Automatic Calibration of Groundwater Models With Bias Correction and Data Filtering: Working With Drawdown Data

The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawd...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water resources research Ročník 57; číslo 3
Hlavní autoři: Trabucchi, Michela, Fernàndez‐Garcia, Daniel, Carrera, Jesús
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 01.03.2021
Témata:
ISSN:0043-1397, 1944-7973
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawdowns are not measured directly but derived from measurements of head fluctuations. Resulting drawdowns may suffer persistent inaccuracies in complex systems with uncertain long‐acting external stresses, so that they are affected not only by errors in head measurements, but also in estimates of the natural head evolution. This hinders the use of drawdowns in groundwater models, and forces modelers to employ absolute heads and soft information. In this context, we present a method to filter systematic errors in drawdown data during the calibration of a groundwater model. To do this, we introduce a bias correction term in a composite inverse problem that combines a natural head model with a drawdown model. Since these two models share the same parameters, a two‐stage iterative optimization algorithm is developed to jointly estimate the bias, natural trends, and parameters. The method is illustrated by a synthetic example in a heterogeneous aquifer. The example shows that the method converges to the best conditional estimate even when absolute head data is strongly biased. In the same example, we demonstrate that the use of biased absolute head data in the traditional inverse problem can also provide good fittings but, in this case, the bias leads to an incorrect estimation of the transmissivity field. Key Points We estimates drawdowns caused by hydraulic testing to characterize a complex aquifer system We employ a numerical groundwater model to calculate natural heads to de‐trend head measurements We introduce a corrective factor to remove errors that arise in the modeling and measuring process
AbstractList The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawdowns are not measured directly but derived from measurements of head fluctuations. Resulting drawdowns may suffer persistent inaccuracies in complex systems with uncertain long‐acting external stresses, so that they are affected not only by errors in head measurements, but also in estimates of the natural head evolution. This hinders the use of drawdowns in groundwater models, and forces modelers to employ absolute heads and soft information. In this context, we present a method to filter systematic errors in drawdown data during the calibration of a groundwater model. To do this, we introduce a bias correction term in a composite inverse problem that combines a natural head model with a drawdown model. Since these two models share the same parameters, a two‐stage iterative optimization algorithm is developed to jointly estimate the bias, natural trends, and parameters. The method is illustrated by a synthetic example in a heterogeneous aquifer. The example shows that the method converges to the best conditional estimate even when absolute head data is strongly biased. In the same example, we demonstrate that the use of biased absolute head data in the traditional inverse problem can also provide good fittings but, in this case, the bias leads to an incorrect estimation of the transmissivity field. We estimates drawdowns caused by hydraulic testing to characterize a complex aquifer system We employ a numerical groundwater model to calculate natural heads to de‐trend head measurements We introduce a corrective factor to remove errors that arise in the modeling and measuring process
The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawdowns are not measured directly but derived from measurements of head fluctuations. Resulting drawdowns may suffer persistent inaccuracies in complex systems with uncertain long‐acting external stresses, so that they are affected not only by errors in head measurements, but also in estimates of the natural head evolution. This hinders the use of drawdowns in groundwater models, and forces modelers to employ absolute heads and soft information. In this context, we present a method to filter systematic errors in drawdown data during the calibration of a groundwater model. To do this, we introduce a bias correction term in a composite inverse problem that combines a natural head model with a drawdown model. Since these two models share the same parameters, a two‐stage iterative optimization algorithm is developed to jointly estimate the bias, natural trends, and parameters. The method is illustrated by a synthetic example in a heterogeneous aquifer. The example shows that the method converges to the best conditional estimate even when absolute head data is strongly biased. In the same example, we demonstrate that the use of biased absolute head data in the traditional inverse problem can also provide good fittings but, in this case, the bias leads to an incorrect estimation of the transmissivity field.
The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads because they are subject to homogeneous (zero) internal sink/sources, and boundary and initial conditions. The problem lies on the fact that drawdowns are not measured directly but derived from measurements of head fluctuations. Resulting drawdowns may suffer persistent inaccuracies in complex systems with uncertain long‐acting external stresses, so that they are affected not only by errors in head measurements, but also in estimates of the natural head evolution. This hinders the use of drawdowns in groundwater models, and forces modelers to employ absolute heads and soft information. In this context, we present a method to filter systematic errors in drawdown data during the calibration of a groundwater model. To do this, we introduce a bias correction term in a composite inverse problem that combines a natural head model with a drawdown model. Since these two models share the same parameters, a two‐stage iterative optimization algorithm is developed to jointly estimate the bias, natural trends, and parameters. The method is illustrated by a synthetic example in a heterogeneous aquifer. The example shows that the method converges to the best conditional estimate even when absolute head data is strongly biased. In the same example, we demonstrate that the use of biased absolute head data in the traditional inverse problem can also provide good fittings but, in this case, the bias leads to an incorrect estimation of the transmissivity field. Key Points We estimates drawdowns caused by hydraulic testing to characterize a complex aquifer system We employ a numerical groundwater model to calculate natural heads to de‐trend head measurements We introduce a corrective factor to remove errors that arise in the modeling and measuring process
Author Trabucchi, Michela
Fernàndez‐Garcia, Daniel
Carrera, Jesús
Author_xml – sequence: 1
  givenname: Michela
  orcidid: 0000-0003-1198-8184
  surname: Trabucchi
  fullname: Trabucchi, Michela
  email: trabucchi.michela@gmail.com
  organization: Universitat Politècnica de Catalunya (UPC)
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0002-4667-3003
  surname: Fernàndez‐Garcia
  fullname: Fernàndez‐Garcia, Daniel
  organization: Universitat Politècnica de Catalunya (UPC)
– sequence: 3
  givenname: Jesús
  orcidid: 0000-0002-8054-4352
  surname: Carrera
  fullname: Carrera, Jesús
  organization: Institute of Environmental Assessment and Water Research (IDAEA), CSIC
BookMark eNp90EFLwzAUB_AgE9zUmx8g4MWD1ZekbRpvWt0UJsJQdixpmmpml2jSMvbtrZsHGegp7_D7vxf-IzSwzmqETghcEKDikgKF-QxoBoLvoSERcRxxwdkADQFiFhEm-AEahbAAIHGS8iFy113rlrI1CueyMaXvR2exq_HEu85WK9lqjx9dpZuA56Z9wzdGBpw777XaUGkrfCtbicem6a2xr1d47vx7P2wDt16uKreyG3WE9mvZBH388x6il_Hdc34fTZ8mD_n1NJIxEBLROtZZqsqYayCKgpZSEcYqThgv41RlvAShUq4VU2lNucqYSipaa1lnJUsZO0Rn270f3n12OrTF0gSlm0Za7bpQUE4yxkGwrKenO3ThOm_73xU0AUFTmgjo1flWKe9C8LouPrxZSr8uCBTf7Re_2-853eHKtJtuWy9N81eIbUMr0-j1vweK-Syf0YSkhH0B_wqYBw
CitedBy_id crossref_primary_10_1029_2022WR033241
crossref_primary_10_1029_2021WR030676
crossref_primary_10_1038_s41598_024_67752_w
crossref_primary_10_1007_s10064_024_03778_8
crossref_primary_10_1061__ASCE_WR_1943_5452_0001493
Cites_doi 10.3133/sir20065024
10.1002/2014WR016371
10.1111/j.1745‐6584.2006.00249.x
10.3133/tm4F4
10.1007/s10040‐013‐0969‐0
10.1002/0470848944.hsa154a
10.1029/WR022i002p00199
10.1029/1998WR900047
10.3133/pp1863
10.1002/hyp.9637
10.2118/102079‐PA
10.5194/hess‐23‐3603‐2019
10.1111/j.1745‐6584.2000.tb00208.x
10.3133/ofr91484
10.1111/j.1745‐6584.2005.0003.x
10.1029/2011WR011044
10.1016/j.advwatres.2005.12.009
10.1016/S0022‐1694(97)00098‐X
10.1017/CBO9781139150019
10.1007/978-3-319-32137-0
10.1520/STP23407S
10.1029/2018WR022684
10.1007/s11269‐015‐1177‐6
10.1111/gwat.12042
10.1111/j.1745‐6584.2007.00356.x
ContentType Journal Article
Copyright 2021. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2021. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2020WR028097
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2020WR028097
WRCR25161
Genre article
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
AFFHD
AIQQE
CITATION
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4011-2f4e86cb47e01c20eaac133d7137b46c87b09c67ec3c6f27c83c5d2feaf8b3633
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000635680800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:28:03 EDT 2025
Thu Nov 20 01:17:08 EST 2025
Sat Nov 29 07:49:33 EST 2025
Tue Nov 18 21:54:56 EST 2025
Sun Jul 06 04:45:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4011-2f4e86cb47e01c20eaac133d7137b46c87b09c67ec3c6f27c83c5d2feaf8b3633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1198-8184
0000-0002-8054-4352
0000-0002-4667-3003
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020WR028097
PQID 2509262590
PQPubID 105507
PageCount 1
ParticipantIDs proquest_miscellaneous_2718370938
proquest_journals_2509262590
crossref_primary_10_1029_2020WR028097
crossref_citationtrail_10_1029_2020WR028097
wiley_primary_10_1029_2020WR028097_WRCR25161
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012
2013; 21
2015; 51
2009
2016; 30
2005; 43
2006
2005
2008; 11
1992
1991
2014; 28
1979
1990; 1053
1997; 203
2000; 38
1986; 22
2020
2013; 51
2019; 23
2006; 29
1962
2016
2012; 48
1997; 506
2018; 54
2007; 45
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_12_1
Ferris J. (e_1_2_9_10_1) 1962
Sweet H. R. (e_1_2_9_29_1) 1990
e_1_2_9_15_1
e_1_2_9_14_1
Domenico P. A. (e_1_2_9_9_1) 1997
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Kruseman G. (e_1_2_9_20_1) 1991
Del Val L. (e_1_2_9_7_1) 2020
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
Medina A. (e_1_2_9_22_1) 2005
e_1_2_9_27_1
References_xml – volume: 48
  issue: 8
  year: 2012
  article-title: Toward a comprehensive assessment of model structural adequacy
  publication-title: Water Resources Research
– volume: 506
  year: 1997
– year: 2009
– volume: 1053
  start-page: 178
  year: 1990
  end-page: 192
– year: 1962
  publication-title: Theory of aquifer tests: US geological survey water‐supply
– volume: 21
  start-page: 737
  issue: 4
  year: 2013
  end-page: 750
  article-title: Hydraulic head measurements—new technologies, classic pitfalls
  publication-title: Hydrogeology Journal
– volume: 38
  start-page: 114
  issue: 1
  year: 2000
  end-page: 120
  article-title: The effect of measurement error on estimating the hydraulic gradient in three dimensions
  publication-title: Ground Water
– volume: 45
  start-page: 62
  issue: 1
  year: 2007
  end-page: 73
  article-title: Effects of measurement error on horizontal hydraulic gradient estimates
  publication-title: Ground Water
– start-page: 248
  year: 2005
– start-page: 47
  year: 1991
– volume: 11
  start-page: 41
  issue: 01
  year: 2008
  end-page: 62
  article-title: From straight lines to deconvolution: The evolution of the state of the art in well test analysis
  publication-title: SPE Reservoir Evaluation and Engineering
– year: 1979
– year: 2016
– year: 1992
– year: 2012
– volume: 51
  start-page: 2188
  issue: 4
  year: 2015
  end-page: 2210
  article-title: Spin‐up behavior and effects of initial conditions for an integrated hydrologic model
  publication-title: Water Resources Research
– volume: 45
  start-page: 711
  issue: 6
  year: 2007
  end-page: 722
  article-title: Inverse modeling of coastal aquifers using tidal response and hydraulic tests
  publication-title: Ground Water
– volume: 30
  start-page: 559
  issue: 2
  year: 2016
  end-page: 575
  article-title: Evaluation of analytical methods to study aquifer properties with pumping tests in coastal aquifers with numerical modeling (Motril‐Salobreña aquifer)
  publication-title: Water Resources Management
– volume: 23
  start-page: 3603
  issue: 9
  year: 2019
  end-page: 3629
  article-title: Error in hydraulic head and gradient time‐series measurements: A quantitative appraisal
  publication-title: Hydrology and Earth System Sciences
– volume: 29
  start-page: 1678
  issue: 11
  year: 2006
  end-page: 1689
  article-title: Pilot points method incorporating prior information for solving the groundwater flow inverse problem
  publication-title: Advances in Water Resources
– volume: 28
  start-page: 753
  issue: 3
  year: 2014
  end-page: 763
  article-title: Detrending methods for fluctuation analysis in hydrology: Amendments and comparisons of methodologies
  publication-title: Hydrological Processes
– volume: 51
  start-page: 322
  issue: 3
  year: 2013
  end-page: 332
  article-title: Detecting drawdowns masked by environmental stresses with water‐level models
  publication-title: Ground Water
– year: 2006
– year: 2020
– volume: 43
  start-page: 231
  issue: 2
  year: 2005
  end-page: 241
  article-title: A neural network model for predicting aquifer water level elevations
  publication-title: Ground Water
– volume: 203
  start-page: 162
  issue: 1
  year: 1997
  end-page: 174
  article-title: Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—i. Theory
  publication-title: Journal of Hydrology
– volume: 22
  start-page: 199
  issue: 2
  year: 1986
  end-page: 210
  article-title: Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information
  publication-title: Water Resources Research
– volume: 54
  start-page: 6393
  issue: 9
  year: 2018
  end-page: 6407
  article-title: Generalizing Agarwal's method for the interpretation of recovery tests under non‐ideal conditions
  publication-title: Water Resources Research
– ident: e_1_2_9_17_1
  doi: 10.3133/sir20065024
– ident: e_1_2_9_27_1
  doi: 10.1002/2014WR016371
– volume-title: Physical and Chemical Hydrogeology, 2nd Edition
  year: 1997
  ident: e_1_2_9_9_1
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1745‐6584.2006.00249.x
– ident: e_1_2_9_16_1
  doi: 10.3133/tm4F4
– ident: e_1_2_9_23_1
  doi: 10.1007/s10040‐013‐0969‐0
– ident: e_1_2_9_26_1
  doi: 10.1002/0470848944.hsa154a
– ident: e_1_2_9_5_1
  doi: 10.1029/WR022i002p00199
– ident: e_1_2_9_11_1
  doi: 10.1029/1998WR900047
– ident: e_1_2_9_18_1
  doi: 10.3133/pp1863
– start-page: 248
  volume-title: Transin IV. Fortran code for solving the coupled flow and transport inverse problem
  year: 2005
  ident: e_1_2_9_22_1
– ident: e_1_2_9_31_1
  doi: 10.1002/hyp.9637
– ident: e_1_2_9_14_1
  doi: 10.2118/102079‐PA
– ident: e_1_2_9_24_1
  doi: 10.5194/hess‐23‐3603‐2019
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1745‐6584.2000.tb00208.x
– year: 1962
  ident: e_1_2_9_10_1
  publication-title: Theory of aquifer tests: US geological survey water‐supply
– ident: e_1_2_9_19_1
  doi: 10.3133/ofr91484
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1745‐6584.2005.0003.x
– ident: e_1_2_9_15_1
  doi: 10.1029/2011WR011044
– ident: e_1_2_9_2_1
  doi: 10.1016/j.advwatres.2005.12.009
– ident: e_1_2_9_13_1
  doi: 10.1016/S0022‐1694(97)00098‐X
– ident: e_1_2_9_25_1
  doi: 10.1017/CBO9781139150019
– volume-title: Advancing in the characterization of coastal aquifers. A multimethodological approach based on fiber optics distributed temperature sensing. [PhD Thesis]
  year: 2020
  ident: e_1_2_9_7_1
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-319-32137-0
– start-page: 178
  volume-title: Water level monitoring‐achievable accuracy and precision. Ground water and vadose zone monitoring
  year: 1990
  ident: e_1_2_9_29_1
  doi: 10.1520/STP23407S
– ident: e_1_2_9_30_1
  doi: 10.1029/2018WR022684
– ident: e_1_2_9_4_1
  doi: 10.1007/s11269‐015‐1177‐6
– ident: e_1_2_9_12_1
  doi: 10.1111/gwat.12042
– start-page: 47
  volume-title: Analysis and evaluation of pumping test data
  year: 1991
  ident: e_1_2_9_20_1
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1745‐6584.2007.00356.x
SSID ssj0014567
Score 2.3723762
Snippet The drawdown response to a hydraulic stress contains crucial information to characterize an aquifer. Modeling drawdowns is far easier than modeling heads...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Aquifers
Bias
Calibration
complex aquifer systems
Complex systems
Data
data filtering
Drawdown
Errors
evolution
Groundwater
groundwater modeling
Groundwater models
head
head measurements
hydrologic models
Initial conditions
inverse problem
Inverse problems
Iterative methods
Mathematical models
Modelling
Optimization
Parameters
Systematic errors
Transmissivity
Title Automatic Calibration of Groundwater Models With Bias Correction and Data Filtering: Working With Drawdown Data
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020WR028097
https://www.proquest.com/docview/2509262590
https://www.proquest.com/docview/2718370938
Volume 57
WOSCitedRecordID wos000635680800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231214
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5BmTReGIwhOjpkJHjaIpLYieO9sZYKJFShClTeIttx1EooQU0K4t_Pl7hd97BJiLdIOSeR7ct9d-f7DuA0zgNklZJeJAXzWGRiT0hFvSDkVi-FCrRum03w0Sh5eBC3LuCGtTAtP8Qq4Iaa0fyvUcGlqhzZAHJkWq_dn4wxMyj4JmxhXZV1vrYG4-H9zSqPYOEBX-aYEeu4o-_2Cefr4_82Sn-Q5jpebQzO8NN7P3UXdhzUJBft3tiDDVN8ho_LSuTKXrsO6NPXfSgvFnXZ0LcSLNdS7cYgZU4wOlVkLxaTzgl2TnusyGRWT8mvmaxIH5t7NKURRBYZGchakuEMM_DWJP4kLhTfDhjM5Utmnf5G6gvcDy_v-leea8bgSYZh1DBnJom1Ytz4gQ59I6W2_m1mnVyuWKwTrnyhY2401XEecp1QHWVhbmSeKBpTegCdoizMIZBMZYoFgkVacqaTXJiIU6zZjWQQJcp04ftyNVLtmMqxYcZj2mTMQ5GuT2gXzlbSTy1Dxz_kesuFTZ2eVqkFgEiYGAm_Cyer21bDMG0iC1MurIw135T7giZd-NEs83_fk07G_bFFjXHw9W3iR7Ad4oGZ5oBbDzr1fGG-wQf9XM-q-bHb2cewObke_QbYqve3
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BhzRe-J5W2MBI8ATRktjxB29bSzVEqVC1qXuLbMfRKk0JalIm_nt8iVvKA0iIt0g5J5Hty_3uzvc7gDe8TJBVSkeZViximeOR0oZGSSq8XiqTWNs3mxCzmby6Ul9Dn1Oshen5IbYBN9SM7n-NCo4B6cA2gCSZ3m2PF3NMDSpxF_YYp0IOYG88n1xOt4kEjw_EJsmMYCecffdPONkd_7tV-gU1dwFrZ3EmD__7Wx_BgwA2yWm_Ox7DHVc9gf1NLXLjr0MP9OsfT6E-Xbd1R-BKsGDL9FuD1CXB-FRV3HpUuiLYO-2mIYtle03OlrohI2zv0RVHEF0VZKxbTSZLzMF7o_iBhGB8P2C80reFd_s7qWdwOfl4MTqPQjuGSDMMpKYlc5Jbw4SLE5vGTmvrPdzCu7nCMG6lMLGyXDhLLS9TYSW1WZGWTpfSUE7pAQyqunKHQApTGJYollktmJWlcpmgWLWb6SSTxg3h3WY5chu4yrFlxk3e5cxTle9O6BDebqW_9Rwdf5A72qxsHjS1yT0ERMrETMVDeL297XUMEye6cvXay3gDTkWsqBzC-26d__qefDEfzT1u5MnzfxN_BfvnF1-m-fTT7PMLuJ_i8ZnuuNsRDNrV2h3DPfu9XTarl2Gb_wTii_qY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BmGAvg_GhlQ3wpPEEEUnsxPHeSktFBaqqCtS-RbbjaJWmZGrSTfvv8TluVx5AQrxFylmJYl_ud1-_AzhPywhZpWSQSMEClpg0EFLRIIq51UuhIq27YRN8MskWCzH1c06xF6bjh9gG3FAz3P8aFdxcF6VnG0CSTOu2h_MZpgYFfwiPmIXiWNM1H0-2aQSLDvgmxYxQx1e-2_Wfdlf_bpPugeYuXHX2ZvT0v9_0GRx6qEn63dk4ggemeg5PNp3Ijb32E9Av715A3V-3taNvJdiupbqDQeqSYHSqKm4tJl0RnJx21ZD5sr0kn5eyIQMc7uFaI4isCjKUrSSjJWbgrUm8ID4U3y0YruRtYZ1-J_USfo6-_Bh8DfwwhkAyDKPGJTNZqhXjJox0HBoptfVvC-vkcsVSnXEVCp1yo6lOy5jrjOqkiEsjy0zRlNJXsFfVlTkGUqhCsUiwREvOdFYKk3CKPbuJjJJMmR582GxHrj1TOQ7MuMpdxjwW-e4H7cH7rfR1x9DxB7nTzc7mXk-b3AJAJExMRNiDs-1tq2GYNpGVqddWxppvykNBsx58dPv81-fk89lgZlFjGr3-N_F38Hg6HOXfx5NvJ3AQY-2Mq3U7hb12tTZvYF_ftMtm9dad8V-Nj_ju
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Calibration+of+Groundwater+Models+With+Bias+Correction+and+Data+Filtering%3A+Working+With+Drawdown+Data&rft.jtitle=Water+resources+research&rft.au=Trabucchi%2C+Michela&rft.au=Fern%C3%A0ndez%E2%80%90Garcia%2C+Daniel&rft.au=Carrera%2C+Jes%C3%BAs&rft.date=2021-03-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=57&rft.issue=3&rft_id=info:doi/10.1029%2F2020WR028097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2020WR028097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon