High Glass Transition Epoxy Resins from Biobased Phloroglucinol and Unmodified Kraft Lignin
This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, wer...
Gespeichert in:
| Veröffentlicht in: | ACS omega Jg. 10; H. 45; S. 54236 - 54248 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
American Chemical Society
18.11.2025
|
| ISSN: | 2470-1343, 2470-1343 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values (T g) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2–2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins. |
|---|---|
| AbstractList | This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values (T g) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2–2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins. This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values ( ) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2-2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins. This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values (T g) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2-2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins.This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values (T g) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2-2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins. |
| Author | Potthast, Antje Sulaeva, Irina Dinu, Roxana Rosenau, Thomas Gindl-Altmutter, Wolfgang Janesch, Jan Grasböck, Stefan Mija, Alice |
| AuthorAffiliation | Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources Kompetenzzentrum Holz GmbH BOKU University Institute of Chemistry of Nice Institute of Wood Technology and Renewable Materials, Department of Natural Sciences and Sustainable Resources Wood K PlusCompetence Centre for Wood Composites & Wood Chemistry Core Facility Analysis of Lignocellulosics (ALICE) |
| AuthorAffiliation_xml | – name: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources – name: Wood K PlusCompetence Centre for Wood Composites & Wood Chemistry – name: Institute of Wood Technology and Renewable Materials, Department of Natural Sciences and Sustainable Resources – name: Kompetenzzentrum Holz GmbH – name: BOKU University – name: Institute of Chemistry of Nice – name: Core Facility Analysis of Lignocellulosics (ALICE) |
| Author_xml | – sequence: 1 givenname: Jan orcidid: 0000-0003-3093-9935 surname: Janesch fullname: Janesch, Jan email: jan.janesch@boku.ac.at organization: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources – sequence: 2 givenname: Roxana surname: Dinu fullname: Dinu, Roxana organization: Institute of Chemistry of Nice – sequence: 3 givenname: Thomas orcidid: 0000-0002-6636-9260 surname: Rosenau fullname: Rosenau, Thomas organization: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources – sequence: 4 givenname: Antje orcidid: 0000-0003-1981-2271 surname: Potthast fullname: Potthast, Antje organization: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources – sequence: 5 givenname: Wolfgang orcidid: 0000-0002-8224-6762 surname: Gindl-Altmutter fullname: Gindl-Altmutter, Wolfgang organization: Kompetenzzentrum Holz GmbH – sequence: 6 givenname: Stefan surname: Grasböck fullname: Grasböck, Stefan organization: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources – sequence: 7 givenname: Irina orcidid: 0000-0002-7278-804X surname: Sulaeva fullname: Sulaeva, Irina organization: Core Facility Analysis of Lignocellulosics (ALICE) – sequence: 8 givenname: Alice orcidid: 0000-0001-5208-5956 surname: Mija fullname: Mija, Alice email: alice.mija@univ-cotedazur.fr organization: Institute of Chemistry of Nice |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41280783$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kb1vFDEQxS0URJIjPRVyScEF22uvd0uIQhJxEgglFYU1_tr4tGsf9q5E_nuc3CWiofLI85s3o_dO0VFM0SH0jpJzShj9BKakyQ1wLgxpBWev0Anjkqxpw5ujf-pjdFbKlhBC2451rH2DjjllHZFdc4J-XYfhHl-NUAq-zRBLmEOK-HKX_jzgn66EWLDPacJfQtJQnMU_7seU0zAuJsQ0YogW38Up2eBD7X7L4Ge8CUMM8S167WEs7uzwrtDd18vbi-v15vvVzcXnzRqavp_Xlrm2M8RTozvdmL61VmhvNeVghBRNY4xtvWfMtkTUigF4YXWrOfUgBDQrdLPXtQm2apfDBPlBJQjq6SPlQUGegxmdolz3TBrStdpxaVxPpdUOZPe4QIKoWh_2Wrucfi-uzGoKxbhxhOjSUlTDJO-rffWsFXp_QBc9Ofuy-NncCpA9YHIqJTv_glCiHiNUzxGqQ4R15ON-pHbUNi05VuP-j_8FQV-f4g |
| Cites_doi | 10.1002/cssc.202300076 10.1016/j.watres.2014.09.043 10.1021/acsapm.4c03944 10.1016/j.eurpolymj.2021.110933 10.1002/cssc.202002553 10.1016/j.ijbiomac.2023.127760 10.3390/polym12030542 10.1177/0731684407081365 10.1021/acs.biomac.9b01248 10.1021/sc500478f 10.1039/D1GC02732H 10.1002/cssc.202100496 10.1016/j.polymertesting.2017.02.023 10.1002/pc.27366 10.1016/j.jcou.2017.12.007 10.1016/j.indcrop.2021.114135 10.1515/hf-2013-0023 10.1002/elps.201400133 10.1016/j.eurpolymj.2015.03.062 10.1016/j.eurpolymj.2015.03.029 10.1002/cssc.202301840 10.3390/polym12112645 10.1016/j.ijadhadh.2013.09.003 10.1002/cssc.202002729 10.1021/acssuschemeng.0c01759 10.3390/polym15020439 10.1021/acsapm.4c02804 10.1515/hf-2014-0281 10.35812/CelluloseChemTechnol.2020.54.89 10.1021/acsapm.9b01007 10.15376/biores.7.4.5737-5748 10.1002/pen.20468 10.1016/j.ijbiomac.2022.12.322 10.1002/jcc.23658 10.1016/j.compositesa.2016.02.024 10.1002/mame.201700341 10.15376/biores.6.4.5206-5223 10.1002/cssc.201801177 10.1016/j.indcrop.2024.119645 10.15376/biores.17.4.6626-6637 10.1016/j.cogsc.2022.100687 10.1039/C8GC01299G 10.1016/j.eurpolymj.2021.110389 10.1002/cssc.202300492 10.1016/j.eurpolymj.2014.10.011 10.1021/acssuschemeng.2c06990 10.3390/polym16040553 10.3390/s100100684 10.1016/B978-0-08-045316-3.00009-0 10.1016/j.rser.2020.109768 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors. Published by American Chemical Society 2025 The Authors. Published by American Chemical Society. |
| Copyright_xml | – notice: 2025 The Authors. Published by American Chemical Society – notice: 2025 The Authors. Published by American Chemical Society. |
| DBID | N~. AAYXX CITATION NPM 7X8 DOA |
| DOI | 10.1021/acsomega.5c06542 |
| DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic DOAJ |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2470-1343 |
| EndPage | 54248 |
| ExternalDocumentID | oai_doaj_org_article_14b927c086be47ce917dbea786ff27a5 41280783 10_1021_acsomega_5c06542 d107358624 |
| Genre | Journal Article |
| GroupedDBID | 53G AAFWJ AAHBH ABBLG ABUCX ACS ADBBV ADUCK AFEFF AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE M~E N~. OK1 RPM VF5 AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-a399t-d2e68c0f1cb8b3c96dd5bfdb14ac57533ccd6ff22d605d6f2aaf5db6b41fa55a3 |
| IEDL.DBID | N~. |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001613141600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2470-1343 |
| IngestDate | Mon Nov 24 19:21:12 EST 2025 Mon Nov 24 17:31:03 EST 2025 Thu Nov 27 01:52:06 EST 2025 Thu Nov 20 00:56:37 EST 2025 Wed Nov 19 03:30:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 45 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2025 The Authors. Published by American Chemical Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a399t-d2e68c0f1cb8b3c96dd5bfdb14ac57533ccd6ff22d605d6f2aaf5db6b41fa55a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8224-6762 0000-0001-5208-5956 0000-0003-3093-9935 0000-0002-6636-9260 0000-0003-1981-2271 0000-0002-7278-804X |
| OpenAccessLink | http://dx.doi.org/10.1021/acsomega.5c06542 |
| PMID | 41280783 |
| PQID | 3274941253 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_14b927c086be47ce917dbea786ff27a5 proquest_miscellaneous_3274941253 pubmed_primary_41280783 crossref_primary_10_1021_acsomega_5c06542 acs_journals_10_1021_acsomega_5c06542 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-18 |
| PublicationDateYYYYMMDD | 2025-11-18 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS omega |
| PublicationTitleAlternate | ACS Omega |
| PublicationYear | 2025 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref23/cit23 doi: 10.1002/cssc.202300076 – ident: ref1/cit1 doi: 10.1016/j.watres.2014.09.043 – ident: ref34/cit34 doi: 10.1021/acsapm.4c03944 – ident: ref46/cit46 doi: 10.1016/j.eurpolymj.2021.110933 – ident: ref4/cit4 doi: 10.1002/cssc.202002553 – ident: ref17/cit17 doi: 10.1016/j.ijbiomac.2023.127760 – ident: ref35/cit35 doi: 10.3390/polym12030542 – ident: ref52/cit52 doi: 10.1177/0731684407081365 – ident: ref36/cit36 doi: 10.1021/acs.biomac.9b01248 – ident: ref14/cit14 doi: 10.1021/sc500478f – ident: ref31/cit31 doi: 10.1039/D1GC02732H – ident: ref5/cit5 doi: 10.1002/cssc.202100496 – ident: ref50/cit50 doi: 10.1016/j.polymertesting.2017.02.023 – ident: ref12/cit12 doi: 10.1002/pc.27366 – ident: ref21/cit21 doi: 10.1016/j.jcou.2017.12.007 – ident: ref20/cit20 doi: 10.1016/j.indcrop.2021.114135 – ident: ref22/cit22 doi: 10.1515/hf-2013-0023 – ident: ref39/cit39 doi: 10.1002/elps.201400133 – ident: ref29/cit29 doi: 10.1016/j.eurpolymj.2015.03.062 – ident: ref40/cit40 – ident: ref19/cit19 doi: 10.1016/j.eurpolymj.2015.03.029 – ident: ref9/cit9 doi: 10.1002/cssc.202301840 – ident: ref32/cit32 doi: 10.3390/polym12112645 – ident: ref26/cit26 doi: 10.1016/j.ijadhadh.2013.09.003 – ident: ref8/cit8 doi: 10.1002/cssc.202002729 – ident: ref28/cit28 doi: 10.1021/acssuschemeng.0c01759 – ident: ref13/cit13 doi: 10.3390/polym15020439 – ident: ref42/cit42 – ident: ref37/cit37 doi: 10.1021/acsapm.4c02804 – ident: ref43/cit43 doi: 10.1515/hf-2014-0281 – ident: ref30/cit30 doi: 10.35812/CelluloseChemTechnol.2020.54.89 – ident: ref3/cit3 doi: 10.1021/acsapm.9b01007 – ident: ref25/cit25 doi: 10.15376/biores.7.4.5737-5748 – ident: ref49/cit49 doi: 10.1002/pen.20468 – ident: ref11/cit11 doi: 10.1016/j.ijbiomac.2022.12.322 – ident: ref48/cit48 doi: 10.1002/jcc.23658 – ident: ref53/cit53 doi: 10.1016/j.compositesa.2016.02.024 – ident: ref51/cit51 doi: 10.1002/mame.201700341 – ident: ref27/cit27 doi: 10.15376/biores.6.4.5206-5223 – ident: ref44/cit44 doi: 10.1002/cssc.201801177 – ident: ref38/cit38 doi: 10.1016/j.indcrop.2024.119645 – ident: ref10/cit10 doi: 10.15376/biores.17.4.6626-6637 – ident: ref47/cit47 doi: 10.1016/j.cogsc.2022.100687 – ident: ref15/cit15 doi: 10.1039/C8GC01299G – ident: ref16/cit16 doi: 10.1016/j.eurpolymj.2021.110389 – ident: ref6/cit6 doi: 10.1002/cssc.202300492 – ident: ref33/cit33 doi: 10.1016/j.eurpolymj.2014.10.011 – ident: ref18/cit18 doi: 10.1021/acssuschemeng.2c06990 – ident: ref24/cit24 doi: 10.3390/polym16040553 – ident: ref41/cit41 – ident: ref45/cit45 doi: 10.3390/s100100684 – ident: ref2/cit2 doi: 10.1016/B978-0-08-045316-3.00009-0 – ident: ref7/cit7 doi: 10.1016/j.rser.2020.109768 |
| SSID | ssj0001682826 |
| Score | 2.309438 |
| Snippet | This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and... |
| SourceID | doaj proquest pubmed crossref acs |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 54236 |
| SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSx4xEA5FCu2l9LtvtZJCe-hh626STXaPVdRCi0ipIPQQJl92oWbl3VfRf-8kuyt6aHvxtoRAwjMD8zyZ2RlCPrgAshSBF22A9HQTQtFaJQpuG8ea0qP2GYdNqIOD5vi4Pbw16ivVhI3tgUfgtiphWqYsMm_jhbIe5YUzHlQjQ2AKcvfSUrW3xFR-XZGoJNicl8Q4tgV26E_9CXyubR7SlKKRHe5Eo9y0_-9MM0ecvafkyUQV6Zfxis_IAx-fk0c784S2F-RXKtKg-4n_0hxzcvkV3T3rL6_oDz90caDp9xG63fUpWjl6-BvleZ_K1LvY_6EQHT2Kp73rAjJR-m0JYUW_dyexiy_J0d7uz52vxTQsoQDkGKvCMS8bW4bKmsZw20rnahOcqQRYpGScW-sSZMyhgMEvBhBqZ6QRVYC6Bv6KrMU--jeEApNeMaHAuyCkByiDk9bIMqjatrxZkI8InZ6cfdA5j80qPUOsJ4gX5NMMrj4be2f8Y-92Qv9mX-p6nRfQF_TkC_p_vrAg72fbaTRFSn1A9P35oDmK71YgmeML8no06s1RuJya7vO393GFdfKYpQnBqVCw2SBrq-W5f0ce2otVNyw3s5NeA8il7sY priority: 102 providerName: Directory of Open Access Journals |
| Title | High Glass Transition Epoxy Resins from Biobased Phloroglucinol and Unmodified Kraft Lignin |
| URI | http://dx.doi.org/10.1021/acsomega.5c06542 https://www.ncbi.nlm.nih.gov/pubmed/41280783 https://www.proquest.com/docview/3274941253 https://doaj.org/article/14b927c086be47ce917dbea786ff27a5 |
| Volume | 10 |
| WOSCitedRecordID | wos001613141600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20250325 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20160731 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20250624 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20250121 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-2Cvpi_aqeH0cEffBh626STbKPtrQKylHEwoEPy-SrLrTZcnsVffFvd5Lba6mo6NsSwu5mZsL8fpnJDCEvXABZisCLJkA6ugmhaKwSBbfaMV165D6rZhNqNtPzeXN4WSbn1wg-q16DHfpTfww7tc3dlTbIdYYoN1nw7MfO5XmKRO6Qu6sxocqi4oKPUcnfvST5Ijtc8UW5ZP-fcWb2Nwdb__Ond8jtEVXSNyszuEuu-XiP3NxbN3O7Tz6nfA76NkFlmt1TztSi-2f9t-_0ox-6ONB004Tudn1ybI4efkEm36eM9i72JxSio0fxtHddQNBK3y8gLOmH7jh28QE5Otj_tPeuGPsqFIBwZFk45qW2Zais0YbbRjpXm-BMJcAieuPcWidDYMwh18EnBhBqZ6QRVYC6Br5NNmMf_SNCgUmvUODgXRDSA5TBSWtkGVRtG64n5CVKpR33xdDmkDer2rWo2lFUE_JqrYn2bFVm4y9zd5OqLualAtl5AHXRjvsNGY1pmLJI2IwXynpkpc54UDotTEE9Ic_Xim5RFSlKAtH350PLkac3AnEfn5CHKwu4-BQOp_r8_PE_LusJucVSv-CUNqifks3l4tw_Izfs12U3LKZkQ831NJ8CTLMx_wR1__Ah |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEB9qFerF-u2zfkTQg4etu0k22T3a0lrp81GkhYKHJZ91wWbL21fRS__2TvJ2WwQV8baEkE1mEub3y0xmAF5br0TOPctqr-LVjfdZbSTPmKksrXKH3GdZbELOZtXxcX2wAsX4FgYn0eNIfXLiX2cXKN5hW3fqTtRmaVKRpRtwsxQ8eWZnF5vX1yoCKUQqska5zLOCcTY4J383SDRJpv_FJKXM_X-Gm8ns7K7_x4Tvwp0BY5L3y01xD1ZcuA9r22NptwfwJUZ3kA8ROJNkrFLcFtk56378JJ9d34aexHcnZKvtopmz5OAr8vouxre3oftGVLDkKJx2tvUIYcn-XPkFmbYnoQ0P4Wh353B7LxuqLGQKwckis9SJyuS-MLrSzNTC2lJ7qwuuDGI5xoyxwntKLTIf_KJK-dJqoXnhVVkq9ghWQxfcEyCKCidR7spZz4VTKvdWGC1yL0tTs2oCb1AqzXBK-iY5wGnRjKJqBlFN4O2okOZsmXTjL323osau-sV02akB9dEMpw_5ja6pNEjftOPSOOSoVjslq7gwqcoJvBr13aAqos9EBded9w1D1l5zRIFsAo-XG-HqV9gcs_Wzp_-4rJewtnf4adpMP872N-A2jZWEY0Bh9QxWF_Nz9xxume-Ltp-_SHv6EiVa9qM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VgqAXnoUuTyPBgUNK4leSIy1dQK1WK0SlShwiP0sk6qw2WwQXfjtjb1KEBAhxiyzLseehmc8zngF4Zr2SOfcsq72KVzfeZ7UpecZMZWmVO8Q-62YT5WxWnZzU8w0Q41sY3ESPK_UpiB-1emH9UGGgeInj3Zk7VbvCpEZLl-CykFxGwZ593_15tSIRRqRGa5SXeVYwzoYA5e8WiWbJ9L-YpVS9_88uZzI90xv_uembcH3wNcmrtXDcgg0XbsO1_bHF2x34GLM8yJvoQJNktFL-FjlYdF-_kfeub0NP4vsTstd20dxZMv-E-L6Lee5t6D4TFSw5DmedbT26suRwqfyKHLWnoQ3bcDw9-LD_Nhu6LWQKnZRVZqmTlcl9YXSlmamltUJ7qwuuDPp0jBljpfeUWkRA-EWV8sJqqXnhlRCK3YXN0AW3A0RR6UqkvXLWc-mUyr2VRsvcl8LUrJrAc6RKM2hL36RAOC2akVTNQKoJvBiZ0izWxTf-Mncvcu1iXiybnQaQJ82ghYhzdE1LgzBOO14ah1jVaqfKKh6sVGICT0eeN8iKGDtRwXXnfcMQvdccvUE2gXtrYbj4FQ7Hqv3s_j8e6wlcnb-eNkfvZocPYIvGhsIxr7B6CJur5bl7BFfMl1XbLx8nsf4BHx_5Jg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Glass+Transition+Epoxy+Resins+from+Biobased+Phloroglucinol+and+Unmodified+Kraft+Lignin&rft.jtitle=ACS+omega&rft.au=Janesch%2C+Jan&rft.au=Dinu%2C+Roxana&rft.au=Rosenau%2C+Thomas&rft.au=Potthast%2C+Antje&rft.date=2025-11-18&rft.eissn=2470-1343&rft.volume=10&rft.issue=45&rft.spage=54236&rft_id=info:doi/10.1021%2Facsomega.5c06542&rft_id=info%3Apmid%2F41280783&rft.externalDocID=41280783 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |