Auxiliary Signal Design for Failure Detection
Many industries, such as transportation and manufacturing, use control systems to insure that parameters such as temperature or altitude behave in a desirable way over time. For example, pilots need assurance that the plane they are flying will maintain a particular heading. An integral part of cont...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Princeton, NJ
Princeton University Press
2004
|
| Edition: | 1 |
| Series: | Princeton Series in Applied Mathematics |
| Subjects: | |
| ISBN: | 1400880041, 9781400880041, 9780691099873, 0691099871 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Table of Contents:
- Auxiliary signal design for failure detection -- Contents -- Preface -- Chapter One: Introduction -- Chapter Two: Failure Detection -- Chapter Three: Multimodel Formulation -- Chapter Four: Direct Optimization Formulations -- Chapter Five: Remaining Problems and Extensions -- Chapter Six: Scilab Programs -- Appendix A: List of Symbols -- Bibliography -- Index.
- Front Matter Table of Contents Preface Chapter One: Introduction Chapter Two: Failure Detection Chapter Three: Multimodel Formulation Chapter Four: Direct Optimization Formulations Chapter Five: Remaining Problems and Extensions Chapter Six: Scilab Programs Appendix A. Bibliography Index
- Title Page Preface Table of Contents 1. Introduction 2. Failure Detection 3. Multimodel Formulation 4. Direct Optimization Formulations 5. Remaining Problems and Extensions 6. Scilab Programs Appendix A: List of Symbols Bibliography Index
- Cover -- Title -- Copyright -- Contents -- Preface -- Chapter 1. Introduction -- 1.1 The Basic Question -- 1.2 Failure Detection -- 1.3 Failure Identification -- 1.4 Active Approach versus Passive Approach -- 1.5 Outline of the Book -- Chapter 2. Failure Detection -- 2.1 Introduction -- 2.2 Static Case -- 2.3 Continuous-Time Systems -- 2.4 Discrete-Time Systems -- 2.5 Real-Time Implementation Issues -- 2.6 Useful Results -- Chapter 3. Multimodel Formulation -- 3.1 Introduction -- 3.2 Static Case -- 3.3 Continuous-Time Case -- 3.4 Case of On-line Measured Input -- 3.5 More GeneralCost Functions -- 3.6 Discrete-Time Case -- 3.7 Suspension Example -- 3.8 Asymptotic Behavior -- 3.9 Useful Results -- Chapter 4. Direct Optimization Formulations -- 4.1 Introduction -- 4.2 Optimization Formulation for Two Models -- 4.3 General m-Model Case -- 4.4 Early Detection -- 4.5 Other Extensions -- 4.6 Systems with Delays -- 4.7 Setting Error Bounds -- 4.8 Model Uncertainty -- Chapter 5. Remaining Problems and Extensions -- 5.1 Direct Extensions -- 5.2 Hybrid and Sampled Data Systems -- 5.3 Relation to Stochastic Modeling -- Chapter 6. Scilab Programs -- 6.1 Introduction -- 6.2 Riccati-based Solution -- 6.3 The Block Diagonalization Approach -- 6.4 Getting Scilab and the Programs -- Appendix A. List of Symbols -- Bibliography -- Index
- Chapter 4. Direct Optimization Formulations --
- Chapter 2. Failure Detection --
- Contents --
- Chapter 1. Introduction --
- Appendix A. List of Symbols --
- Preface --
- Chapter 5. Remaining Problems and Extensions --
- Chapter 6. Scilab Programs --
- Frontmatter --
- Index
- Bibliography --
- Chapter 3. Multimodel Formulation --

