Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl

van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS nano Ročník 13; číslo 10; s. 11353 - 11362
Hlavní autoři: Zhang, Tianle, Wang, Yimeng, Li, Hexuan, Zhong, Fang, Shi, Jia, Wu, Minghui, Sun, Zhaoyang, Shen, Wanfu, Wei, Bin, Hu, Weida, Liu, Xinfeng, Huang, Li, Hu, Chunguang, Wang, Zhongchang, Jiang, Chengbao, Yang, Shengxue, Zhang, Qing-ming, Qu, Zhe
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Chemical Society 22.10.2019
Témata:
ISSN:1936-0851, 1936-086X, 1936-086X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin–phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10–11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices.
AbstractList van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin-phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10-11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices.van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin-phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10-11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices.
van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin-phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices.
van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW magnetic systems are unstable and of high lattice symmetry. Stable 2D vdW magnetic insulators with anisotropic structure are needed to modulate the properties and unlock potential applications. Here we present a stable vdW antiferromagnetic material, CrOCl, with low-symmetry orthorhombic structure, and investigate systematically its magnetism, phase transition behavior, and optical anisotropy. Spin–phonon coupling effects are uncovered by the abnormal frequency shifts of Raman-active modes, suggesting the formation of a magnetic superstructure. The sizable abnormal change of interplanar spacing indicates the presence of a structural transition at around 27 K. Further in-plane vibrational, reflectional, and absorptional anisotropic properties are explored both experimentally and theoretically, revealing a highly polarization sensitive characteristic and linear dichroism in 2D CrOCl. Meanwhile, the particularly high polarization dependency of the second-harmonic generation and the nonlinear susceptibility of ∼2.24 × 10–11 m/V make it suitable in the field of polarization-dependent nonlinear optics. The findings on the intricate properties of 2D CrOCl lay foundations for future applications of low-symmetry vdW magnets in spin-dependent electronic and optoelectronic devices.
Author Shen, Wanfu
Huang, Li
Qu, Zhe
Li, Hexuan
Zhong, Fang
Shi, Jia
Wu, Minghui
Zhang, Qing-ming
Wang, Yimeng
Sun, Zhaoyang
Hu, Chunguang
Hu, Weida
Jiang, Chengbao
Zhang, Tianle
Liu, Xinfeng
Wei, Bin
Wang, Zhongchang
Yang, Shengxue
AuthorAffiliation Chinese Academy of Sciences
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience
School of Materials Science and Engineering
National Center for Nanoscience and Technology
National Laboratory for Condensed Matter Physics and Institute of Physics
Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory
University of Chinese Academy of Sciences
Department of Physics
University of Science and Technology of China
Southern University of Science and Technology
Lanzhou University
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices
Department of Quantum and Energy Materials
State Key Laboratory of Precision Measuring Technology and Instruments
School of Physical Science and Technology
State Key Laboratory of Infrared Physics
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Southern University of Science and Technology
– name: School of Physical Science and Technology
– name: Chinese Academy of Sciences
– name: School of Materials Science and Engineering
– name: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience
– name: Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices
– name: Department of Physics
– name: State Key Laboratory of Precision Measuring Technology and Instruments
– name: Lanzhou University
– name: University of Chinese Academy of Sciences
– name: Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory
– name: State Key Laboratory of Infrared Physics
– name: National Center for Nanoscience and Technology
– name: Department of Quantum and Energy Materials
– name: National Laboratory for Condensed Matter Physics and Institute of Physics
Author_xml – sequence: 1
  givenname: Tianle
  surname: Zhang
  fullname: Zhang, Tianle
  organization: School of Materials Science and Engineering
– sequence: 2
  givenname: Yimeng
  surname: Wang
  fullname: Wang, Yimeng
  organization: Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices
– sequence: 3
  givenname: Hexuan
  surname: Li
  fullname: Li, Hexuan
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Fang
  surname: Zhong
  fullname: Zhong, Fang
  organization: State Key Laboratory of Infrared Physics
– sequence: 5
  givenname: Jia
  surname: Shi
  fullname: Shi, Jia
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Minghui
  surname: Wu
  fullname: Wu, Minghui
  organization: Southern University of Science and Technology
– sequence: 7
  givenname: Zhaoyang
  surname: Sun
  fullname: Sun, Zhaoyang
  organization: State Key Laboratory of Precision Measuring Technology and Instruments
– sequence: 8
  givenname: Wanfu
  orcidid: 0000-0002-3932-5457
  surname: Shen
  fullname: Shen, Wanfu
  organization: State Key Laboratory of Precision Measuring Technology and Instruments
– sequence: 9
  givenname: Bin
  orcidid: 0000-0001-5076-4082
  surname: Wei
  fullname: Wei, Bin
  organization: Department of Quantum and Energy Materials
– sequence: 10
  givenname: Weida
  orcidid: 0000-0001-5278-8969
  surname: Hu
  fullname: Hu, Weida
  organization: State Key Laboratory of Infrared Physics
– sequence: 11
  givenname: Xinfeng
  orcidid: 0000-0002-7662-7171
  surname: Liu
  fullname: Liu, Xinfeng
  organization: National Center for Nanoscience and Technology
– sequence: 12
  givenname: Li
  surname: Huang
  fullname: Huang, Li
  organization: Southern University of Science and Technology
– sequence: 13
  givenname: Chunguang
  orcidid: 0000-0001-6485-904X
  surname: Hu
  fullname: Hu, Chunguang
  organization: State Key Laboratory of Precision Measuring Technology and Instruments
– sequence: 14
  givenname: Zhongchang
  surname: Wang
  fullname: Wang, Zhongchang
  organization: Department of Quantum and Energy Materials
– sequence: 15
  givenname: Chengbao
  orcidid: 0000-0003-3914-1567
  surname: Jiang
  fullname: Jiang, Chengbao
  organization: School of Materials Science and Engineering
– sequence: 16
  givenname: Shengxue
  orcidid: 0000-0002-3417-9702
  surname: Yang
  fullname: Yang, Shengxue
  email: sxyang@buaa.edu.cn
  organization: School of Materials Science and Engineering
– sequence: 17
  givenname: Qing-ming
  surname: Zhang
  fullname: Zhang, Qing-ming
  email: qmzhang@ruc.edu.cn
  organization: Lanzhou University
– sequence: 18
  givenname: Zhe
  surname: Qu
  fullname: Qu, Zhe
  email: zhequ@hmfl.ac.cn
  organization: Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31525955$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUQINU7EPX7iRLQdommclMsyzFR6HShYruhkwekjKT1CQj9O-NtHYh6CoX7jnhcoagZ51VAFxiNMGI4CkXwXLrJqxGeUmKEzDALCvGaFa89Y4zxX0wDGGDEC1nZXEG-hmmhDJKB-Dpkb9bFU1oIbcSrrfRCN7AuTXBRe-2O2gs_OQWSuXhK-dNSLtotPLetXtVwKUNXcOj83Dh14vmHJzqBKqLwzsCL3e3z4uH8Wp9v1zMV2OeMRbHuSaSinR5TRjJlCjzssYUZ0wSLZnQ6UQ1y2VW1LmipRJaUF3kOVVaClIjmY3A9f7frXcfnQqxak0Qqmm4Va4LFSEsQxgzxhJ6dUC7ulWy2nrTcr-rfkIkYLoHhHcheKWPCEbVd-rqkLo6pE4G_WUIE3k0zkbPTfOPd7P30qLauM7b1OhP-gthpZQq
CitedBy_id crossref_primary_10_1002_adma_202411300
crossref_primary_10_1002_adma_202300247
crossref_primary_10_3390_magnetochemistry8120170
crossref_primary_10_1007_s10853_025_11392_6
crossref_primary_10_1007_s12274_022_4611_0
crossref_primary_10_12677_app_2025_155059
crossref_primary_10_1002_wcms_1545
crossref_primary_10_1002_inf2_12177
crossref_primary_10_1039_D3RA07237A
crossref_primary_10_1103_5z4v_x6xn
crossref_primary_10_1016_j_jallcom_2024_173845
crossref_primary_10_1002_admi_202500278
crossref_primary_10_1088_0256_307X_37_7_076202
crossref_primary_10_1039_D0NH00395F
crossref_primary_10_1063_5_0238384
crossref_primary_10_1088_2053_1583_abc5cf
crossref_primary_10_1002_adom_202400943
crossref_primary_10_1038_s41467_023_40722_y
crossref_primary_10_1021_jacs_3c01766
crossref_primary_10_1002_lpor_202100322
crossref_primary_10_1088_1674_1056_ac041f
crossref_primary_10_1088_2516_1075_ad43d0
crossref_primary_10_1038_s41699_025_00542_8
crossref_primary_10_1063_5_0211355
crossref_primary_10_1103_PhysRevApplied_21_054053
crossref_primary_10_1016_j_jmmm_2023_171074
crossref_primary_10_1002_smll_202300333
crossref_primary_10_1063_5_0168864
crossref_primary_10_1103_PhysRevResearch_7_023219
crossref_primary_10_1088_1674_1056_ac7555
crossref_primary_10_1039_D2NR05764F
crossref_primary_10_1016_j_optcom_2025_132349
crossref_primary_10_1039_D5TA01579K
crossref_primary_10_1016_j_mtphys_2023_101153
crossref_primary_10_3390_nano13233050
crossref_primary_10_1002_smll_202300964
crossref_primary_10_1002_adom_202403492
crossref_primary_10_3390_cryst13010104
crossref_primary_10_1063_5_0135557
crossref_primary_10_1007_s10854_021_06210_z
crossref_primary_10_1007_s10948_025_07021_7
crossref_primary_10_1016_j_mssp_2025_109413
crossref_primary_10_1088_1674_1056_ab8215
crossref_primary_10_1002_advs_202105483
crossref_primary_10_1063_5_0268941
crossref_primary_10_1039_D4NH00137K
crossref_primary_10_1002_adfm_202200154
crossref_primary_10_1039_D5RA03506F
crossref_primary_10_1002_pssb_202200422
crossref_primary_10_1088_1361_6528_ac17fd
crossref_primary_10_1063_5_0037081
crossref_primary_10_1002_adfm_202211366
crossref_primary_10_1016_j_matchemphys_2024_129539
crossref_primary_10_1021_acsnano_5c03174
crossref_primary_10_1063_5_0279573
crossref_primary_10_1557_s43578_024_01459_6
crossref_primary_10_1088_1674_1056_ac6eed
crossref_primary_10_1088_2053_1583_adbe89
crossref_primary_10_1002_advs_202002488
crossref_primary_10_1088_1674_1056_ac2808
crossref_primary_10_1002_inf2_12096
crossref_primary_10_1002_adfm_202312214
crossref_primary_10_1002_adfm_202412469
crossref_primary_10_1016_j_apsusc_2022_152821
crossref_primary_10_54227_mlab_20220033
crossref_primary_10_1002_adfm_202210965
crossref_primary_10_1002_advs_202502440
crossref_primary_10_1002_smll_202503316
crossref_primary_10_1039_D0NR03340E
crossref_primary_10_1039_D0NR07867K
crossref_primary_10_1016_j_pquantelec_2024_100498
crossref_primary_10_1039_D3NR02188B
crossref_primary_10_1126_science_adr5926
crossref_primary_10_1038_s41598_023_43025_w
crossref_primary_10_1016_j_physb_2025_417504
crossref_primary_10_1038_s41427_023_00467_y
crossref_primary_10_1007_s12274_022_5358_0
crossref_primary_10_1002_adma_202405358
crossref_primary_10_1103_PhysRevApplied_22_014017
crossref_primary_10_1063_5_0107680
crossref_primary_10_1038_s41563_025_02142_9
crossref_primary_10_1140_epjp_s13360_023_04207_7
crossref_primary_10_1038_s41535_025_00767_2
crossref_primary_10_1016_j_jallcom_2023_169832
crossref_primary_10_1088_1361_6528_abaf1f
crossref_primary_10_3390_nano14211759
crossref_primary_10_1063_5_0237508
crossref_primary_10_1002_adfm_202108920
crossref_primary_10_1002_adfm_202308733
crossref_primary_10_1002_advs_202500477
crossref_primary_10_1016_j_physe_2022_115332
crossref_primary_10_1039_D3NR03119E
crossref_primary_10_1039_D3NR01704D
crossref_primary_10_1039_D4NR03715D
crossref_primary_10_1088_1674_1056_ac1e0f
crossref_primary_10_1103_34g5_q2g6
crossref_primary_10_1002_adom_202303190
crossref_primary_10_1016_j_mtphys_2022_100775
crossref_primary_10_1103_PhysRevApplied_19_054013
crossref_primary_10_1038_s41467_023_37769_2
crossref_primary_10_1063_5_0133455
crossref_primary_10_1002_adfm_202202658
crossref_primary_10_1021_acsphotonics_5c00065
crossref_primary_10_3390_nano13243105
crossref_primary_10_1063_5_0287238
crossref_primary_10_1038_s41467_023_38172_7
crossref_primary_10_1063_5_0038644
crossref_primary_10_1002_adma_202108847
crossref_primary_10_1038_s41566_025_01712_2
crossref_primary_10_1002_rpm_20240007
crossref_primary_10_1039_D0NR06268E
crossref_primary_10_26599_NR_2025_94907478
Cites_doi 10.1021/am502359k
10.1038/s41586-018-0631-z
10.1038/srep09647
10.1103/PhysRevB.35.1129
10.1364/OE.20.015797
10.1039/C7NR09173G
10.1021/jacs.7b12976
10.1126/science.aar3617
10.1103/PhysRevB.73.172413
10.1038/ncomms8120
10.1021/acsnano.6b05002
10.1088/2053-1583/aab390
10.1103/PhysRevB.96.104419
10.1246/cl.1974.373
10.1103/PhysRevB.80.144416
10.1021/acsnano.8b05162
10.1038/s41563-018-0040-6
10.1103/PhysRevB.72.020105
10.1103/PhysRevB.86.134428
10.1021/acsnano.6b05127
10.1063/1.5041973
10.3891/acta.chem.scand.28a-1171
10.1063/1.474524
10.1364/OL.43.001255
10.1364/JOSAB.25.000955
10.1038/nature22391
10.1021/nl504956s
10.1021/am509056b
10.1103/PhysRevLett.33.1531
10.1002/adma.201701486
10.1103/PhysRevLett.77.3865
10.1126/science.aar4851
10.1063/1.342186
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.54.11169
10.1021/acs.nanolett.6b03052
10.1126/science.aav4450
10.1103/PhysRevB.96.134425
10.1038/s41467-018-04326-1
10.1103/PhysRevB.79.104425
10.1038/s41565-018-0121-3
10.1088/2053-1583/3/2/025035
10.1103/PhysRevLett.92.207201
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b04726
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 11362
ExternalDocumentID 31525955
10_1021_acsnano_9b04726
a59770044
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-4f2d5c9b0b2923ec747b15139d2fd9cf525e84d36b4e57ecfc5f6445efdc2b0d3
IEDL.DBID ACS
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492801600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 11:50:20 EDT 2025
Thu Jan 02 22:59:18 EST 2025
Sat Nov 29 02:50:26 EST 2025
Tue Nov 18 21:18:06 EST 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords magnetism
chromium oxide chloride
in-plane anisotropy
magnetic insulator
two-dimensional
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-4f2d5c9b0b2923ec747b15139d2fd9cf525e84d36b4e57ecfc5f6445efdc2b0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6485-904X
0000-0002-7662-7171
0000-0001-5076-4082
0000-0003-3914-1567
0000-0002-3417-9702
0000-0002-3932-5457
0000-0001-5278-8969
PMID 31525955
PQID 2293011999
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2293011999
pubmed_primary_31525955
crossref_primary_10_1021_acsnano_9b04726
crossref_citationtrail_10_1021_acsnano_9b04726
acs_journals_10_1021_acsnano_9b04726
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-10-22
PublicationDateYYYYMMDD 2019-10-22
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1021/am502359k
– ident: ref1/cit1
  doi: 10.1038/s41586-018-0631-z
– ident: ref19/cit19
  doi: 10.1038/srep09647
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.35.1129
– ident: ref38/cit38
  doi: 10.1364/OE.20.015797
– ident: ref41/cit41
  doi: 10.1039/C7NR09173G
– ident: ref20/cit20
  doi: 10.1021/jacs.7b12976
– ident: ref7/cit7
  doi: 10.1126/science.aar3617
– ident: ref15/cit15
  doi: 10.1103/PhysRevB.73.172413
– ident: ref22/cit22
  doi: 10.1038/ncomms8120
– ident: ref31/cit31
  doi: 10.1021/acsnano.6b05002
– ident: ref34/cit34
  doi: 10.1088/2053-1583/aab390
– ident: ref9/cit9
  doi: 10.1103/PhysRevB.96.104419
– ident: ref13/cit13
  doi: 10.1246/cl.1974.373
– ident: ref18/cit18
  doi: 10.1103/PhysRevB.80.144416
– ident: ref30/cit30
  doi: 10.1021/acsnano.8b05162
– ident: ref6/cit6
  doi: 10.1038/s41563-018-0040-6
– ident: ref14/cit14
  doi: 10.1103/PhysRevB.72.020105
– ident: ref17/cit17
  doi: 10.1103/PhysRevB.86.134428
– ident: ref33/cit33
  doi: 10.1021/acsnano.6b05127
– ident: ref25/cit25
  doi: 10.1063/1.5041973
– ident: ref12/cit12
  doi: 10.3891/acta.chem.scand.28a-1171
– ident: ref23/cit23
– ident: ref36/cit36
  doi: 10.1063/1.474524
– ident: ref40/cit40
  doi: 10.1364/OL.43.001255
– ident: ref37/cit37
  doi: 10.1364/JOSAB.25.000955
– ident: ref3/cit3
  doi: 10.1038/nature22391
– ident: ref21/cit21
  doi: 10.1021/nl504956s
– ident: ref24/cit24
  doi: 10.1021/am509056b
– ident: ref39/cit39
  doi: 10.1103/PhysRevLett.33.1531
– ident: ref32/cit32
  doi: 10.1002/adma.201701486
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref11/cit11
  doi: 10.1126/science.aar4851
– ident: ref28/cit28
  doi: 10.1063/1.342186
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.50.17953
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.54.11169
– ident: ref4/cit4
  doi: 10.1021/acs.nanolett.6b03052
– ident: ref2/cit2
  doi: 10.1126/science.aav4450
– ident: ref8/cit8
  doi: 10.1103/PhysRevB.96.134425
– ident: ref10/cit10
  doi: 10.1038/s41467-018-04326-1
– ident: ref16/cit16
  doi: 10.1103/PhysRevB.79.104425
– ident: ref5/cit5
  doi: 10.1038/s41565-018-0121-3
– ident: ref27/cit27
  doi: 10.1088/2053-1583/3/2/025035
– ident: ref29/cit29
  doi: 10.1103/PhysRevLett.92.207201
SSID ssj0057876
Score 2.627837
Snippet van der Waals (vdW) magnetic insulators are of significance in both fundamental research and technological application, but most two-dimensional (2D) vdW...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11353
Title Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl
URI http://dx.doi.org/10.1021/acsnano.9b04726
https://www.ncbi.nlm.nih.gov/pubmed/31525955
https://www.proquest.com/docview/2293011999
Volume 13
WOSCitedRecordID wos000492801600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOtBDy7NsW5ArceASHnacrI-rVRFIvCRasbfIGdtoJXBWSUDqv-84yW4L1UpwTTKWMzPOfOOZfAbYDyz5PHFJpEWMUSxyF2mpksjGnGNqU-6w-VH4Ir266o9G6uYvWfTrCj4_OdJYee2LQ5UHYsNkEZY5gdzQvTcY3k4_usHvkraATAkyoYgZi89_A4QwhNXLMDQHWzYx5vTTO2a3Bh87IMkGreXXYcH6DfjwD73gJtxe6ntv63H1yLQ37HrS7FuzgR9XRV0Wk99s7BkhaWZsye40OSLdq0OvS1k8tqLIzkOzesjM2bC8Hj5swa_THz-HZ1F3iAJpX6k6ih03Eml6OScsZ5HSh5yivFCGO6PQSS5tPzYiyWMrU4sOpSOMJK0zyPNjI7ZhyRfe7gDLEzSU8RiLhMKEszkKRZe4TmKD_WPRg31SR9Ytgipr6tv8JOt0lHU66sHhVPUZdkTk4TyMh_kCBzOBScvBMf_R71NbZrROQvFDe1s8VRknXBP47ZTqwefWyLPBRDgESkn55W0v8BVWCTapEME4_wZLdflkd2EFn8mg5R4spqP-XuOdfwBKMODd
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BN4ntgQFjo-OXJ_Gwl0Cx47R-rKohEKUgAYK3KDnbUyVwqiRF2n-_c5IWEKo0Xp3Ycu7Oue989ncAB54ln0c2ChIRYhCK1AaJVFFgQs6xa7rcYnVReNgdjXr39-pqCTqzuzA0iYJGKqok_jO7wPERtbnEZYcq9fyG0TJ8kORcfc2C_uB69u_15hfVeWSKkwlMzMl83gzgvREWr73RAohZuZqTL--f5BqsNrCS9Ws7WIcl4zbg8wuywa9wfZH8caYcF48scZpdTqpdbNZ34yIr82zyl40dI1zNtMnZXUJmSc9Kf_Ilzx7rrsjO_NF1H6ezQX45eNiE25PfN4PToCmpQLpQqgxCy7VEml7KCdkZpGAiJZ8vlOZWK7SSS9MLtYjS0MiuQYvSEmKSxmrkaUeLb9BymTNbwNIINcU_2iBhMmFNikJRE0-iUGOvI9pwQOKImyVRxFW2mx_HjYziRkZtOJxpIMaGltxXx3hY3OHXvMOkZuRY_OrPmUpjWjU-FZI4k02LmBPK8Wx3SrXhe63r-WDCl4RSUv74vw_Yh5XTm4thPDwbnW_DJwJUyvs2znegVeZTswsf8YmUm-9VpvoPee3oWw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xmCb2MNgGWwdsntSHvYQfdpzUj1W2CjQoSN003qLkbKNK4ERJmMR_zzlJq6Gp0rRXJ7acu3PuO5_9HcDQs-TzyEZBJkIMQpHbIJMqCkzIOcYm5hbbi8Ln8XQ6ur5WV_2lMH8XhiZR00h1m8T3q7rUtmcYODmidpe54lDlnuMwegYbkty5r1swTmaL_683wajLJVOsTIBiSejz1wDeI2H91COtgJmtu5ls_d9Et-FVDy_ZuLOH17Bm3Bt4-Qfp4FuYXWQ3zjTz-o5lTrPLst3NZmM3r4umKsoHNneM8DXTpmK_MjJPetb4EzBVcdd1RXbmj7D7eJ0l1WVyuwM_J99-JKdBX1qBdKJUE4SWa4k0vZwTwjNIQUVOvl8oza1WaCWXZhRqEeWhkbFBi9KSqKWxGnl-rMUurLvCmffA8gg1xUHaIGEzYU2OQlETz6JQ4-hYDGBI4kj7pVGnbdabn6S9jNJeRgM4XGghxZ6e3FfJuF3d4cuyQ9kxc6x-9fNCrSmtHp8SyZwp7uuUE9rxrHdKDeBdp-_lYMKXhlJSfvi3D_gEL66-TtLzs-n3PdgkXKW8i-N8H9ab6t4cwHP8TbqtPrbW-gj1Z-rV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetism+and+Optical+Anisotropy+in+van+der+Waals+Antiferromagnetic+Insulator+CrOCl&rft.jtitle=ACS+nano&rft.au=Zhang%2C+Tianle&rft.au=Wang%2C+Yimeng&rft.au=Li%2C+Hexuan&rft.au=Zhong%2C+Fang&rft.date=2019-10-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=10&rft.spage=11353&rft.epage=11362&rft_id=info:doi/10.1021%2Facsnano.9b04726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_9b04726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon