High Glass Transition Epoxy Resins from Biobased Phloroglucinol and Unmodified Kraft Lignin

This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega Jg. 10; H. 45; S. 54236 - 54248
Hauptverfasser: Janesch, Jan, Dinu, Roxana, Rosenau, Thomas, Potthast, Antje, Gindl-Altmutter, Wolfgang, Grasböck, Stefan, Sulaeva, Irina, Mija, Alice
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Chemical Society 18.11.2025
ISSN:2470-1343, 2470-1343
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values (T g) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2–2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins.
AbstractList This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values (T g) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2–2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins.
This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values ( ) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2-2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins.
This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values (T g) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2-2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins.This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and unmodified Kraft lignin (KL), aiming to create thermoset materials from renewable resources. Two types of KL, sourced from hardwood and softwood, were incorporated into the TGPh matrix at high loadings of 30% wt. to achieve materials with potentially ∼95% renewable content. The resulting epoxy resins were characterized using thermally resolved Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and scanning electron microscopy (SEM). All samples exhibited >97% gel content after 3 days in various solvents, indicating complete cross-linking. DSC and FTIR analyses confirmed the interaction of KL with the resin, suggesting that lignin may act as a cohardener. The addition of lignin increased the glass transition values (T g) from 146 °C for the pure TGPh homopolymer to 178 and 187 °C for TGPh cured with softwood and hardwood KLs, respectively, indicating an increased cross-link density. Although the tensile strength of the resins decreased from 51.1 ± 16.0 MPa (mean ± SD) for the TGPh homopolymer to approximately 20.0 ± 2.8 MPa (mean ± SD) and 16.3 ± 2.3 MPa (mean ± SD) for the TGPh thermosets obtained with softwood and hardwood KLs, respectively, the stiffness was maintained at a tensile modulus of 2-2.5 GPa. SEM analysis revealed inhomogeneities in the lignin-containing samples, potentially explaining their lower mechanical properties. The findings demonstrate the potential of these biobased epoxy resins, particularly for applications such as electronics, automotive, and aerospace, which require high glass transition temperatures. Moreover, the results help in understanding the active action of lignin in the cross-linking of epoxy resins.
Author Potthast, Antje
Sulaeva, Irina
Dinu, Roxana
Rosenau, Thomas
Gindl-Altmutter, Wolfgang
Janesch, Jan
Grasböck, Stefan
Mija, Alice
AuthorAffiliation Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources
Kompetenzzentrum Holz GmbH
BOKU University
Institute of Chemistry of Nice
Institute of Wood Technology and Renewable Materials, Department of Natural Sciences and Sustainable Resources
Wood K PlusCompetence Centre for Wood Composites & Wood Chemistry
Core Facility Analysis of Lignocellulosics (ALICE)
AuthorAffiliation_xml – name: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources
– name: Wood K PlusCompetence Centre for Wood Composites & Wood Chemistry
– name: Institute of Wood Technology and Renewable Materials, Department of Natural Sciences and Sustainable Resources
– name: Kompetenzzentrum Holz GmbH
– name: BOKU University
– name: Institute of Chemistry of Nice
– name: Core Facility Analysis of Lignocellulosics (ALICE)
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0003-3093-9935
  surname: Janesch
  fullname: Janesch, Jan
  email: jan.janesch@boku.ac.at
  organization: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources
– sequence: 2
  givenname: Roxana
  surname: Dinu
  fullname: Dinu, Roxana
  organization: Institute of Chemistry of Nice
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0002-6636-9260
  surname: Rosenau
  fullname: Rosenau, Thomas
  organization: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources
– sequence: 4
  givenname: Antje
  orcidid: 0000-0003-1981-2271
  surname: Potthast
  fullname: Potthast, Antje
  organization: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources
– sequence: 5
  givenname: Wolfgang
  orcidid: 0000-0002-8224-6762
  surname: Gindl-Altmutter
  fullname: Gindl-Altmutter, Wolfgang
  organization: Kompetenzzentrum Holz GmbH
– sequence: 6
  givenname: Stefan
  surname: Grasböck
  fullname: Grasböck, Stefan
  organization: Institute of Chemistry of Renewable Resources, Department of Natural Sciences and Sustainable Resources
– sequence: 7
  givenname: Irina
  orcidid: 0000-0002-7278-804X
  surname: Sulaeva
  fullname: Sulaeva, Irina
  organization: Core Facility Analysis of Lignocellulosics (ALICE)
– sequence: 8
  givenname: Alice
  orcidid: 0000-0001-5208-5956
  surname: Mija
  fullname: Mija, Alice
  email: alice.mija@univ-cotedazur.fr
  organization: Institute of Chemistry of Nice
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41280783$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1vFDEQxS0URJIjPRVyScEF22uvd0uIQhJxEgglFYU1_tr4tGsf9q5E_nuc3CWiofLI85s3o_dO0VFM0SH0jpJzShj9BKakyQ1wLgxpBWev0Anjkqxpw5ujf-pjdFbKlhBC2451rH2DjjllHZFdc4J-XYfhHl-NUAq-zRBLmEOK-HKX_jzgn66EWLDPacJfQtJQnMU_7seU0zAuJsQ0YogW38Up2eBD7X7L4Ge8CUMM8S167WEs7uzwrtDd18vbi-v15vvVzcXnzRqavp_Xlrm2M8RTozvdmL61VmhvNeVghBRNY4xtvWfMtkTUigF4YXWrOfUgBDQrdLPXtQm2apfDBPlBJQjq6SPlQUGegxmdolz3TBrStdpxaVxPpdUOZPe4QIKoWh_2Wrucfi-uzGoKxbhxhOjSUlTDJO-rffWsFXp_QBc9Ofuy-NncCpA9YHIqJTv_glCiHiNUzxGqQ4R15ON-pHbUNi05VuP-j_8FQV-f4g
Cites_doi 10.1002/cssc.202300076
10.1016/j.watres.2014.09.043
10.1021/acsapm.4c03944
10.1016/j.eurpolymj.2021.110933
10.1002/cssc.202002553
10.1016/j.ijbiomac.2023.127760
10.3390/polym12030542
10.1177/0731684407081365
10.1021/acs.biomac.9b01248
10.1021/sc500478f
10.1039/D1GC02732H
10.1002/cssc.202100496
10.1016/j.polymertesting.2017.02.023
10.1002/pc.27366
10.1016/j.jcou.2017.12.007
10.1016/j.indcrop.2021.114135
10.1515/hf-2013-0023
10.1002/elps.201400133
10.1016/j.eurpolymj.2015.03.062
10.1016/j.eurpolymj.2015.03.029
10.1002/cssc.202301840
10.3390/polym12112645
10.1016/j.ijadhadh.2013.09.003
10.1002/cssc.202002729
10.1021/acssuschemeng.0c01759
10.3390/polym15020439
10.1021/acsapm.4c02804
10.1515/hf-2014-0281
10.35812/CelluloseChemTechnol.2020.54.89
10.1021/acsapm.9b01007
10.15376/biores.7.4.5737-5748
10.1002/pen.20468
10.1016/j.ijbiomac.2022.12.322
10.1002/jcc.23658
10.1016/j.compositesa.2016.02.024
10.1002/mame.201700341
10.15376/biores.6.4.5206-5223
10.1002/cssc.201801177
10.1016/j.indcrop.2024.119645
10.15376/biores.17.4.6626-6637
10.1016/j.cogsc.2022.100687
10.1039/C8GC01299G
10.1016/j.eurpolymj.2021.110389
10.1002/cssc.202300492
10.1016/j.eurpolymj.2014.10.011
10.1021/acssuschemeng.2c06990
10.3390/polym16040553
10.3390/s100100684
10.1016/B978-0-08-045316-3.00009-0
10.1016/j.rser.2020.109768
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society.
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society.
DBID N~.
AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1021/acsomega.5c06542
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
DOAJ
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 54248
ExternalDocumentID oai_doaj_org_article_14b927c086be47ce917dbea786ff27a5
41280783
10_1021_acsomega_5c06542
d107358624
Genre Journal Article
GroupedDBID 53G
AAFWJ
AAHBH
ABBLG
ABUCX
ACS
ADBBV
ADUCK
AFEFF
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
M~E
N~.
OK1
RPM
VF5
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-a399t-d2e68c0f1cb8b3c96dd5bfdb14ac57533ccd6ff22d605d6f2aaf5db6b41fa55a3
IEDL.DBID N~.
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001613141600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-1343
IngestDate Mon Nov 24 19:21:12 EST 2025
Mon Nov 24 17:31:03 EST 2025
Thu Nov 27 01:52:06 EST 2025
Thu Nov 20 00:56:37 EST 2025
Wed Nov 19 03:30:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License https://creativecommons.org/licenses/by/4.0
2025 The Authors. Published by American Chemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-d2e68c0f1cb8b3c96dd5bfdb14ac57533ccd6ff22d605d6f2aaf5db6b41fa55a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8224-6762
0000-0001-5208-5956
0000-0003-3093-9935
0000-0002-6636-9260
0000-0003-1981-2271
0000-0002-7278-804X
OpenAccessLink http://dx.doi.org/10.1021/acsomega.5c06542
PMID 41280783
PQID 3274941253
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_14b927c086be47ce917dbea786ff27a5
proquest_miscellaneous_3274941253
pubmed_primary_41280783
crossref_primary_10_1021_acsomega_5c06542
acs_journals_10_1021_acsomega_5c06542
PublicationCentury 2000
PublicationDate 2025-11-18
PublicationDateYYYYMMDD 2025-11-18
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1002/cssc.202300076
– ident: ref1/cit1
  doi: 10.1016/j.watres.2014.09.043
– ident: ref34/cit34
  doi: 10.1021/acsapm.4c03944
– ident: ref46/cit46
  doi: 10.1016/j.eurpolymj.2021.110933
– ident: ref4/cit4
  doi: 10.1002/cssc.202002553
– ident: ref17/cit17
  doi: 10.1016/j.ijbiomac.2023.127760
– ident: ref35/cit35
  doi: 10.3390/polym12030542
– ident: ref52/cit52
  doi: 10.1177/0731684407081365
– ident: ref36/cit36
  doi: 10.1021/acs.biomac.9b01248
– ident: ref14/cit14
  doi: 10.1021/sc500478f
– ident: ref31/cit31
  doi: 10.1039/D1GC02732H
– ident: ref5/cit5
  doi: 10.1002/cssc.202100496
– ident: ref50/cit50
  doi: 10.1016/j.polymertesting.2017.02.023
– ident: ref12/cit12
  doi: 10.1002/pc.27366
– ident: ref21/cit21
  doi: 10.1016/j.jcou.2017.12.007
– ident: ref20/cit20
  doi: 10.1016/j.indcrop.2021.114135
– ident: ref22/cit22
  doi: 10.1515/hf-2013-0023
– ident: ref39/cit39
  doi: 10.1002/elps.201400133
– ident: ref29/cit29
  doi: 10.1016/j.eurpolymj.2015.03.062
– ident: ref40/cit40
– ident: ref19/cit19
  doi: 10.1016/j.eurpolymj.2015.03.029
– ident: ref9/cit9
  doi: 10.1002/cssc.202301840
– ident: ref32/cit32
  doi: 10.3390/polym12112645
– ident: ref26/cit26
  doi: 10.1016/j.ijadhadh.2013.09.003
– ident: ref8/cit8
  doi: 10.1002/cssc.202002729
– ident: ref28/cit28
  doi: 10.1021/acssuschemeng.0c01759
– ident: ref13/cit13
  doi: 10.3390/polym15020439
– ident: ref42/cit42
– ident: ref37/cit37
  doi: 10.1021/acsapm.4c02804
– ident: ref43/cit43
  doi: 10.1515/hf-2014-0281
– ident: ref30/cit30
  doi: 10.35812/CelluloseChemTechnol.2020.54.89
– ident: ref3/cit3
  doi: 10.1021/acsapm.9b01007
– ident: ref25/cit25
  doi: 10.15376/biores.7.4.5737-5748
– ident: ref49/cit49
  doi: 10.1002/pen.20468
– ident: ref11/cit11
  doi: 10.1016/j.ijbiomac.2022.12.322
– ident: ref48/cit48
  doi: 10.1002/jcc.23658
– ident: ref53/cit53
  doi: 10.1016/j.compositesa.2016.02.024
– ident: ref51/cit51
  doi: 10.1002/mame.201700341
– ident: ref27/cit27
  doi: 10.15376/biores.6.4.5206-5223
– ident: ref44/cit44
  doi: 10.1002/cssc.201801177
– ident: ref38/cit38
  doi: 10.1016/j.indcrop.2024.119645
– ident: ref10/cit10
  doi: 10.15376/biores.17.4.6626-6637
– ident: ref47/cit47
  doi: 10.1016/j.cogsc.2022.100687
– ident: ref15/cit15
  doi: 10.1039/C8GC01299G
– ident: ref16/cit16
  doi: 10.1016/j.eurpolymj.2021.110389
– ident: ref6/cit6
  doi: 10.1002/cssc.202300492
– ident: ref33/cit33
  doi: 10.1016/j.eurpolymj.2014.10.011
– ident: ref18/cit18
  doi: 10.1021/acssuschemeng.2c06990
– ident: ref24/cit24
  doi: 10.3390/polym16040553
– ident: ref41/cit41
– ident: ref45/cit45
  doi: 10.3390/s100100684
– ident: ref2/cit2
  doi: 10.1016/B978-0-08-045316-3.00009-0
– ident: ref7/cit7
  doi: 10.1016/j.rser.2020.109768
SSID ssj0001682826
Score 2.309438
Snippet This study investigates the development of high-performance epoxy resins derived from potentially biobased phloroglucinol triglycidyl ether (TGPh) and...
SourceID doaj
proquest
pubmed
crossref
acs
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 54236
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSx4xEA5FCu2l9LtvtZJCe-hh626STXaPVdRCi0ipIPQQJl92oWbl3VfRf-8kuyt6aHvxtoRAwjMD8zyZ2RlCPrgAshSBF22A9HQTQtFaJQpuG8ea0qP2GYdNqIOD5vi4Pbw16ivVhI3tgUfgtiphWqYsMm_jhbIe5YUzHlQjQ2AKcvfSUrW3xFR-XZGoJNicl8Q4tgV26E_9CXyubR7SlKKRHe5Eo9y0_-9MM0ecvafkyUQV6Zfxis_IAx-fk0c784S2F-RXKtKg-4n_0hxzcvkV3T3rL6_oDz90caDp9xG63fUpWjl6-BvleZ_K1LvY_6EQHT2Kp73rAjJR-m0JYUW_dyexiy_J0d7uz52vxTQsoQDkGKvCMS8bW4bKmsZw20rnahOcqQRYpGScW-sSZMyhgMEvBhBqZ6QRVYC6Bv6KrMU--jeEApNeMaHAuyCkByiDk9bIMqjatrxZkI8InZ6cfdA5j80qPUOsJ4gX5NMMrj4be2f8Y-92Qv9mX-p6nRfQF_TkC_p_vrAg72fbaTRFSn1A9P35oDmK71YgmeML8no06s1RuJya7vO393GFdfKYpQnBqVCw2SBrq-W5f0ce2otVNyw3s5NeA8il7sY
  priority: 102
  providerName: Directory of Open Access Journals
Title High Glass Transition Epoxy Resins from Biobased Phloroglucinol and Unmodified Kraft Lignin
URI http://dx.doi.org/10.1021/acsomega.5c06542
https://www.ncbi.nlm.nih.gov/pubmed/41280783
https://www.proquest.com/docview/3274941253
https://doaj.org/article/14b927c086be47ce917dbea786ff27a5
Volume 10
WOSCitedRecordID wos001613141600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20250325
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20160731
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20250624
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20250121
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-2Cvpi_aqeH0cEffBh626STbKPtrQKylHEwoEPy-SrLrTZcnsVffFvd5Lba6mo6NsSwu5mZsL8fpnJDCEvXABZisCLJkA6ugmhaKwSBbfaMV165D6rZhNqNtPzeXN4WSbn1wg-q16DHfpTfww7tc3dlTbIdYYoN1nw7MfO5XmKRO6Qu6sxocqi4oKPUcnfvST5Ijtc8UW5ZP-fcWb2Nwdb__Ond8jtEVXSNyszuEuu-XiP3NxbN3O7Tz6nfA76NkFlmt1TztSi-2f9t-_0ox-6ONB004Tudn1ybI4efkEm36eM9i72JxSio0fxtHddQNBK3y8gLOmH7jh28QE5Otj_tPeuGPsqFIBwZFk45qW2Zais0YbbRjpXm-BMJcAieuPcWidDYMwh18EnBhBqZ6QRVYC6Br5NNmMf_SNCgUmvUODgXRDSA5TBSWtkGVRtG64n5CVKpR33xdDmkDer2rWo2lFUE_JqrYn2bFVm4y9zd5OqLualAtl5AHXRjvsNGY1pmLJI2IwXynpkpc54UDotTEE9Ic_Xim5RFSlKAtH350PLkac3AnEfn5CHKwu4-BQOp_r8_PE_LusJucVSv-CUNqifks3l4tw_Izfs12U3LKZkQ831NJ8CTLMx_wR1__Ah
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEB9qFerF-u2zfkTQg4etu0k22T3a0lrp81GkhYKHJZ91wWbL21fRS__2TvJ2WwQV8baEkE1mEub3y0xmAF5br0TOPctqr-LVjfdZbSTPmKksrXKH3GdZbELOZtXxcX2wAsX4FgYn0eNIfXLiX2cXKN5hW3fqTtRmaVKRpRtwsxQ8eWZnF5vX1yoCKUQqska5zLOCcTY4J383SDRJpv_FJKXM_X-Gm8ns7K7_x4Tvwp0BY5L3y01xD1ZcuA9r22NptwfwJUZ3kA8ROJNkrFLcFtk56378JJ9d34aexHcnZKvtopmz5OAr8vouxre3oftGVLDkKJx2tvUIYcn-XPkFmbYnoQ0P4Wh353B7LxuqLGQKwckis9SJyuS-MLrSzNTC2lJ7qwuuDGI5xoyxwntKLTIf_KJK-dJqoXnhVVkq9ghWQxfcEyCKCidR7spZz4VTKvdWGC1yL0tTs2oCb1AqzXBK-iY5wGnRjKJqBlFN4O2okOZsmXTjL323osau-sV02akB9dEMpw_5ja6pNEjftOPSOOSoVjslq7gwqcoJvBr13aAqos9EBded9w1D1l5zRIFsAo-XG-HqV9gcs_Wzp_-4rJewtnf4adpMP872N-A2jZWEY0Bh9QxWF_Nz9xxume-Ltp-_SHv6EiVa9qM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VgqAXnoUuTyPBgUNK4leSIy1dQK1WK0SlShwiP0sk6qw2WwQXfjtjb1KEBAhxiyzLseehmc8zngF4Zr2SOfcsq72KVzfeZ7UpecZMZWmVO8Q-62YT5WxWnZzU8w0Q41sY3ESPK_UpiB-1emH9UGGgeInj3Zk7VbvCpEZLl-CykFxGwZ593_15tSIRRqRGa5SXeVYwzoYA5e8WiWbJ9L-YpVS9_88uZzI90xv_uembcH3wNcmrtXDcgg0XbsO1_bHF2x34GLM8yJvoQJNktFL-FjlYdF-_kfeub0NP4vsTstd20dxZMv-E-L6Lee5t6D4TFSw5DmedbT26suRwqfyKHLWnoQ3bcDw9-LD_Nhu6LWQKnZRVZqmTlcl9YXSlmamltUJ7qwuuDPp0jBljpfeUWkRA-EWV8sJqqXnhlRCK3YXN0AW3A0RR6UqkvXLWc-mUyr2VRsvcl8LUrJrAc6RKM2hL36RAOC2akVTNQKoJvBiZ0izWxTf-Mncvcu1iXiybnQaQJ82ghYhzdE1LgzBOO14ah1jVaqfKKh6sVGICT0eeN8iKGDtRwXXnfcMQvdccvUE2gXtrYbj4FQ7Hqv3s_j8e6wlcnb-eNkfvZocPYIvGhsIxr7B6CJur5bl7BFfMl1XbLx8nsf4BHx_5Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Glass+Transition+Epoxy+Resins+from+Biobased+Phloroglucinol+and+Unmodified+Kraft+Lignin&rft.jtitle=ACS+omega&rft.au=Janesch%2C+Jan&rft.au=Dinu%2C+Roxana&rft.au=Rosenau%2C+Thomas&rft.au=Potthast%2C+Antje&rft.date=2025-11-18&rft.eissn=2470-1343&rft.volume=10&rft.issue=45&rft.spage=54236&rft_id=info:doi/10.1021%2Facsomega.5c06542&rft_id=info%3Apmid%2F41280783&rft.externalDocID=41280783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon