Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl
van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate th...
Uloženo v:
| Vydáno v: | ACS nano Ročník 13; číslo 10; s. 11353 - 11362 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Chemical Society
22.10.2019
|
| Témata: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin–phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10–11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices. |
|---|---|
| AbstractList | van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin-phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10-11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices.van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin-phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10-11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices. van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin-phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices. van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin–phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10–11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices. |
| Author | Shen, Wanfu Huang, Li Qu, Zhe Li, Hexuan Zhong, Fang Shi, Jia Wu, Minghui Zhang, Qing-ming Wang, Yimeng Sun, Zhaoyang Hu, Chunguang Hu, Weida Jiang, Chengbao Zhang, Tianle Liu, Xinfeng Wei, Bin Wang, Zhongchang Yang, Shengxue |
| AuthorAffiliation | Chinese Academy of Sciences CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience School of Materials Science and Engineering National Center for Nanoscience and Technology National Laboratory for Condensed Matter Physics and Institute of Physics Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory University of Chinese Academy of Sciences Department of Physics University of Science and Technology of China Southern University of Science and Technology Lanzhou University Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices Department of Quantum and Energy Materials State Key Laboratory of Precision Measuring Technology and Instruments School of Physical Science and Technology State Key Laboratory of Infrared Physics |
| AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Southern University of Science and Technology – name: School of Physical Science and Technology – name: Chinese Academy of Sciences – name: School of Materials Science and Engineering – name: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience – name: Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices – name: Department of Physics – name: State Key Laboratory of Precision Measuring Technology and Instruments – name: Lanzhou University – name: University of Chinese Academy of Sciences – name: Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory – name: State Key Laboratory of Infrared Physics – name: National Center for Nanoscience and Technology – name: Department of Quantum and Energy Materials – name: National Laboratory for Condensed Matter Physics and Institute of Physics |
| Author_xml | – sequence: 1 givenname: Tianle surname: Zhang fullname: Zhang, Tianle organization: School of Materials Science and Engineering – sequence: 2 givenname: Yimeng surname: Wang fullname: Wang, Yimeng organization: Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices – sequence: 3 givenname: Hexuan surname: Li fullname: Li, Hexuan organization: University of Science and Technology of China – sequence: 4 givenname: Fang surname: Zhong fullname: Zhong, Fang organization: State Key Laboratory of Infrared Physics – sequence: 5 givenname: Jia surname: Shi fullname: Shi, Jia organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Minghui surname: Wu fullname: Wu, Minghui organization: Southern University of Science and Technology – sequence: 7 givenname: Zhaoyang surname: Sun fullname: Sun, Zhaoyang organization: State Key Laboratory of Precision Measuring Technology and Instruments – sequence: 8 givenname: Wanfu orcidid: 0000-0002-3932-5457 surname: Shen fullname: Shen, Wanfu organization: State Key Laboratory of Precision Measuring Technology and Instruments – sequence: 9 givenname: Bin orcidid: 0000-0001-5076-4082 surname: Wei fullname: Wei, Bin organization: Department of Quantum and Energy Materials – sequence: 10 givenname: Weida orcidid: 0000-0001-5278-8969 surname: Hu fullname: Hu, Weida organization: State Key Laboratory of Infrared Physics – sequence: 11 givenname: Xinfeng orcidid: 0000-0002-7662-7171 surname: Liu fullname: Liu, Xinfeng organization: National Center for Nanoscience and Technology – sequence: 12 givenname: Li surname: Huang fullname: Huang, Li organization: Southern University of Science and Technology – sequence: 13 givenname: Chunguang orcidid: 0000-0001-6485-904X surname: Hu fullname: Hu, Chunguang organization: State Key Laboratory of Precision Measuring Technology and Instruments – sequence: 14 givenname: Zhongchang surname: Wang fullname: Wang, Zhongchang organization: Department of Quantum and Energy Materials – sequence: 15 givenname: Chengbao orcidid: 0000-0003-3914-1567 surname: Jiang fullname: Jiang, Chengbao organization: School of Materials Science and Engineering – sequence: 16 givenname: Shengxue orcidid: 0000-0002-3417-9702 surname: Yang fullname: Yang, Shengxue email: sxyang@buaa.edu.cn organization: School of Materials Science and Engineering – sequence: 17 givenname: Qing-ming surname: Zhang fullname: Zhang, Qing-ming email: qmzhang@ruc.edu.cn organization: Lanzhou University – sequence: 18 givenname: Zhe surname: Qu fullname: Qu, Zhe email: zhequ@hmfl.ac.cn organization: Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31525955$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMtKAzEUQINU7EPX7iRLQdommclMsyzFR6HShYruhkwekjKT1CQj9O-NtHYh6CoX7jnhcoagZ51VAFxiNMGI4CkXwXLrJqxGeUmKEzDALCvGaFa89Y4zxX0wDGGDEC1nZXEG-hmmhDJKB-Dpkb9bFU1oIbcSrrfRCN7AuTXBRe-2O2gs_OQWSuXhK-dNSLtotPLetXtVwKUNXcOj83Dh14vmHJzqBKqLwzsCL3e3z4uH8Wp9v1zMV2OeMRbHuSaSinR5TRjJlCjzssYUZ0wSLZnQ6UQ1y2VW1LmipRJaUF3kOVVaClIjmY3A9f7frXcfnQqxak0Qqmm4Va4LFSEsQxgzxhJ6dUC7ulWy2nrTcr-rfkIkYLoHhHcheKWPCEbVd-rqkLo6pE4G_WUIE3k0zkbPTfOPd7P30qLauM7b1OhP-gthpZQq |
| CitedBy_id | crossref_primary_10_1002_adma_202411300 crossref_primary_10_1002_adma_202300247 crossref_primary_10_3390_magnetochemistry8120170 crossref_primary_10_1007_s10853_025_11392_6 crossref_primary_10_1007_s12274_022_4611_0 crossref_primary_10_12677_app_2025_155059 crossref_primary_10_1002_wcms_1545 crossref_primary_10_1002_inf2_12177 crossref_primary_10_1039_D3RA07237A crossref_primary_10_1103_5z4v_x6xn crossref_primary_10_1016_j_jallcom_2024_173845 crossref_primary_10_1002_admi_202500278 crossref_primary_10_1088_0256_307X_37_7_076202 crossref_primary_10_1039_D0NH00395F crossref_primary_10_1063_5_0238384 crossref_primary_10_1088_2053_1583_abc5cf crossref_primary_10_1002_adom_202400943 crossref_primary_10_1038_s41467_023_40722_y crossref_primary_10_1021_jacs_3c01766 crossref_primary_10_1002_lpor_202100322 crossref_primary_10_1088_1674_1056_ac041f crossref_primary_10_1088_2516_1075_ad43d0 crossref_primary_10_1038_s41699_025_00542_8 crossref_primary_10_1063_5_0211355 crossref_primary_10_1103_PhysRevApplied_21_054053 crossref_primary_10_1016_j_jmmm_2023_171074 crossref_primary_10_1002_smll_202300333 crossref_primary_10_1063_5_0168864 crossref_primary_10_1103_PhysRevResearch_7_023219 crossref_primary_10_1088_1674_1056_ac7555 crossref_primary_10_1039_D2NR05764F crossref_primary_10_1016_j_optcom_2025_132349 crossref_primary_10_1039_D5TA01579K crossref_primary_10_1016_j_mtphys_2023_101153 crossref_primary_10_3390_nano13233050 crossref_primary_10_1002_smll_202300964 crossref_primary_10_1002_adom_202403492 crossref_primary_10_3390_cryst13010104 crossref_primary_10_1063_5_0135557 crossref_primary_10_1007_s10854_021_06210_z crossref_primary_10_1007_s10948_025_07021_7 crossref_primary_10_1016_j_mssp_2025_109413 crossref_primary_10_1088_1674_1056_ab8215 crossref_primary_10_1002_advs_202105483 crossref_primary_10_1063_5_0268941 crossref_primary_10_1039_D4NH00137K crossref_primary_10_1002_adfm_202200154 crossref_primary_10_1039_D5RA03506F crossref_primary_10_1002_pssb_202200422 crossref_primary_10_1088_1361_6528_ac17fd crossref_primary_10_1063_5_0037081 crossref_primary_10_1002_adfm_202211366 crossref_primary_10_1016_j_matchemphys_2024_129539 crossref_primary_10_1021_acsnano_5c03174 crossref_primary_10_1063_5_0279573 crossref_primary_10_1557_s43578_024_01459_6 crossref_primary_10_1088_1674_1056_ac6eed crossref_primary_10_1088_2053_1583_adbe89 crossref_primary_10_1002_advs_202002488 crossref_primary_10_1088_1674_1056_ac2808 crossref_primary_10_1002_inf2_12096 crossref_primary_10_1002_adfm_202312214 crossref_primary_10_1002_adfm_202412469 crossref_primary_10_1016_j_apsusc_2022_152821 crossref_primary_10_54227_mlab_20220033 crossref_primary_10_1002_adfm_202210965 crossref_primary_10_1002_advs_202502440 crossref_primary_10_1002_smll_202503316 crossref_primary_10_1039_D0NR03340E crossref_primary_10_1039_D0NR07867K crossref_primary_10_1016_j_pquantelec_2024_100498 crossref_primary_10_1039_D3NR02188B crossref_primary_10_1126_science_adr5926 crossref_primary_10_1038_s41598_023_43025_w crossref_primary_10_1016_j_physb_2025_417504 crossref_primary_10_1038_s41427_023_00467_y crossref_primary_10_1007_s12274_022_5358_0 crossref_primary_10_1002_adma_202405358 crossref_primary_10_1103_PhysRevApplied_22_014017 crossref_primary_10_1063_5_0107680 crossref_primary_10_1038_s41563_025_02142_9 crossref_primary_10_1140_epjp_s13360_023_04207_7 crossref_primary_10_1038_s41535_025_00767_2 crossref_primary_10_1016_j_jallcom_2023_169832 crossref_primary_10_1088_1361_6528_abaf1f crossref_primary_10_3390_nano14211759 crossref_primary_10_1063_5_0237508 crossref_primary_10_1002_adfm_202108920 crossref_primary_10_1002_adfm_202308733 crossref_primary_10_1002_advs_202500477 crossref_primary_10_1016_j_physe_2022_115332 crossref_primary_10_1039_D3NR03119E crossref_primary_10_1039_D3NR01704D crossref_primary_10_1039_D4NR03715D crossref_primary_10_1088_1674_1056_ac1e0f crossref_primary_10_1103_34g5_q2g6 crossref_primary_10_1002_adom_202303190 crossref_primary_10_1016_j_mtphys_2022_100775 crossref_primary_10_1103_PhysRevApplied_19_054013 crossref_primary_10_1038_s41467_023_37769_2 crossref_primary_10_1063_5_0133455 crossref_primary_10_1002_adfm_202202658 crossref_primary_10_1021_acsphotonics_5c00065 crossref_primary_10_3390_nano13243105 crossref_primary_10_1063_5_0287238 crossref_primary_10_1038_s41467_023_38172_7 crossref_primary_10_1063_5_0038644 crossref_primary_10_1002_adma_202108847 crossref_primary_10_1038_s41566_025_01712_2 crossref_primary_10_1002_rpm_20240007 crossref_primary_10_1039_D0NR06268E crossref_primary_10_26599_NR_2025_94907478 |
| Cites_doi | 10.1021/am502359k 10.1038/s41586-018-0631-z 10.1038/srep09647 10.1103/PhysRevB.35.1129 10.1364/OE.20.015797 10.1039/C7NR09173G 10.1021/jacs.7b12976 10.1126/science.aar3617 10.1103/PhysRevB.73.172413 10.1038/ncomms8120 10.1021/acsnano.6b05002 10.1088/2053-1583/aab390 10.1103/PhysRevB.96.104419 10.1246/cl.1974.373 10.1103/PhysRevB.80.144416 10.1021/acsnano.8b05162 10.1038/s41563-018-0040-6 10.1103/PhysRevB.72.020105 10.1103/PhysRevB.86.134428 10.1021/acsnano.6b05127 10.1063/1.5041973 10.3891/acta.chem.scand.28a-1171 10.1063/1.474524 10.1364/OL.43.001255 10.1364/JOSAB.25.000955 10.1038/nature22391 10.1021/nl504956s 10.1021/am509056b 10.1103/PhysRevLett.33.1531 10.1002/adma.201701486 10.1103/PhysRevLett.77.3865 10.1126/science.aar4851 10.1063/1.342186 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.54.11169 10.1021/acs.nanolett.6b03052 10.1126/science.aav4450 10.1103/PhysRevB.96.134425 10.1038/s41467-018-04326-1 10.1103/PhysRevB.79.104425 10.1038/s41565-018-0121-3 10.1088/2053-1583/3/2/025035 10.1103/PhysRevLett.92.207201 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1021/acsnano.9b04726 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 11362 |
| ExternalDocumentID | 31525955 10_1021_acsnano_9b04726 a59770044 |
| Genre | Journal Article |
| GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
| ID | FETCH-LOGICAL-a399t-4f2d5c9b0b2923ec747b15139d2fd9cf525e84d36b4e57ecfc5f6445efdc2b0d3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 148 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492801600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Fri Jul 11 11:50:20 EDT 2025 Thu Jan 02 22:59:18 EST 2025 Sat Nov 29 02:50:26 EST 2025 Tue Nov 18 21:18:06 EST 2025 Thu Aug 27 13:41:54 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | magnetism chromium oxide chloride in-plane anisotropy magnetic insulator two-dimensional |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a399t-4f2d5c9b0b2923ec747b15139d2fd9cf525e84d36b4e57ecfc5f6445efdc2b0d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6485-904X 0000-0002-7662-7171 0000-0001-5076-4082 0000-0003-3914-1567 0000-0002-3417-9702 0000-0002-3932-5457 0000-0001-5278-8969 |
| PMID | 31525955 |
| PQID | 2293011999 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2293011999 pubmed_primary_31525955 crossref_primary_10_1021_acsnano_9b04726 crossref_citationtrail_10_1021_acsnano_9b04726 acs_journals_10_1021_acsnano_9b04726 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-22 |
| PublicationDateYYYYMMDD | 2019-10-22 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2019 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref26/cit26 doi: 10.1021/am502359k – ident: ref1/cit1 doi: 10.1038/s41586-018-0631-z – ident: ref19/cit19 doi: 10.1038/srep09647 – ident: ref35/cit35 doi: 10.1103/PhysRevB.35.1129 – ident: ref38/cit38 doi: 10.1364/OE.20.015797 – ident: ref41/cit41 doi: 10.1039/C7NR09173G – ident: ref20/cit20 doi: 10.1021/jacs.7b12976 – ident: ref7/cit7 doi: 10.1126/science.aar3617 – ident: ref15/cit15 doi: 10.1103/PhysRevB.73.172413 – ident: ref22/cit22 doi: 10.1038/ncomms8120 – ident: ref31/cit31 doi: 10.1021/acsnano.6b05002 – ident: ref34/cit34 doi: 10.1088/2053-1583/aab390 – ident: ref9/cit9 doi: 10.1103/PhysRevB.96.104419 – ident: ref13/cit13 doi: 10.1246/cl.1974.373 – ident: ref18/cit18 doi: 10.1103/PhysRevB.80.144416 – ident: ref30/cit30 doi: 10.1021/acsnano.8b05162 – ident: ref6/cit6 doi: 10.1038/s41563-018-0040-6 – ident: ref14/cit14 doi: 10.1103/PhysRevB.72.020105 – ident: ref17/cit17 doi: 10.1103/PhysRevB.86.134428 – ident: ref33/cit33 doi: 10.1021/acsnano.6b05127 – ident: ref25/cit25 doi: 10.1063/1.5041973 – ident: ref12/cit12 doi: 10.3891/acta.chem.scand.28a-1171 – ident: ref23/cit23 – ident: ref36/cit36 doi: 10.1063/1.474524 – ident: ref40/cit40 doi: 10.1364/OL.43.001255 – ident: ref37/cit37 doi: 10.1364/JOSAB.25.000955 – ident: ref3/cit3 doi: 10.1038/nature22391 – ident: ref21/cit21 doi: 10.1021/nl504956s – ident: ref24/cit24 doi: 10.1021/am509056b – ident: ref39/cit39 doi: 10.1103/PhysRevLett.33.1531 – ident: ref32/cit32 doi: 10.1002/adma.201701486 – ident: ref44/cit44 doi: 10.1103/PhysRevLett.77.3865 – ident: ref11/cit11 doi: 10.1126/science.aar4851 – ident: ref28/cit28 doi: 10.1063/1.342186 – ident: ref43/cit43 doi: 10.1103/PhysRevB.50.17953 – ident: ref42/cit42 doi: 10.1103/PhysRevB.54.11169 – ident: ref4/cit4 doi: 10.1021/acs.nanolett.6b03052 – ident: ref2/cit2 doi: 10.1126/science.aav4450 – ident: ref8/cit8 doi: 10.1103/PhysRevB.96.134425 – ident: ref10/cit10 doi: 10.1038/s41467-018-04326-1 – ident: ref16/cit16 doi: 10.1103/PhysRevB.79.104425 – ident: ref5/cit5 doi: 10.1038/s41565-018-0121-3 – ident: ref27/cit27 doi: 10.1088/2053-1583/3/2/025035 – ident: ref29/cit29 doi: 10.1103/PhysRevLett.92.207201 |
| SSID | ssj0057876 |
| Score | 2.627837 |
| Snippet | van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11353 |
| Title | Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl |
| URI | http://dx.doi.org/10.1021/acsnano.9b04726 https://www.ncbi.nlm.nih.gov/pubmed/31525955 https://www.proquest.com/docview/2293011999 |
| Volume | 13 |
| WOSCitedRecordID | wos000492801600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOtBDy7NsW5ArceASHnacrI-rVRFIvCRasbfIGdtoJXBWSUDqv-84yW4L1UpwTTKWMzPOfOOZfAbYDyz5PHFJpEWMUSxyF2mpksjGnGNqU-6w-VH4Ir266o9G6uYvWfTrCj4_OdJYee2LQ5UHYsNkEZY5gdzQvTcY3k4_usHvkraATAkyoYgZi89_A4QwhNXLMDQHWzYx5vTTO2a3Bh87IMkGreXXYcH6DfjwD73gJtxe6ntv63H1yLQ37HrS7FuzgR9XRV0Wk99s7BkhaWZsye40OSLdq0OvS1k8tqLIzkOzesjM2bC8Hj5swa_THz-HZ1F3iAJpX6k6ih03Eml6OScsZ5HSh5yivFCGO6PQSS5tPzYiyWMrU4sOpSOMJK0zyPNjI7ZhyRfe7gDLEzSU8RiLhMKEszkKRZe4TmKD_WPRg31SR9Ytgipr6tv8JOt0lHU66sHhVPUZdkTk4TyMh_kCBzOBScvBMf_R71NbZrROQvFDe1s8VRknXBP47ZTqwefWyLPBRDgESkn55W0v8BVWCTapEME4_wZLdflkd2EFn8mg5R4spqP-XuOdfwBKMODd |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BN4ntgQFjo-OXJ_Gwl0Cx47R-rKohEKUgAYK3KDnbUyVwqiRF2n-_c5IWEKo0Xp3Ycu7Oue989ncAB54ln0c2ChIRYhCK1AaJVFFgQs6xa7rcYnVReNgdjXr39-pqCTqzuzA0iYJGKqok_jO7wPERtbnEZYcq9fyG0TJ8kORcfc2C_uB69u_15hfVeWSKkwlMzMl83gzgvREWr73RAohZuZqTL--f5BqsNrCS9Ws7WIcl4zbg8wuywa9wfZH8caYcF48scZpdTqpdbNZ34yIr82zyl40dI1zNtMnZXUJmSc9Kf_Ilzx7rrsjO_NF1H6ezQX45eNiE25PfN4PToCmpQLpQqgxCy7VEml7KCdkZpGAiJZ8vlOZWK7SSS9MLtYjS0MiuQYvSEmKSxmrkaUeLb9BymTNbwNIINcU_2iBhMmFNikJRE0-iUGOvI9pwQOKImyVRxFW2mx_HjYziRkZtOJxpIMaGltxXx3hY3OHXvMOkZuRY_OrPmUpjWjU-FZI4k02LmBPK8Wx3SrXhe63r-WDCl4RSUv74vw_Yh5XTm4thPDwbnW_DJwJUyvs2znegVeZTswsf8YmUm-9VpvoPee3oWw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xmCb2MNgGWwdsntSHvYQfdpzUj1W2CjQoSN003qLkbKNK4ERJmMR_zzlJq6Gp0rRXJ7acu3PuO5_9HcDQs-TzyEZBJkIMQpHbIJMqCkzIOcYm5hbbi8Ln8XQ6ur5WV_2lMH8XhiZR00h1m8T3q7rUtmcYODmidpe54lDlnuMwegYbkty5r1swTmaL_683wajLJVOsTIBiSejz1wDeI2H91COtgJmtu5ls_d9Et-FVDy_ZuLOH17Bm3Bt4-Qfp4FuYXWQ3zjTz-o5lTrPLst3NZmM3r4umKsoHNneM8DXTpmK_MjJPetb4EzBVcdd1RXbmj7D7eJ0l1WVyuwM_J99-JKdBX1qBdKJUE4SWa4k0vZwTwjNIQUVOvl8oza1WaCWXZhRqEeWhkbFBi9KSqKWxGnl-rMUurLvCmffA8gg1xUHaIGEzYU2OQlETz6JQ4-hYDGBI4kj7pVGnbdabn6S9jNJeRgM4XGghxZ6e3FfJuF3d4cuyQ9kxc6x-9fNCrSmtHp8SyZwp7uuUE9rxrHdKDeBdp-_lYMKXhlJSfvi3D_gEL66-TtLzs-n3PdgkXKW8i-N8H9ab6t4cwHP8TbqtPrbW-gj1Z-rV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetism+and+Optical+Anisotropy+in+van+der+Waals+Antiferromagnetic+Insulator+CrOCl&rft.jtitle=ACS+nano&rft.au=Zhang%2C+Tianle&rft.au=Wang%2C+Yimeng&rft.au=Li%2C+Hexuan&rft.au=Zhong%2C+Fang&rft.date=2019-10-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=10&rft.spage=11353&rft.epage=11362&rft_id=info:doi/10.1021%2Facsnano.9b04726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_9b04726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |