Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau
The Tibetan Plateau is the world's largest and highest plateau and holds the largest mass of ice on Earth outside the ice-sheets of Greenland and Antarctica, as well as abundant lakes. This study examined the molecular and isotopic signatures of dissolved organic matter (DOM) along with its bio...
Gespeichert in:
| Veröffentlicht in: | Geochimica et cosmochimica acta Jg. 142; S. 64 - 74 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.10.2014
|
| Schlagworte: | |
| ISSN: | 0016-7037 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Tibetan Plateau is the world's largest and highest plateau and holds the largest mass of ice on Earth outside the ice-sheets of Greenland and Antarctica, as well as abundant lakes. This study examined the molecular and isotopic signatures of dissolved organic matter (DOM) along with its biolability in glacier ice, glacier-fed streams, and alpine lakes on the Tibetan Plateau. The aim was to assess the sources of DOM and the potential of DOM to provide a carbon subsidy to downstream ecosystems. Tibetan glaciers and glacier streams exhibited low dissolved organic carbon (DOC) concentrations (17.7-27.9 mu M) and ancient DOC radiocarbon ages (749-2350 ybp). The optical properties, stable carbon isotope ratios ( delta super(13)C-DOC) and the molecular composition (Fourier transform ion cyclotron resonance mass spectrometry) of Tibetan glacier DOM are consistent with data from other glacier systems around the world. The geochemical signatures and the ancient apparent ages of Tibetan glacier DOM suggest a significant fraction is derived from the atmospheric deposition of pre-aged, possibly fossil fuel derived organics. Within the Tibetan alpine lakes, DOC was also ancient (525-675 ybp), due to either inputs of pre-aged organics from glacier runoff, direct deposition, or due to the aging of organics in situ (i.e. a radiocarbon reservoir effect). The glacier ice and glacier stream sites exhibited high biolability of DOC and so provide a carbon subsidy to downstream environments that will change as glaciers on the Tibetan Plateau recede. |
|---|---|
| AbstractList | The Tibetan Plateau is the world's largest and highest plateau and holds the largest mass of ice on Earth outside the ice-sheets of Greenland and Antarctica, as well as abundant lakes. This study examined the molecular and isotopic signatures of dissolved organic matter (DOM) along with its biolability in glacier ice, glacier-fed streams, and alpine lakes on the Tibetan Plateau. The aim was to assess the sources of DOM and the potential of DOM to provide a carbon subsidy to downstream ecosystems. Tibetan glaciers and glacier streams exhibited low dissolved organic carbon (DOC) concentrations (17.7-27.9 mu M) and ancient DOC radiocarbon ages (749-2350 ybp). The optical properties, stable carbon isotope ratios ( delta super(13)C-DOC) and the molecular composition (Fourier transform ion cyclotron resonance mass spectrometry) of Tibetan glacier DOM are consistent with data from other glacier systems around the world. The geochemical signatures and the ancient apparent ages of Tibetan glacier DOM suggest a significant fraction is derived from the atmospheric deposition of pre-aged, possibly fossil fuel derived organics. Within the Tibetan alpine lakes, DOC was also ancient (525-675 ybp), due to either inputs of pre-aged organics from glacier runoff, direct deposition, or due to the aging of organics in situ (i.e. a radiocarbon reservoir effect). The glacier ice and glacier stream sites exhibited high biolability of DOC and so provide a carbon subsidy to downstream environments that will change as glaciers on the Tibetan Plateau recede. |
| Author | Dittmar, Thorsten Guo, Weidong Raymond, Peter A. Hood, Eran Stubbins, Aron Fellman, Jason Spencer, Robert G.M. |
| Author_xml | – sequence: 1 givenname: Robert G.M. surname: Spencer fullname: Spencer, Robert G.M. – sequence: 2 givenname: Weidong surname: Guo fullname: Guo, Weidong – sequence: 3 givenname: Peter A. surname: Raymond fullname: Raymond, Peter A. – sequence: 4 givenname: Thorsten surname: Dittmar fullname: Dittmar, Thorsten – sequence: 5 givenname: Eran surname: Hood fullname: Hood, Eran – sequence: 6 givenname: Jason surname: Fellman fullname: Fellman, Jason – sequence: 7 givenname: Aron surname: Stubbins fullname: Stubbins, Aron |
| BookMark | eNqNkLlOxDAQQF2AxPkBdC5pNoyT2NmUCHFJSCABtTV2JosXr73YXqT9e8JRUSCqkWbem-IdsJ0QAzF2IqASINTZslpYrGoQbQXzCkDtsH2YDrMOmm6PHeS8BIBOSthn68e4SZY4hoEbFz0a513Z8jhOK-soFD64nKN_p4HHtMDgLF9hKZS4C3zhcYLSl-7xlTjZmLe50CrzGHh5If7kDBUM_MFjIdwcsd0Rfabjn3nInq8uny5uZnf317cX53czbAHKbDBGyq5TNRKhkDBIAIu96QH6wYzUiLmQjQFlBzXIvja9UV0jjBkVjeMom0N2-v13neLbhnLRK5cteY-B4iZroaRoG9Ur8Q-0rVUtO9lOqPhGbYo5Jxr1OrkVpq0WoD_j66We4uvP-Brmeoo_Od0vx7qCxcVQEjr_h_kBGJuQTw |
| CitedBy_id | crossref_primary_10_1002_2015JG003303 crossref_primary_10_1002_lol2_10388 crossref_primary_10_5194_bg_15_6637_2018 crossref_primary_10_1016_j_watres_2019_05_048 crossref_primary_10_1111_bor_12231 crossref_primary_10_5194_bg_22_41_2025 crossref_primary_10_1002_wer_10996 crossref_primary_10_1002_lol2_10265 crossref_primary_10_1016_j_orggeochem_2024_104886 crossref_primary_10_1016_j_orggeochem_2017_06_018 crossref_primary_10_1016_j_ecolind_2021_107500 crossref_primary_10_1007_s10498_021_09399_x crossref_primary_10_1016_j_marchem_2015_10_010 crossref_primary_10_1007_s11629_023_8437_3 crossref_primary_10_1016_j_scitotenv_2019_136307 crossref_primary_10_1029_2017JF004333 crossref_primary_10_1007_s11430_021_9996_1 crossref_primary_10_1002_lno_11615 crossref_primary_10_1016_j_scitotenv_2022_157784 crossref_primary_10_1002_lno_10525 crossref_primary_10_1016_j_marchem_2015_06_020 crossref_primary_10_1016_j_ecss_2018_11_002 crossref_primary_10_1016_j_watres_2019_05_052 crossref_primary_10_1016_j_scitotenv_2016_08_196 crossref_primary_10_1016_j_envint_2022_107276 crossref_primary_10_5194_bg_20_3011_2023 crossref_primary_10_1029_2020JG005958 crossref_primary_10_1029_2024GB008359 crossref_primary_10_1016_j_jhazmat_2024_136671 crossref_primary_10_1016_j_marchem_2018_07_008 crossref_primary_10_1371_journal_pone_0178166 crossref_primary_10_5194_bg_20_4949_2023 crossref_primary_10_1016_j_marchem_2019_04_009 crossref_primary_10_1029_2022JG006852 crossref_primary_10_1016_j_jclepro_2022_131850 crossref_primary_10_1016_j_watres_2021_117724 crossref_primary_10_1016_j_gca_2024_11_009 crossref_primary_10_1007_s00027_017_0540_5 crossref_primary_10_1016_j_jhazmat_2025_138117 crossref_primary_10_1016_j_watres_2022_119448 crossref_primary_10_1016_j_scitotenv_2017_11_342 crossref_primary_10_1016_j_scitotenv_2022_159337 crossref_primary_10_1016_j_watres_2016_05_021 crossref_primary_10_1016_j_watres_2016_05_023 crossref_primary_10_1029_2019JG005161 crossref_primary_10_1002_lol2_10044 crossref_primary_10_1029_2021JG006516 crossref_primary_10_1016_j_scitotenv_2024_177366 crossref_primary_10_1017_jog_2016_47 crossref_primary_10_1016_j_scitotenv_2023_161612 crossref_primary_10_1016_j_scitotenv_2018_04_262 crossref_primary_10_1016_j_scitotenv_2020_138005 crossref_primary_10_1016_j_scitotenv_2020_143550 crossref_primary_10_1002_lno_10943 crossref_primary_10_5194_bg_17_1261_2020 crossref_primary_10_5194_acp_21_8531_2021 crossref_primary_10_1002_mas_21663 crossref_primary_10_1007_s10661_019_7945_7 crossref_primary_10_1016_j_jhazmat_2019_121065 crossref_primary_10_1016_j_scitotenv_2022_156639 crossref_primary_10_1016_j_scitotenv_2024_175636 crossref_primary_10_1071_EN18124 crossref_primary_10_1029_2020GB006709 crossref_primary_10_1073_pnas_1714597115 crossref_primary_10_1016_j_watres_2024_122355 crossref_primary_10_1080_16000889_2018_1468705 crossref_primary_10_1029_2024GB008212 crossref_primary_10_1038_s41396_020_0689_0 crossref_primary_10_1016_j_pocean_2017_07_005 crossref_primary_10_1016_j_watres_2020_116471 crossref_primary_10_1038_s41467_024_44813_2 crossref_primary_10_1007_s10533_021_00753_3 crossref_primary_10_5194_bg_19_5591_2022 crossref_primary_10_1016_j_jhydrol_2025_132751 crossref_primary_10_2112_JCOASTRES_D_16_00196_1 crossref_primary_10_1002_lno_12180 crossref_primary_10_1002_lno_11385 crossref_primary_10_1016_j_envres_2024_120117 crossref_primary_10_1017_aog_2018_20 crossref_primary_10_5194_bg_17_6327_2020 crossref_primary_10_1002_lno_10579 crossref_primary_10_3390_w8120565 crossref_primary_10_1002_ppp_2250 crossref_primary_10_1029_2022WR032426 crossref_primary_10_5194_bg_22_1369_2025 crossref_primary_10_1016_j_jhydrol_2019_124190 crossref_primary_10_1029_2018JG004925 crossref_primary_10_1016_j_envpol_2020_116032 crossref_primary_10_1088_1748_9326_abd971 crossref_primary_10_1016_j_soilbio_2020_107880 crossref_primary_10_1002_lno_11417 crossref_primary_10_1029_2023JD039117 crossref_primary_10_1007_s00027_018_0572_5 crossref_primary_10_1007_s11356_017_1027_6 crossref_primary_10_1016_j_crsus_2025_100368 crossref_primary_10_1016_j_chemosphere_2023_138214 crossref_primary_10_1016_j_watres_2023_119812 crossref_primary_10_1016_j_gca_2020_01_022 crossref_primary_10_3390_w11040748 crossref_primary_10_1007_s10533_022_00906_y crossref_primary_10_1016_j_scitotenv_2018_05_180 crossref_primary_10_1016_j_orggeochem_2020_104164 crossref_primary_10_1038_s41467_021_21926_6 crossref_primary_10_1016_j_scitotenv_2023_167370 crossref_primary_10_1038_s43017_022_00344_2 crossref_primary_10_1016_j_watres_2019_115048 crossref_primary_10_1016_j_watres_2023_119782 crossref_primary_10_1139_er_2023_0074 crossref_primary_10_1029_2025JG008931 crossref_primary_10_1016_j_jhazmat_2021_127598 crossref_primary_10_1016_j_wroa_2025_100368 crossref_primary_10_1016_j_scitotenv_2018_01_265 crossref_primary_10_5194_hess_20_787_2016 crossref_primary_10_1007_s11356_018_1832_6 crossref_primary_10_1088_1748_9326_ada45c crossref_primary_10_1002_2015GL063498 crossref_primary_10_1016_j_jhydrol_2025_133902 crossref_primary_10_1007_s11629_025_9657_5 crossref_primary_10_1016_j_earscirev_2018_08_013 crossref_primary_10_1016_j_watres_2022_119362 crossref_primary_10_5194_tc_10_2611_2016 crossref_primary_10_1029_2017JD028181 crossref_primary_10_1016_j_envpol_2021_117231 crossref_primary_10_3389_feart_2019_00296 crossref_primary_10_1016_j_scitotenv_2023_166842 crossref_primary_10_1016_j_earscirev_2020_103433 crossref_primary_10_1016_j_watres_2020_116776 crossref_primary_10_1016_j_scitotenv_2022_156542 crossref_primary_10_1111_fwb_13887 crossref_primary_10_1029_2022JG007188 crossref_primary_10_1016_j_jhydrol_2023_129513 crossref_primary_10_1016_j_scitotenv_2021_152183 crossref_primary_10_1007_s11356_019_05700_2 crossref_primary_10_1016_j_scitotenv_2018_03_027 crossref_primary_10_1016_j_atmosenv_2016_06_064 crossref_primary_10_1007_s10230_023_00957_z crossref_primary_10_1016_j_scitotenv_2020_139497 crossref_primary_10_1002_2017GL073219 crossref_primary_10_1007_s10533_021_00815_6 crossref_primary_10_1029_2020JG006222 crossref_primary_10_1002_lno_11716 crossref_primary_10_1007_s42773_024_00305_6 crossref_primary_10_1016_j_scitotenv_2022_159027 crossref_primary_10_3389_fmars_2021_612386 crossref_primary_10_3390_toxics12040250 crossref_primary_10_1029_2022JG007073 crossref_primary_10_1016_j_envres_2022_114680 crossref_primary_10_1016_j_jhydrol_2022_128997 crossref_primary_10_1016_j_scitotenv_2021_148376 crossref_primary_10_1029_2020GB006908 crossref_primary_10_1038_s41561_019_0384_9 crossref_primary_10_1038_s41598_020_65520_0 crossref_primary_10_1016_j_scitotenv_2019_01_220 crossref_primary_10_3389_feart_2017_00022 crossref_primary_10_3389_fenvs_2021_714311 crossref_primary_10_5194_bg_15_1733_2018 crossref_primary_10_1016_j_jhazmat_2020_123998 crossref_primary_10_1016_j_envres_2024_119251 crossref_primary_10_1038_s41598_020_62851_w crossref_primary_10_1016_j_scitotenv_2020_142411 crossref_primary_10_1021_acs_est_9b01894 crossref_primary_10_3390_w13020202 crossref_primary_10_1016_j_scitotenv_2023_162347 crossref_primary_10_1016_j_scitotenv_2020_143464 crossref_primary_10_1029_2020GB006871 crossref_primary_10_1029_2018JG004910 crossref_primary_10_1038_s41467_019_11394_4 crossref_primary_10_1002_2017JG004343 crossref_primary_10_1007_s40710_024_00706_6 crossref_primary_10_1029_2018JG004874 crossref_primary_10_1016_j_gca_2018_10_012 crossref_primary_10_1002_jqs_3517 crossref_primary_10_1016_j_marchem_2015_06_016 |
| Cites_doi | 10.5194/acp-10-10997-2010 10.1080/01490450802660201 10.1016/j.chemgeo.2007.06.008 10.1029/2009JG000968 10.1029/2008JG000790 10.4319/lom.2008.6.230 10.1038/ngeo1611 10.1017/S0033822200035402 10.1016/j.gca.2013.02.006 10.1016/j.marchem.2014.01.012 10.1016/j.marchem.2014.01.002 10.1088/1748-9326/9/5/055005 10.4319/lo.2009.54.6_part_2.2386 10.4319/lo.2011.56.6.2371 10.4319/lo.2010.55.4.1467 10.1002/rcm.2386 10.1080/713848382 10.1021/cr050359b 10.1016/j.atmosenv.2012.05.044 10.1029/2006JD008094 10.1002/hyp.7274 10.1371/journal.pone.0053550 10.1038/ncomms1411 10.1029/2008GL035556 10.1016/j.gloplacha.2008.02.001 10.5194/acp-6-5381-2006 10.1073/pnas.0910444106 10.1016/j.orggeochem.2013.04.013 10.1038/ngeo1403 10.1007/BF02915395 10.1007/s10533-004-0362-0 10.1038/ngeo133 10.1016/j.marchem.2010.03.009 10.1038/nature08580 10.1021/es3048202 10.1038/ngeo440 10.1111/j.1365-2486.2008.01758.x 10.1016/j.quascirev.2012.06.008 10.1126/science.286.5447.2141 10.1016/j.gca.2010.03.035 10.1111/j.1365-2427.2006.01688.x 10.1038/ngeo1581 10.1021/ac061949s 10.1021/es703014q 10.1029/1999GB900036 10.1021/es030360x 10.1016/j.atmosenv.2008.07.029 10.1016/j.gca.2012.01.013 10.4319/lom.2012.10.347 10.1029/2011JG001798 10.1029/2007GB002934 10.4319/lo.2009.54.6.2213 10.1016/j.quaint.2013.01.030 10.1890/07-0187.1 10.1038/nclimate1580 10.1029/2005GL022879 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M |
| DOI | 10.1016/j.gca.2014.08.006 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EndPage | 74 |
| ExternalDocumentID | 10_1016_j_gca_2014_08_006 |
| GeographicLocations | China, People's Rep., Xizang, Tibetan Plateau Antarctica AN, Greenland |
| GeographicLocations_xml | – name: China, People's Rep., Xizang, Tibetan Plateau – name: Antarctica – name: AN, Greenland |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9DU 9JN A6W AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABJNI ABMAC ABPPZ ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLOT ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADXHL AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SEP SES SEW SPC SSE SSZ T5K TN5 TWZ UQL VH1 VOH WUQ XOL XSW ZKB ZMT ~02 ~G- ~HD 7TG KL. 8FD H8D L7M |
| ID | FETCH-LOGICAL-a400t-dbb557762aeea150d500ca9b9009dbfe318153b06cd6d592b9b6731bbf6efff53 |
| ISICitedReferencesCount | 206 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342622400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-7037 |
| IngestDate | Thu Oct 02 10:54:07 EDT 2025 Sun Sep 28 06:45:41 EDT 2025 Tue Nov 18 21:10:31 EST 2025 Sat Nov 29 05:39:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a400t-dbb557762aeea150d500ca9b9009dbfe318153b06cd6d592b9b6731bbf6efff53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1642625754 |
| PQPubID | 23462 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1651436961 proquest_miscellaneous_1642625754 crossref_primary_10_1016_j_gca_2014_08_006 crossref_citationtrail_10_1016_j_gca_2014_08_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-00 20141001 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-00 |
| PublicationDecade | 2010 |
| PublicationTitle | Geochimica et cosmochimica acta |
| PublicationYear | 2014 |
| References | Fellman (10.1016/j.gca.2014.08.006_b0050) 2010; 121 Neff (10.1016/j.gca.2014.08.006_b0160) 2008 Yan (10.1016/j.gca.2014.08.006_b0270) 2012; 59 Jurado (10.1016/j.gca.2014.08.006_b0095) 2008; 42 Spencer (10.1016/j.gca.2014.08.006_b0215) 2014; 9 Anderson (10.1016/j.gca.2014.08.006_b0005) 2007; 52 Osburn (10.1016/j.gca.2014.08.006_b0165) 2011; 56 Santl-Temkiv (10.1016/j.gca.2014.08.006_b0195) 2013; 8 Mladenov (10.1016/j.gca.2014.08.006_b0145) 2009; 54 Weishaar (10.1016/j.gca.2014.08.006_b0250) 2003; 37 Kujawinski (10.1016/j.gca.2014.08.006_b0115) 2002; 3 Liu (10.1016/j.gca.2014.08.006_b0125) 2009; 26 Li (10.1016/j.gca.2014.08.006_b0120) 2008; 62 Dittmar (10.1016/j.gca.2014.08.006_b0035) 2009; 2 Wynn (10.1016/j.gca.2014.08.006_b0260) 2007; 244 Willey (10.1016/j.gca.2014.08.006_b0255) 2000; 14 Hood (10.1016/j.gca.2014.08.006_b0080) 2009; 462 Anesio (10.1016/j.gca.2014.08.006_b0010) 2009; 15 Singer (10.1016/j.gca.2014.08.006_b0200) 2012; 5 Cong (10.1016/j.gca.2014.08.006_b0030) 2013; 47 Raymond (10.1016/j.gca.2014.08.006_b0185) 2007; 21 Steier (10.1016/j.gca.2014.08.006_b0220) 2006; 48 Koch (10.1016/j.gca.2014.08.006_b0105) 2006; 20 Kehrwald (10.1016/j.gca.2014.08.006_b0100) 2008; 35 Stubbins (10.1016/j.gca.2014.08.006_b0245) 2012; 5 Stubbins (10.1016/j.gca.2014.08.006_b0240) 2010; 55 Raymond (10.1016/j.gca.2014.08.006_b0180) 2005; 32 Stubbins (10.1016/j.gca.2014.08.006_b0230) 2012 Spencer (10.1016/j.gca.2014.08.006_b0205) 2009; 114 Stibal (10.1016/j.gca.2014.08.006_b0225) 2012; 5 Jenk (10.1016/j.gca.2014.08.006_b0090) 2006; 6 Yao (10.1016/j.gca.2014.08.006_b0275) 2012; 2 Barker (10.1016/j.gca.2014.08.006_b0015) 2009; 23 Gelencser (10.1016/j.gca.2014.08.006_b0055) 2007; 112 Miller (10.1016/j.gca.2014.08.006_b0135) 2009; 54 Green (10.1016/j.gca.2014.08.006_b0060) 2014; 161 Koch (10.1016/j.gca.2014.08.006_b0110) 2007; 79 Mladenov (10.1016/j.gca.2014.08.006_b0150) 2011 Spencer (10.1016/j.gca.2014.08.006_b0210) 2012; 84 Hodson (10.1016/j.gca.2014.08.006_b0070) 2008; 78 Hodson (10.1016/j.gca.2014.08.006_b0065) 2005; 72 Xu (10.1016/j.gca.2014.08.006_b0265) 2009; 106 Hodzic (10.1016/j.gca.2014.08.006_b0075) 2010; 10 Hou (10.1016/j.gca.2014.08.006_b0085) 2012; 48 Mischke (10.1016/j.gca.2014.08.006_b0140) 2013; 313–314 Mopper (10.1016/j.gca.2014.08.006_b0155) 2007; 107 Fellman (10.1016/j.gca.2014.08.006_b0045) 2009; 114 Rossel (10.1016/j.gca.2014.08.006_b0190) 2013; 60 Priscu (10.1016/j.gca.2014.08.006_b0175) 1999; 286 Osterholz (10.1016/j.gca.2014.08.006_b0170) 2014; 160 Zeng (10.1016/j.gca.2014.08.006_b0280) 2003; 20 Bhatia (10.1016/j.gca.2014.08.006_b0020) 2010; 74 Stubbins (10.1016/j.gca.2014.08.006_b0235) 2008; 42 Mann (10.1016/j.gca.2014.08.006_b0130) 2012; 117 Bhatia (10.1016/j.gca.2014.08.006_b0025) 2013; 109 Dittmar (10.1016/j.gca.2014.08.006_b0040) 2008; 6 |
| References_xml | – volume: 10 start-page: 10997 year: 2010 ident: 10.1016/j.gca.2014.08.006_b0075 article-title: Can 3D models predict the observed fractions of modern and fossil carbon in and near Mexico City? publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-10997-2010 – volume: 26 start-page: 131 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0125 article-title: Bacterial diversity of freshwater alpine lake puma yumoc on the Tibetan Plateau publication-title: Geomicrobiol. J. doi: 10.1080/01490450802660201 – volume: 244 start-page: 88 year: 2007 ident: 10.1016/j.gca.2014.08.006_b0260 article-title: Nitrate production beneath a High Arctic glacier, Svalbard publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2007.06.008 – volume: 114 start-page: G03010 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0205 article-title: Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2009JG000968 – volume: 114 start-page: G01021 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0045 article-title: Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2008JG000790 – volume: 6 start-page: 230 year: 2008 ident: 10.1016/j.gca.2014.08.006_b0040 article-title: A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater publication-title: Limnol. Oceanogr. Methods doi: 10.4319/lom.2008.6.230 – volume: 5 start-page: 771 year: 2012 ident: 10.1016/j.gca.2014.08.006_b0225 article-title: Biological processes on glacier and ice sheet surfaces publication-title: Nat. Geosci. doi: 10.1038/ngeo1611 – volume: 48 start-page: 69 year: 2006 ident: 10.1016/j.gca.2014.08.006_b0220 article-title: Radiocarbon determination of particulate organic carbon in non-temperate, Alpine glacier ice publication-title: Radiocarbon doi: 10.1017/S0033822200035402 – volume: 109 start-page: 329 year: 2013 ident: 10.1016/j.gca.2014.08.006_b0025 article-title: Organic carbon export from the Greenland ice sheet publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.02.006 – volume: 161 start-page: 14 year: 2014 ident: 10.1016/j.gca.2014.08.006_b0060 article-title: An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter publication-title: Mar. Chem. doi: 10.1016/j.marchem.2014.01.012 – volume: 160 start-page: 1 year: 2014 ident: 10.1016/j.gca.2014.08.006_b0170 article-title: Molecular evidence for rapid dissolved organic matter turnover in Arctic fjords publication-title: Mar. Chem. doi: 10.1016/j.marchem.2014.01.002 – volume: 9 year: 2014 ident: 10.1016/j.gca.2014.08.006_b0215 article-title: Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/5/055005 – volume: 54 start-page: 2386 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0145 article-title: Alpine lake optical properties as sentinels of dust deposition and global change publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2009.54.6_part_2.2386 – volume: 56 start-page: 2371 year: 2011 ident: 10.1016/j.gca.2014.08.006_b0165 article-title: Dissolved organic matter composition and photoreactivity in prairie lakes of the US Great Plains publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2011.56.6.2371 – volume: 55 start-page: 1467 year: 2010 ident: 10.1016/j.gca.2014.08.006_b0240 article-title: Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2010.55.4.1467 – volume: 20 start-page: 926 year: 2006 ident: 10.1016/j.gca.2014.08.006_b0105 article-title: From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.2386 – volume: 3 start-page: 207 year: 2002 ident: 10.1016/j.gca.2014.08.006_b0115 article-title: Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS): characterization of complex environmental mixtures publication-title: Environ. Forensics doi: 10.1080/713848382 – volume: 107 start-page: 419 year: 2007 ident: 10.1016/j.gca.2014.08.006_b0155 article-title: Advanced instrumental approaches for the characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy publication-title: Chem. Rev. doi: 10.1021/cr050359b – volume: 59 start-page: 117 year: 2012 ident: 10.1016/j.gca.2014.08.006_b0270 article-title: Dissolved organic carbon in the precipitation of Seoul, Korea: implications for global wet depositional flux of fossil-fuel derived organic carbon publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.05.044 – volume: 112 start-page: D23S04 year: 2007 ident: 10.1016/j.gca.2014.08.006_b0055 article-title: Source appointment of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin publication-title: J. Geophys. Res. doi: 10.1029/2006JD008094 – volume: 23 start-page: 1487 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0015 article-title: Using synchronous fluorescence spectroscopy and principal components analysis to monitor dissolved organic matter dynamics in a glacier system publication-title: Hyd. Proc. doi: 10.1002/hyp.7274 – volume: 8 start-page: e53550 issue: 1 year: 2013 ident: 10.1016/j.gca.2014.08.006_b0195 article-title: Hailstones: a window into the microbial and chemical inventory of a storm cloud publication-title: PLoS one doi: 10.1371/journal.pone.0053550 – year: 2011 ident: 10.1016/j.gca.2014.08.006_b0150 article-title: Dusty skies, UV radiation, and bacteria influence organic matter concentration and optical quality in alpine lakes publication-title: Nat. Commun. doi: 10.1038/ncomms1411 – volume: 35 start-page: L22503 year: 2008 ident: 10.1016/j.gca.2014.08.006_b0100 article-title: Mass loss on Himalayan glacier endangers water resources publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL035556 – volume: 62 start-page: 210 year: 2008 ident: 10.1016/j.gca.2014.08.006_b0120 article-title: Cryospheric change in China publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2008.02.001 – volume: 6 start-page: 5381 year: 2006 ident: 10.1016/j.gca.2014.08.006_b0090 article-title: Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-6-5381-2006 – volume: 106 start-page: 22114 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0265 article-title: Black soot and the survival of Tibetan glaciers publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0910444106 – volume: 60 start-page: 62 year: 2013 ident: 10.1016/j.gca.2014.08.006_b0190 article-title: Molecular composition of dissolved organic matter from a wetland plant (Juncus effusus) after photochemical and microbial decomposition (1.25yr): common features with deep sea dissolved organic matter publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2013.04.013 – volume: 5 start-page: 198 year: 2012 ident: 10.1016/j.gca.2014.08.006_b0245 article-title: Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers publication-title: Nat. Geosci. doi: 10.1038/ngeo1403 – volume: 20 start-page: 677 year: 2003 ident: 10.1016/j.gca.2014.08.006_b0280 article-title: Glacial-interglacial atmospheric CO2 change – the glacial burial hypothesis publication-title: Adv. Atmos. Sci. doi: 10.1007/BF02915395 – volume: 72 start-page: 233 year: 2005 ident: 10.1016/j.gca.2014.08.006_b0065 article-title: The High Arctic glacial ecosystem: new insights from nutrient budgets publication-title: Biogeochemistry doi: 10.1007/s10533-004-0362-0 – year: 2008 ident: 10.1016/j.gca.2014.08.006_b0160 article-title: Increasing eolian dust deposition in the western United States linked to human activity publication-title: Nat. Geosci. doi: 10.1038/ngeo133 – volume: 121 start-page: 112 year: 2010 ident: 10.1016/j.gca.2014.08.006_b0050 article-title: The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems publication-title: Mar. Chem. doi: 10.1016/j.marchem.2010.03.009 – volume: 462 start-page: 1044 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0080 article-title: Glaciers as a source of ancient and labile organic matter to the marine environment publication-title: Nature doi: 10.1038/nature08580 – volume: 47 start-page: 2579 year: 2013 ident: 10.1016/j.gca.2014.08.006_b0030 article-title: Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record publication-title: Environ. Sci. Technol. doi: 10.1021/es3048202 – volume: 2 start-page: 175 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0035 article-title: A heat-induced molecular signature in marine dissolved organic matter publication-title: Nat. Geosci. doi: 10.1038/ngeo440 – volume: 15 start-page: 955 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0010 article-title: High microbial activity on glaciers: importance to the global carbon cycle publication-title: Global Change Biol. doi: 10.1111/j.1365-2486.2008.01758.x – volume: 48 start-page: 67 year: 2012 ident: 10.1016/j.gca.2014.08.006_b0085 article-title: The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2012.06.008 – volume: 286 start-page: 2141 year: 1999 ident: 10.1016/j.gca.2014.08.006_b0175 article-title: Geomicrobiology of subglacial ice above Lake Vostok, Antarctica publication-title: Science doi: 10.1126/science.286.5447.2141 – volume: 74 start-page: 3768 year: 2010 ident: 10.1016/j.gca.2014.08.006_b0020 article-title: Molecular characterization of dissolved organic matter associated with the Greenland ice sheet publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.03.035 – volume: 52 start-page: 280 year: 2007 ident: 10.1016/j.gca.2014.08.006_b0005 article-title: The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland publication-title: Freshwater Biol. doi: 10.1111/j.1365-2427.2006.01688.x – volume: 5 start-page: 710 year: 2012 ident: 10.1016/j.gca.2014.08.006_b0200 article-title: Biogeochemically diverse organic matter in alpine glaciers and its downstream fate publication-title: Nat. Geosci. doi: 10.1038/ngeo1581 – volume: 79 start-page: 1758 year: 2007 ident: 10.1016/j.gca.2014.08.006_b0110 article-title: Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter publication-title: Anal. Chem. doi: 10.1021/ac061949s – volume: 42 start-page: 3271 year: 2008 ident: 10.1016/j.gca.2014.08.006_b0235 article-title: Relating carbon monoxide photoproduction to dissolved organic matter functionality publication-title: Environ. Sci. Technol. doi: 10.1021/es703014q – volume: 14 start-page: 139 year: 2000 ident: 10.1016/j.gca.2014.08.006_b0255 article-title: Rainwater dissolved organic carbon: concentrations and global flux publication-title: Global Biogeochem. Cycles doi: 10.1029/1999GB900036 – volume: 37 start-page: 4702 year: 2003 ident: 10.1016/j.gca.2014.08.006_b0250 article-title: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es030360x – volume: 42 start-page: 7931 year: 2008 ident: 10.1016/j.gca.2014.08.006_b0095 article-title: Atmospheric deposition of organic and black carbon to the global oceans publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.07.029 – volume: 84 start-page: 614 year: 2012 ident: 10.1016/j.gca.2014.08.006_b0210 article-title: An initial investigation into the organic matter biogeochemistry of the Congo River publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.01.013 – year: 2012 ident: 10.1016/j.gca.2014.08.006_b0230 article-title: Low volume quantification of dissolved organic carbon and dissolved nitrogen publication-title: Limnol. Oceanogr. Methods doi: 10.4319/lom.2012.10.347 – volume: 117 start-page: G01028 year: 2012 ident: 10.1016/j.gca.2014.08.006_b0130 article-title: Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2011JG001798 – volume: 21 start-page: GB4011 year: 2007 ident: 10.1016/j.gca.2014.08.006_b0185 article-title: Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest rivers publication-title: Global Biogeochem. Cycles doi: 10.1029/2007GB002934 – volume: 54 start-page: 2213 year: 2009 ident: 10.1016/j.gca.2014.08.006_b0135 article-title: A model of degradation and production of three pools of dissolved organic matter in an alpine lake publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2009.54.6.2213 – volume: 313–314 start-page: 147 year: 2013 ident: 10.1016/j.gca.2014.08.006_b0140 article-title: Spatial variability of 14C reservoir effects in Tibetan Plateau lakes publication-title: Quat. Int. doi: 10.1016/j.quaint.2013.01.030 – volume: 78 start-page: 41 year: 2008 ident: 10.1016/j.gca.2014.08.006_b0070 article-title: Glacial ecosystems publication-title: Ecol. Monogr. doi: 10.1890/07-0187.1 – volume: 2 start-page: 663 year: 2012 ident: 10.1016/j.gca.2014.08.006_b0275 article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings publication-title: Nat. Clim. Change doi: 10.1038/nclimate1580 – volume: 32 start-page: L14402 year: 2005 ident: 10.1016/j.gca.2014.08.006_b0180 article-title: The composition and transport of organic carbon in rainfall: insights from the natural (13C and 14C) isotopes of carbon publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL022879 |
| SSID | ssj0007550 |
| Score | 2.5503967 |
| Snippet | The Tibetan Plateau is the world's largest and highest plateau and holds the largest mass of ice on Earth outside the ice-sheets of Greenland and Antarctica,... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 64 |
| SubjectTerms | Carbon Deposition Dissolved organic matter Ecosystems Glaciers Lakes Signatures Streams |
| Title | Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau |
| URI | https://www.proquest.com/docview/1642625754 https://www.proquest.com/docview/1651436961 |
| Volume | 142 |
| WOSCitedRecordID | wos000342622400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0016-7037 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007550 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKBxIviKvYuMhIiAeqoKRNnPhxgq6ApoK0TPQtsh2bZbRJtqXV9jv4wxxfkraApvHAS9VGcRr5fDp3fweh19TnCZXE9yKwb17IifIAJdJTUviKSxaHITPDJuLpNJnN6Nde72d7FmY1j8syubyk9X8VNVwDYeujs_8g7u6hcAG-g9DhE8QOnzcS_JFJx5uigGZYsjzcpo5uBvGWjS7KwCuswNW0M53EYGFYNnXuA7xpoQ-g6OVz9kMOIDy1bM9tXQHEy2Wjdecc_FS23HRvJ7ISJ4VmIBjIZgArF91vJprOAhzVWp9sdHYPJmui_qVJ3n6TRV45q2rKUFcLNwDZdBSvU7AfiqZxXeLpSQW-rDvb5jIZQdj1xHXaOSAeaKB4Sztb8i2nXy3jubPUdrzPHzbApiNO330XmlcqCA1Fq_8Xvu3pl-zg-PAwS8ez9E195ulRZLpk7-ay3EI7wziiSR_t7H8azz53Bj6OInuyyb1uWyw3bYO__eu2u7Nt7Y0Lk95H91zsgfctZh6gniwfojsTM9v56hGqLXIwiB5vIAdXCjvk4A452CEHW-TgosQOOWa5Rg5eIwdXJQbkYIcc7JDzGB0fjNP3Hz03kMNjoOobL-c8imIwn0xKBpFEHvm-YJRTcNRzrnQ6HQwo94nISR7RIaecxKOAc0WkUioaPUH9sirlU4TJMCAyUCPBEtAGoUggTMkZEZEknMP27SK_3bdMOLZ6PTRlnrVtiacZbHWmtzrTg1R9sovedktqS9Vy3c2vWmFkoFB1lYyVslpeZAHRQxogigmvu0fHGYSSYO8Gz3mG7q7h_hz1m_OlfIFui1VTXJy_dOj6BTMzqR0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+and+biolability+of+ancient+dissolved+organic+matter+in+glacier+and+lake+ecosystems+on+the+Tibetan+Plateau&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Spencer%2C+Robert+GM&rft.au=Guo%2C+Weidong&rft.au=Raymond%2C+Peter+A&rft.au=Dittmar%2C+Thorsten&rft.date=2014-10-01&rft.issn=0016-7037&rft.volume=142&rft.spage=64&rft.epage=74&rft_id=info:doi/10.1016%2Fj.gca.2014.08.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon |