Approximate numerical algorithms and artificial neural networks for analyzing a fractal-fractional mathematical model

In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a person through the mouth, eyes, nose or hands. This makes it so dangerous that no one can get rid of it. One of the main factors contributin...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 8; no. 12; pp. 28280 - 28307
Main Authors: Najafi, Hashem, Bensayah, Abdallah, Tellab, Brahim, Etemad, Sina, Ntouyas, Sotiris K., Rezapour, Shahram, Tariboon, Jessada
Format: Journal Article
Language:English
Published: AIMS Press 01.01.2023
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a person through the mouth, eyes, nose or hands. This makes it so dangerous that no one can get rid of it. One of the main factors contributing to increasing infections of this deadly virus is crowding. We believe that it is necessary to model this effect mathematically to predict the possible outcomes. Hence, the study of neural network-based models related to the spread of this virus can yield new results. This paper also introduces the use of artificial neural networks (ANNs) to approximate the solutions, which is a significant contribution in this regard. We suggest employing this new method to solve a system of integral equations that explain the dynamics of infectious diseases instead of the classical numerical methods. Our study shows that, compared to the Adams-Bashforth algorithm, the ANN is a reliable candidate for solving the problems.
AbstractList In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a person through the mouth, eyes, nose or hands. This makes it so dangerous that no one can get rid of it. One of the main factors contributing to increasing infections of this deadly virus is crowding. We believe that it is necessary to model this effect mathematically to predict the possible outcomes. Hence, the study of neural network-based models related to the spread of this virus can yield new results. This paper also introduces the use of artificial neural networks (ANNs) to approximate the solutions, which is a significant contribution in this regard. We suggest employing this new method to solve a system of integral equations that explain the dynamics of infectious diseases instead of the classical numerical methods. Our study shows that, compared to the Adams-Bashforth algorithm, the ANN is a reliable candidate for solving the problems.
Author Tariboon, Jessada
Etemad, Sina
Bensayah, Abdallah
Rezapour, Shahram
Tellab, Brahim
Ntouyas, Sotiris K.
Najafi, Hashem
Author_xml – sequence: 1
  givenname: Hashem
  surname: Najafi
  fullname: Najafi, Hashem
  organization: Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran
– sequence: 2
  givenname: Abdallah
  surname: Bensayah
  fullname: Bensayah, Abdallah
  organization: Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, Ouargla 30000, Algeria
– sequence: 3
  givenname: Brahim
  surname: Tellab
  fullname: Tellab, Brahim
  organization: Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, Ouargla 30000, Algeria
– sequence: 4
  givenname: Sina
  surname: Etemad
  fullname: Etemad, Sina
  organization: Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
– sequence: 5
  givenname: Sotiris K.
  surname: Ntouyas
  fullname: Ntouyas, Sotiris K.
  organization: Department of Mathematics, University of Ioannina, Ioannina 451 10, Greece
– sequence: 6
  givenname: Shahram
  surname: Rezapour
  fullname: Rezapour, Shahram
  organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam, Department of Mathematics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
– sequence: 7
  givenname: Jessada
  surname: Tariboon
  fullname: Tariboon, Jessada
  organization: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
BookMark eNpNkUlvwjAUhK2KSqWUY-_-A6He4iRHhLogIfXC3XrxAqYhRk5QS399nXRRL2-ePPYnj-YWTdrQWoTuKVnwiouHI_T7BSOMUyGKKzRlouCZrMpy8m-_QfOuOxBCGGWCFWKKzsvTKYYPn55b3J6PNnoNDYZmF6Lv98cOQ2swxN47r31yWnuOo_TvIb512IWYrkBz-fTtDgN2EXQPTTaqD8nBw9dsGiP5GIxt7tC1g6az8x-doe3T43b1km1en9er5SYDQUifUYCqpsRRELXLpaG5LCwQJqitrWY5ACnLqqhkAa4qjAFJaCldMmVdy5zP0PobawIc1CmmlPGiAng1HoS4U0My3ViVMLSmjjlNnQAjodbCWJ7XXMgSGEus7JulY-i6aN0fjxI1NKCGmOq3Af4FAfp_PQ
Cites_doi 10.1155/2021/2524027
10.1016/j.chaos.2020.109867
10.1016/j.chaos.2017.04.027
10.1080/17513758.2023.2220349
10.1186/s13662-021-03359-z
10.1016/j.chaos.2019.04.020
10.1016/j.chaos.2020.110048
10.1186/s13662-021-03600-9
10.1017/S0962492900002919
10.1016/j.chaos.2020.109946
10.1016/j.chaos.2020.110032
10.1073/pnas.27.4.222
10.1186/s13662-021-03642-z
10.1016/0893-6080(91)90009-T
10.1016/j.rinp.2021.105130
10.1016/j.chaos.2020.109828
10.1002/mma.9347
10.1007/s11766-004-0027-8
10.1186/s13661-020-01361-0
10.1016/j.aej.2021.02.011
10.1016/j.chaos.2021.110672
10.1186/s13662-020-02783-x
10.1007/978-3-319-72317-4
10.46793/match.90-3.609X
10.1016/j.chaos.2022.111821
10.1016/j.idm.2017.02.001
10.1007/978-0-387-21593-8
10.11948/20210313
10.1186/s13662-020-02853-0
10.1186/s13662-020-03092-z
10.3390/fractalfract5040166
10.1155/2022/4320865
10.1007/s12559-023-10155-2
10.1016/j.rinp.2022.105800
10.46793/match.89-1.073X
10.1016/j.chaos.2020.110007
10.46793/match.89-3.529M
10.1155/2022/6502598
10.1016/j.na.2011.10.014
10.1037/h0042519
10.1007/BF02551274
10.1016/S0893-6080(05)80131-5
10.1016/j.apm.2023.02.019
10.1016/j.chaos.2020.110033
10.1016/j.jksus.2022.101914
10.3389/fpubh.2023.1101436
10.1016/j.health.2022.100114
10.1007/BF02478259
10.1155/2021/1273405
10.11948/2016004
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20231447
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 28307
ExternalDocumentID oai_doaj_org_article_8971b1f2fc1f4ad6abc4de35b3468a22
10_3934_math_20231447
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a400t-1aa9b10f1a4bf56d1567ea0241ebec25aa08897967af97dda60186febe6bb653
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133603500081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:26 EDT 2025
Sat Nov 29 06:04:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a400t-1aa9b10f1a4bf56d1567ea0241ebec25aa08897967af97dda60186febe6bb653
OpenAccessLink https://doaj.org/article/8971b1f2fc1f4ad6abc4de35b3468a22
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_8971b1f2fc1f4ad6abc4de35b3468a22
crossref_primary_10_3934_math_20231447
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231447-30
key-10.3934/math.20231447-31
key-10.3934/math.20231447-38
key-10.3934/math.20231447-39
key-10.3934/math.20231447-36
key-10.3934/math.20231447-37
key-10.3934/math.20231447-34
key-10.3934/math.20231447-35
key-10.3934/math.20231447-32
key-10.3934/math.20231447-33
key-10.3934/math.20231447-41
key-10.3934/math.20231447-42
key-10.3934/math.20231447-40
key-10.3934/math.20231447-49
key-10.3934/math.20231447-47
key-10.3934/math.20231447-48
key-10.3934/math.20231447-45
key-10.3934/math.20231447-46
key-10.3934/math.20231447-43
key-10.3934/math.20231447-44
key-10.3934/math.20231447-52
key-10.3934/math.20231447-53
key-10.3934/math.20231447-50
key-10.3934/math.20231447-51
key-10.3934/math.20231447-16
key-10.3934/math.20231447-17
key-10.3934/math.20231447-14
key-10.3934/math.20231447-15
key-10.3934/math.20231447-12
key-10.3934/math.20231447-13
key-10.3934/math.20231447-9
key-10.3934/math.20231447-10
key-10.3934/math.20231447-54
key-10.3934/math.20231447-11
key-10.3934/math.20231447-7
key-10.3934/math.20231447-8
key-10.3934/math.20231447-5
key-10.3934/math.20231447-6
key-10.3934/math.20231447-3
key-10.3934/math.20231447-4
key-10.3934/math.20231447-1
key-10.3934/math.20231447-18
key-10.3934/math.20231447-2
key-10.3934/math.20231447-19
key-10.3934/math.20231447-20
key-10.3934/math.20231447-27
key-10.3934/math.20231447-28
key-10.3934/math.20231447-25
key-10.3934/math.20231447-26
key-10.3934/math.20231447-23
key-10.3934/math.20231447-24
key-10.3934/math.20231447-21
key-10.3934/math.20231447-22
key-10.3934/math.20231447-29
References_xml – ident: key-10.3934/math.20231447-5
  doi: 10.1155/2021/2524027
– ident: key-10.3934/math.20231447-54
– ident: key-10.3934/math.20231447-16
  doi: 10.1016/j.chaos.2020.109867
– ident: key-10.3934/math.20231447-40
  doi: 10.1016/j.chaos.2017.04.027
– ident: key-10.3934/math.20231447-37
  doi: 10.1080/17513758.2023.2220349
– ident: key-10.3934/math.20231447-11
  doi: 10.1186/s13662-021-03359-z
– ident: key-10.3934/math.20231447-50
– ident: key-10.3934/math.20231447-41
  doi: 10.1016/j.chaos.2019.04.020
– ident: key-10.3934/math.20231447-24
  doi: 10.1016/j.chaos.2020.110048
– ident: key-10.3934/math.20231447-6
  doi: 10.1186/s13662-021-03600-9
– ident: key-10.3934/math.20231447-49
  doi: 10.1017/S0962492900002919
– ident: key-10.3934/math.20231447-26
  doi: 10.1016/j.chaos.2020.109946
– ident: key-10.3934/math.20231447-3
  doi: 10.1016/j.chaos.2020.110032
– ident: key-10.3934/math.20231447-53
  doi: 10.1073/pnas.27.4.222
– ident: key-10.3934/math.20231447-13
  doi: 10.1186/s13662-021-03642-z
– ident: key-10.3934/math.20231447-47
  doi: 10.1016/0893-6080(91)90009-T
– ident: key-10.3934/math.20231447-9
  doi: 10.1016/j.rinp.2021.105130
– ident: key-10.3934/math.20231447-17
  doi: 10.1016/j.chaos.2020.109828
– ident: key-10.3934/math.20231447-51
– ident: key-10.3934/math.20231447-33
  doi: 10.1002/mma.9347
– ident: key-10.3934/math.20231447-1
  doi: 10.1007/s11766-004-0027-8
– ident: key-10.3934/math.20231447-10
  doi: 10.1186/s13661-020-01361-0
– ident: key-10.3934/math.20231447-8
  doi: 10.1016/j.aej.2021.02.011
– ident: key-10.3934/math.20231447-7
  doi: 10.1016/j.chaos.2021.110672
– ident: key-10.3934/math.20231447-23
  doi: 10.1186/s13662-020-02783-x
– ident: key-10.3934/math.20231447-18
  doi: 10.1007/978-3-319-72317-4
– ident: key-10.3934/math.20231447-34
  doi: 10.46793/match.90-3.609X
– ident: key-10.3934/math.20231447-28
  doi: 10.1016/j.chaos.2022.111821
– ident: key-10.3934/math.20231447-19
  doi: 10.1016/j.idm.2017.02.001
– ident: key-10.3934/math.20231447-43
  doi: 10.1007/978-0-387-21593-8
– ident: key-10.3934/math.20231447-52
– ident: key-10.3934/math.20231447-35
  doi: 10.11948/20210313
– ident: key-10.3934/math.20231447-29
  doi: 10.1186/s13662-020-02853-0
– ident: key-10.3934/math.20231447-15
  doi: 10.1186/s13662-020-03092-z
– ident: key-10.3934/math.20231447-14
  doi: 10.3390/fractalfract5040166
– ident: key-10.3934/math.20231447-12
  doi: 10.1155/2022/4320865
– ident: key-10.3934/math.20231447-38
  doi: 10.1007/s12559-023-10155-2
– ident: key-10.3934/math.20231447-21
  doi: 10.1016/j.rinp.2022.105800
– ident: key-10.3934/math.20231447-36
  doi: 10.46793/match.89-1.073X
– ident: key-10.3934/math.20231447-22
  doi: 10.1016/j.chaos.2020.110007
– ident: key-10.3934/math.20231447-39
  doi: 10.46793/match.89-3.529M
– ident: key-10.3934/math.20231447-31
  doi: 10.1155/2022/6502598
– ident: key-10.3934/math.20231447-42
  doi: 10.1016/j.na.2011.10.014
– ident: key-10.3934/math.20231447-45
  doi: 10.1037/h0042519
– ident: key-10.3934/math.20231447-46
  doi: 10.1007/BF02551274
– ident: key-10.3934/math.20231447-48
  doi: 10.1016/S0893-6080(05)80131-5
– ident: key-10.3934/math.20231447-27
  doi: 10.1016/j.apm.2023.02.019
– ident: key-10.3934/math.20231447-20
  doi: 10.1016/j.chaos.2020.110033
– ident: key-10.3934/math.20231447-4
  doi: 10.1016/j.jksus.2022.101914
– ident: key-10.3934/math.20231447-32
  doi: 10.3389/fpubh.2023.1101436
– ident: key-10.3934/math.20231447-30
  doi: 10.1016/j.health.2022.100114
– ident: key-10.3934/math.20231447-44
  doi: 10.1007/BF02478259
– ident: key-10.3934/math.20231447-25
  doi: 10.1155/2021/1273405
– ident: key-10.3934/math.20231447-2
  doi: 10.11948/2016004
SSID ssj0002124274
Score 2.2272913
Snippet In this paper, an analysis of a mathematical model of the coronavirus is carried out by using two fractal-fractional parameters. This dangerous virus infects a...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 28280
SubjectTerms artificial neural networks
fixed-point theorem
fractal-fractional derivative
Title Approximate numerical algorithms and artificial neural networks for analyzing a fractal-fractional mathematical model
URI https://doaj.org/article/8971b1f2fc1f4ad6abc4de35b3468a22
Volume 8
WOSCitedRecordID wos001133603500081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4QW9S4ceJ4LKgVA60YKtQtOicxVEpT1LQIGPjt3DltlY2FJZYTK7ncOb6HL98xditBx8ZXuWeFCSl0k3lgRO75yhiTpjEErnTCy5MajeLJRD83Sn1RTlgND1wzrhNrJYywXZsKKyGLwKQyy4PQBDKKoetWX1_phjNFazAuyBL9rRpUM9CB7KD9R3sPaM5IKqXSUEINrH6nVAaH7GBtDfJeTcUR28nLY7Y_3EKpVids1SPU788p9nNeruoNloJD8TpHv_5tVnEoM07vUWNBcEKodI3L7644WqU4BIqvb9RSHLil_6Kg8FzrAoF8tn0gdag2zikbD_rjh0dvXSvBA_wKl54A0Eb4VoA0NowydMtUDqiABUmpGwJQPpPSkQKrVZYBOmJxZPFiZEwUBmesVc7L_JxxnFpShiDDILUyiJVO0SiMAIQyEhmp2-xuw7vkvUbESNCTICYnRG6yYXKb3RNnt4MIyNqdQPEma_Emf4n34j9ucsn2iKg6cnLFWsvFKr9mu-nHclotbtzMwePwp_8LYfjPHA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+numerical+algorithms+and+artificial+neural+networks+for+analyzing+a+fractal-fractional+mathematical+model&rft.jtitle=AIMS+mathematics&rft.au=Najafi%2C+Hashem&rft.au=Bensayah%2C+Abdallah&rft.au=Tellab%2C+Brahim&rft.au=Etemad%2C+Sina&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=12&rft.spage=28280&rft.epage=28307&rft_id=info:doi/10.3934%2Fmath.20231447&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon