HEu85WK9lqjx9dpZuA56Z9wzdGBpw777XaUGkrfCtbicem6a2xr1d47vx7P2wDt16uKreyG3WE9mvZBH388x6il_Hdc34fTZ8mD_n1NJIxEBLROtZZqsqYayCKgpZSEcYqThgv41RlvAShUq4VU2lNucqYSipaa1lnJUsZO0Rn270f3n12OrTF0gSlm0Za7bpQUE4yxkGwrKenO3ThOm_73xU0AUFTmgjo1flWKe9C8LouPrxZSr8uCBTf7Re_2-853eHKtJtuWy9N81eIbUMr0-j1vweK-Syf0YSkhH0B_wqYBw |
| CitedBy_id | crossref_primary_10_1029_2022WR033241 crossref_primary_10_1029_2021WR030676 crossref_primary_10_1038_s41598_024_67752_w crossref_primary_10_1007_s10064_024_03778_8 crossref_primary_10_1061__ASCE_WR_1943_5452_0001493 |
| Cites_doi | 10.3133/sir20065024 10.1002/2014WR016371 10.1111/j.1745‐6584.2006.00249.x 10.3133/tm4F4 10.1007/s10040‐013‐0969‐0 10.1002/0470848944.hsa154a 10.1029/WR022i002p00199 10.1029/1998WR900047 10.3133/pp1863 10.1002/hyp.9637 10.2118/102079‐PA 10.5194/hess‐23‐3603‐2019 10.1111/j.1745‐6584.2000.tb00208.x 10.3133/ofr91484 10.1111/j.1745‐6584.2005.0003.x 10.1029/2011WR011044 10.1016/j.advwatres.2005.12.009 10.1016/S0022‐1694(97)00098‐X 10.1017/CBO9781139150019 10.1007/978-3-319-32137-0 10.1520/STP23407S 10.1029/2018WR022684 10.1007/s11269‐015‐1177‐6 10.1111/gwat.12042 10.1111/j.1745‐6584.2007.00356.x |
| ContentType | Journal Article |
| Copyright | 2021. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2021. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2020WR028097 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2020WR028097 WRCR25161 |
| Genre | article |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAYXX AFFHD AIQQE CITATION PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a4011-2f4e86cb47e01c20eaac133d7137b46c87b09c67ec3c6f27c83c5d2feaf8b3633 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000635680800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:28:03 EDT 2025 Thu Nov 20 01:17:08 EST 2025 Sat Nov 29 07:49:33 EST 2025 Tue Nov 18 21:54:56 EST 2025 Sun Jul 06 04:45:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4011-2f4e86cb47e01c20eaac133d7137b46c87b09c67ec3c6f27c83c5d2feaf8b3633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1198-8184 0000-0002-8054-4352 0000-0002-4667-3003 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020WR028097 |
| PQID | 2509262590 |
| PQPubID | 105507 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2718370938 proquest_journals_2509262590 crossref_primary_10_1029_2020WR028097 crossref_citationtrail_10_1029_2020WR028097 wiley_primary_10_1029_2020WR028097_WRCR25161 |
| PublicationCentury | 2000 |
| PublicationDate | March 2021 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2012 2013; 21 2015; 51 2009 2016; 30 2005; 43 2006 2005 2008; 11 1992 1991 2014; 28 1979 1990; 1053 1997; 203 2000; 38 1986; 22 2020 2013; 51 2019; 23 2006; 29 1962 2016 2012; 48 1997; 506 2018; 54 2007; 45 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_12_1 Ferris J. (e_1_2_9_10_1) 1962 Sweet H. R. (e_1_2_9_29_1) 1990 e_1_2_9_15_1 e_1_2_9_14_1 Domenico P. A. (e_1_2_9_9_1) 1997 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 Kruseman G. (e_1_2_9_20_1) 1991 Del Val L. (e_1_2_9_7_1) 2020 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 Medina A. (e_1_2_9_22_1) 2005 e_1_2_9_27_1 |
| References_xml | – volume: 48 issue: 8 year: 2012 article-title: Toward a comprehensive assessment of model structural adequacy publication-title: Water Resources Research – volume: 506 year: 1997 – year: 2009 – volume: 1053 start-page: 178 year: 1990 end-page: 192 – year: 1962 publication-title: Theory of aquifer tests: US geological survey water‐supply – volume: 21 start-page: 737 issue: 4 year: 2013 end-page: 750 article-title: Hydraulic head measurements—new technologies, classic pitfalls publication-title: Hydrogeology Journal – volume: 38 start-page: 114 issue: 1 year: 2000 end-page: 120 article-title: The effect of measurement error on estimating the hydraulic gradient in three dimensions publication-title: Ground Water – volume: 45 start-page: 62 issue: 1 year: 2007 end-page: 73 article-title: Effects of measurement error on horizontal hydraulic gradient estimates publication-title: Ground Water – start-page: 248 year: 2005 – start-page: 47 year: 1991 – volume: 11 start-page: 41 issue: 01 year: 2008 end-page: 62 article-title: From straight lines to deconvolution: The evolution of the state of the art in well test analysis publication-title: SPE Reservoir Evaluation and Engineering – year: 1979 – year: 2016 – year: 1992 – year: 2012 – volume: 51 start-page: 2188 issue: 4 year: 2015 end-page: 2210 article-title: Spin‐up behavior and effects of initial conditions for an integrated hydrologic model publication-title: Water Resources Research – volume: 45 start-page: 711 issue: 6 year: 2007 end-page: 722 article-title: Inverse modeling of coastal aquifers using tidal response and hydraulic tests publication-title: Ground Water – volume: 30 start-page: 559 issue: 2 year: 2016 end-page: 575 article-title: Evaluation of analytical methods to study aquifer properties with pumping tests in coastal aquifers with numerical modeling (Motril‐Salobreña aquifer) publication-title: Water Resources Management – volume: 23 start-page: 3603 issue: 9 year: 2019 end-page: 3629 article-title: Error in hydraulic head and gradient time‐series measurements: A quantitative appraisal publication-title: Hydrology and Earth System Sciences – volume: 29 start-page: 1678 issue: 11 year: 2006 end-page: 1689 article-title: Pilot points method incorporating prior information for solving the groundwater flow inverse problem publication-title: Advances in Water Resources – volume: 28 start-page: 753 issue: 3 year: 2014 end-page: 763 article-title: Detrending methods for fluctuation analysis in hydrology: Amendments and comparisons of methodologies publication-title: Hydrological Processes – volume: 51 start-page: 322 issue: 3 year: 2013 end-page: 332 article-title: Detecting drawdowns masked by environmental stresses with water‐level models publication-title: Ground Water – year: 2006 – year: 2020 – volume: 43 start-page: 231 issue: 2 year: 2005 end-page: 241 article-title: A neural network model for predicting aquifer water level elevations publication-title: Ground Water – volume: 203 start-page: 162 issue: 1 year: 1997 end-page: 174 article-title: Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—i. Theory publication-title: Journal of Hydrology – volume: 22 start-page: 199 issue: 2 year: 1986 end-page: 210 article-title: Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information publication-title: Water Resources Research – volume: 54 start-page: 6393 issue: 9 year: 2018 end-page: 6407 article-title: Generalizing Agarwal's method for the interpretation of recovery tests under non‐ideal conditions publication-title: Water Resources Research – ident: e_1_2_9_17_1 doi: 10.3133/sir20065024 – ident: e_1_2_9_27_1 doi: 10.1002/2014WR016371 – volume-title: Physical and Chemical Hydrogeology, 2nd Edition year: 1997 ident: e_1_2_9_9_1 – ident: e_1_2_9_8_1 doi: 10.1111/j.1745‐6584.2006.00249.x – ident: e_1_2_9_16_1 doi: 10.3133/tm4F4 – ident: e_1_2_9_23_1 doi: 10.1007/s10040‐013‐0969‐0 – ident: e_1_2_9_26_1 doi: 10.1002/0470848944.hsa154a – ident: e_1_2_9_5_1 doi: 10.1029/WR022i002p00199 – ident: e_1_2_9_11_1 doi: 10.1029/1998WR900047 – ident: e_1_2_9_18_1 doi: 10.3133/pp1863 – start-page: 248 volume-title: Transin IV. Fortran code for solving the coupled flow and transport inverse problem year: 2005 ident: e_1_2_9_22_1 – ident: e_1_2_9_31_1 doi: 10.1002/hyp.9637 – ident: e_1_2_9_14_1 doi: 10.2118/102079‐PA – ident: e_1_2_9_24_1 doi: 10.5194/hess‐23‐3603‐2019 – ident: e_1_2_9_28_1 doi: 10.1111/j.1745‐6584.2000.tb00208.x – year: 1962 ident: e_1_2_9_10_1 publication-title: Theory of aquifer tests: US geological survey water‐supply – ident: e_1_2_9_19_1 doi: 10.3133/ofr91484 – ident: e_1_2_9_6_1 doi: 10.1111/j.1745‐6584.2005.0003.x – ident: e_1_2_9_15_1 doi: 10.1029/2011WR011044 – ident: e_1_2_9_2_1 doi: 10.1016/j.advwatres.2005.12.009 – ident: e_1_2_9_13_1 doi: 10.1016/S0022‐1694(97)00098‐X – ident: e_1_2_9_25_1 doi: 10.1017/CBO9781139150019 – volume-title: Advancing in the characterization of coastal aquifers. A multimethodological approach based on fiber optics distributed temperature sensing. [PhD Thesis] year: 2020 ident: e_1_2_9_7_1 – ident: e_1_2_9_21_1 doi: 10.1007/978-3-319-32137-0 – start-page: 178 volume-title: Water level monitoring‐achievable accuracy and precision. Ground water and vadose zone monitoring year: 1990 ident: e_1_2_9_29_1 doi: 10.1520/STP23407S – ident: e_1_2_9_30_1 doi: 10.1029/2018WR022684 – ident: e_1_2_9_4_1 doi: 10.1007/s11269‐015‐1177‐6 – ident: e_1_2_9_12_1 doi: 10.1111/gwat.12042 – start-page: 47 volume-title: Analysis and evaluation of pumping test data year: 1991 ident: e_1_2_9_20_1 – ident: e_1_2_9_3_1 doi: 10.1111/j.1745‐6584.2007.00356.x |
| SSID | ssj0014567 |
| Score | 2.3723762 |
| Snippet | The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Aquifers Bias Calibration complex aquifer systems Complex systems Data data filtering Drawdown Errors evolution Groundwater groundwater modeling Groundwater models head head measurements hydrologic models Initial conditions inverse problem Inverse problems Iterative methods Mathematical models Modelling Optimization Parameters Systematic errors Transmissivity |
| Title | Automatic Calibration of Groundwater Models With Bias Correction and Data Filtering: Working With Drawdown Data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020WR028097 https://www.proquest.com/docview/2509262590 https://www.proquest.com/docview/2718370938 |
| Volume | 57 |
| WOSCitedRecordID | wos000635680800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231214 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5BmTReGIwhOjpkJHjaIpLYieO9sZYKJFShClTeIttx1EooQU0K4t_Pl7hd97BJiLdIOSeR7ct9d-f7DuA0zgNklZJeJAXzWGRiT0hFvSDkVi-FCrRum03w0Sh5eBC3LuCGtTAtP8Qq4Iaa0fyvUcGlqhzZAHJkWq_dn4wxMyj4JmxhXZV1vrYG4-H9zSqPYOEBX-aYEeu4o-_2Cefr4_82Sn-Q5jpebQzO8NN7P3UXdhzUJBft3tiDDVN8ho_LSuTKXrsO6NPXfSgvFnXZ0LcSLNdS7cYgZU4wOlVkLxaTzgl2TnusyGRWT8mvmaxIH5t7NKURRBYZGchakuEMM_DWJP4kLhTfDhjM5Utmnf5G6gvcDy_v-leea8bgSYZh1DBnJom1Ytz4gQ59I6W2_m1mnVyuWKwTrnyhY2401XEecp1QHWVhbmSeKBpTegCdoizMIZBMZYoFgkVacqaTXJiIU6zZjWQQJcp04ftyNVLtmMqxYcZj2mTMQ5GuT2gXzlbSTy1Dxz_kesuFTZ2eVqkFgEiYGAm_Cyer21bDMG0iC1MurIw135T7giZd-NEs83_fk07G_bFFjXHw9W3iR7Ad4oGZ5oBbDzr1fGG-wQf9XM-q-bHb2cewObke_QbYqve3 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BhzRe-J5W2MBI8ATRktjxB29bSzVEqVC1qXuLbMfRKk0JalIm_nt8iVvKA0iIt0g5J5Hty_3uzvc7gDe8TJBVSkeZViximeOR0oZGSSq8XiqTWNs3mxCzmby6Ul9Dn1Oshen5IbYBN9SM7n-NCo4B6cA2gCSZ3m2PF3NMDSpxF_YYp0IOYG88n1xOt4kEjw_EJsmMYCecffdPONkd_7tV-gU1dwFrZ3EmD__7Wx_BgwA2yWm_Ox7DHVc9gf1NLXLjr0MP9OsfT6E-Xbd1R-BKsGDL9FuD1CXB-FRV3HpUuiLYO-2mIYtle03OlrohI2zv0RVHEF0VZKxbTSZLzMF7o_iBhGB8P2C80reFd_s7qWdwOfl4MTqPQjuGSDMMpKYlc5Jbw4SLE5vGTmvrPdzCu7nCMG6lMLGyXDhLLS9TYSW1WZGWTpfSUE7pAQyqunKHQApTGJYollktmJWlcpmgWLWb6SSTxg3h3WY5chu4yrFlxk3e5cxTle9O6BDebqW_9Rwdf5A72qxsHjS1yT0ERMrETMVDeL297XUMEye6cvXay3gDTkWsqBzC-26d__qefDEfzT1u5MnzfxN_BfvnF1-m-fTT7PMLuJ_i8ZnuuNsRDNrV2h3DPfu9XTarl2Gb_wTii_qY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BmGAvg_GhlQ3wpPEEEUnsxPHeSktFBaqqCtS-RbbjaJWmZGrSTfvv8TluVx5AQrxFylmJYl_ud1-_AzhPywhZpWSQSMEClpg0EFLRIIq51UuhIq27YRN8MskWCzH1c06xF6bjh9gG3FAz3P8aFdxcF6VnG0CSTOu2h_MZpgYFfwiPmIXiWNM1H0-2aQSLDvgmxYxQx1e-2_Wfdlf_bpPugeYuXHX2ZvT0v9_0GRx6qEn63dk4ggemeg5PNp3Ijb32E9Av715A3V-3taNvJdiupbqDQeqSYHSqKm4tJl0RnJx21ZD5sr0kn5eyIQMc7uFaI4isCjKUrSSjJWbgrUm8ID4U3y0YruRtYZ1-J_USfo6-_Bh8DfwwhkAyDKPGJTNZqhXjJox0HBoptfVvC-vkcsVSnXEVCp1yo6lOy5jrjOqkiEsjy0zRlNJXsFfVlTkGUqhCsUiwREvOdFYKk3CKPbuJjJJMmR582GxHrj1TOQ7MuMpdxjwW-e4H7cH7rfR1x9DxB7nTzc7mXk-b3AJAJExMRNiDs-1tq2GYNpGVqddWxppvykNBsx58dPv81-fk89lgZlFjGr3-N_F38Hg6HOXfx5NvJ3AQY-2Mq3U7hb12tTZvYF_ftMtm9dad8V-Nj_ju |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Calibration+of+Groundwater+Models+With+Bias+Correction+and+Data+Filtering%3A+Working+With+Drawdown+Data&rft.jtitle=Water+resources+research&rft.au=Trabucchi%2C+Michela&rft.au=Fern%C3%A0ndez%E2%80%90Garcia%2C+Daniel&rft.au=Carrera%2C+Jes%C3%BAs&rft.date=2021-03-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=57&rft.issue=3&rft_id=info:doi/10.1029%2F2020WR028097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2020WR028097 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |