An accelerated forward-backward algorithm with a new linesearch for convex minimization problems and its applications

We study and investigate a convex minimization problem of the sum of two convex functions in the setting of a Hilbert space. By assuming the Lipschitz continuity of the gradient of the function, many optimization methods have been invented, where the stepsizes of those algorithms depend on the Lipsc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:AIMS mathematics Ročník 6; číslo 6; s. 6180 - 6200
Hlavní autori: Hanjing, Adisak, Jailoka, Pachara, Suantai, Suthep
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: AIMS Press 01.01.2021
Predmet:
ISSN:2473-6988, 2473-6988
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study and investigate a convex minimization problem of the sum of two convex functions in the setting of a Hilbert space. By assuming the Lipschitz continuity of the gradient of the function, many optimization methods have been invented, where the stepsizes of those algorithms depend on the Lipschitz constant. However, finding such a Lipschitz constant is not an easy task in general practice. In this work, by using a new modification of the linesearches of Cruz and Nghia [7] and Kankam et al. [14] and an inertial technique, we introduce an accelerated algorithm without any Lipschitz continuity assumption on the gradient. Subsequently, a weak convergence result of the proposed method is established. As applications, we apply and analyze our method for solving an image restoration problem and a regression problem. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.
AbstractList We study and investigate a convex minimization problem of the sum of two convex functions in the setting of a Hilbert space. By assuming the Lipschitz continuity of the gradient of the function, many optimization methods have been invented, where the stepsizes of those algorithms depend on the Lipschitz constant. However, finding such a Lipschitz constant is not an easy task in general practice. In this work, by using a new modification of the linesearches of Cruz and Nghia [7] and Kankam et al. [14] and an inertial technique, we introduce an accelerated algorithm without any Lipschitz continuity assumption on the gradient. Subsequently, a weak convergence result of the proposed method is established. As applications, we apply and analyze our method for solving an image restoration problem and a regression problem. Numerical experiments show that our method has a higher efficiency than the well-known methods in the literature.
Author Jailoka, Pachara
Suantai, Suthep
Hanjing, Adisak
Author_xml – sequence: 1
  givenname: Adisak
  surname: Hanjing
  fullname: Hanjing, Adisak
– sequence: 2
  givenname: Pachara
  surname: Jailoka
  fullname: Jailoka, Pachara
– sequence: 3
  givenname: Suthep
  surname: Suantai
  fullname: Suantai, Suthep
BookMark eNpNkc1OwzAQhC1UJErpjQfwA5Din9ROjlXFT6VKXOAcbexN65LYkRMo8PQ0bYW47Ixmd7_LXJORDx4JueVsJnOZ3jfQb2eCCS6VvCBjkWqZqDzLRv_8FZl23Y6xw5VIhU7H5GPhKRiDNUbo0dIqxD1Em5Rg3gdDod6E6PptQ_eHSYF63NPaeewQotkOD9QE_4lftHHeNe4Hehc8bWMoa2w6Ct5S1x-0bWtnjsvuhlxWUHc4PeuEvD0-vC6fk_XL02q5WCcgc90nVgLLM52h5nauuJVYAnCVp3NukVdMSw6gRclAZMbKvJznOFeVFNyI0rBUTsjqxLUBdkUbXQPxuwjgimMQ4qaA2DtTY8EzsEKzTErFUyXK3KDRXDNtlEoVLw-suxPLxNB1Eas_HmfF0EAxNFCcG5C_Omx80Q
Cites_doi 10.1137/080716542
10.1111/j.2517-6161.1996.tb02080.x
10.1137/050626090
10.2140/pjm.1970.33.209
10.3390/math8030378
10.1186/s13660-021-02571-5
10.1007/s10208-014-9189-9
10.1109/TIP.2003.819861
10.1109/TECHPOS.2009.5412098
10.1016/0041-5553(64)90137-5
10.3390/math8010042
10.1109/JSTSP.2007.910264
10.1007/s11117-012-0161-0
10.1109/TIP.2003.814255
10.1002/mma.5420
10.1137/0314056
10.1007/978-1-4419-9467-7
10.1006/jmaa.1993.1309
10.1002/cpa.20042
10.1137/0716071
10.1051/m2an/197004R301541
10.1080/10556788.2016.1214959
10.1137/S0363012998338806
10.1088/0266-5611/18/2/310
10.37193/CJM.2020.01.04
10.1016/0022-247X(76)90152-9
ContentType Journal Article
CorporateAuthor Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
CorporateAuthor_xml – name: Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021363
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 6200
ExternalDocumentID oai_doaj_org_article_18ad27083361462b9cec71707c66461b
10_3934_math_2021363
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a397t-d3a09878e71d561d3ebaa169451de1f0731aa72b0a28cd39b59e56f321c2bc043
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672533000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:32:10 EDT 2025
Sat Nov 29 06:04:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a397t-d3a09878e71d561d3ebaa169451de1f0731aa72b0a28cd39b59e56f321c2bc043
OpenAccessLink https://doaj.org/article/18ad27083361462b9cec71707c66461b
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_18ad27083361462b9cec71707c66461b
crossref_primary_10_3934_math_2021363
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021363-30
key-10.3934/math.2021363-31
key-10.3934/math.2021363-16
key-10.3934/math.2021363-17
key-10.3934/math.2021363-14
key-10.3934/math.2021363-15
key-10.3934/math.2021363-12
key-10.3934/math.2021363-13
key-10.3934/math.2021363-10
key-10.3934/math.2021363-32
key-10.3934/math.2021363-11
key-10.3934/math.2021363-33
key-10.3934/math.2021363-29
key-10.3934/math.2021363-3
key-10.3934/math.2021363-4
key-10.3934/math.2021363-1
key-10.3934/math.2021363-2
key-10.3934/math.2021363-7
key-10.3934/math.2021363-8
key-10.3934/math.2021363-5
key-10.3934/math.2021363-6
key-10.3934/math.2021363-20
key-10.3934/math.2021363-9
key-10.3934/math.2021363-27
key-10.3934/math.2021363-28
key-10.3934/math.2021363-25
key-10.3934/math.2021363-26
key-10.3934/math.2021363-23
key-10.3934/math.2021363-24
key-10.3934/math.2021363-21
key-10.3934/math.2021363-22
key-10.3934/math.2021363-18
key-10.3934/math.2021363-19
References_xml – ident: key-10.3934/math.2021363-5
  doi: 10.1137/080716542
– ident: key-10.3934/math.2021363-28
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: key-10.3934/math.2021363-32
– ident: key-10.3934/math.2021363-8
  doi: 10.1137/050626090
– ident: key-10.3934/math.2021363-4
– ident: key-10.3934/math.2021363-23
  doi: 10.2140/pjm.1970.33.209
– ident: key-10.3934/math.2021363-12
  doi: 10.3390/math8030378
– ident: key-10.3934/math.2021363-27
  doi: 10.1186/s13660-021-02571-5
– ident: key-10.3934/math.2021363-20
– ident: key-10.3934/math.2021363-18
– ident: key-10.3934/math.2021363-25
  doi: 10.1007/s10208-014-9189-9
– ident: key-10.3934/math.2021363-33
  doi: 10.1109/TIP.2003.819861
– ident: key-10.3934/math.2021363-30
  doi: 10.1109/TECHPOS.2009.5412098
– ident: key-10.3934/math.2021363-22
  doi: 10.1016/0041-5553(64)90137-5
– ident: key-10.3934/math.2021363-26
  doi: 10.3390/math8010042
– ident: key-10.3934/math.2021363-6
  doi: 10.1109/JSTSP.2007.910264
– ident: key-10.3934/math.2021363-16
  doi: 10.1007/s11117-012-0161-0
– ident: key-10.3934/math.2021363-11
  doi: 10.1109/TIP.2003.814255
– ident: key-10.3934/math.2021363-14
  doi: 10.1002/mma.5420
– ident: key-10.3934/math.2021363-24
  doi: 10.1137/0314056
– ident: key-10.3934/math.2021363-2
  doi: 10.1007/978-1-4419-9467-7
– ident: key-10.3934/math.2021363-21
– ident: key-10.3934/math.2021363-31
  doi: 10.1006/jmaa.1993.1309
– ident: key-10.3934/math.2021363-10
  doi: 10.1002/cpa.20042
– ident: key-10.3934/math.2021363-15
  doi: 10.1137/0716071
– ident: key-10.3934/math.2021363-17
  doi: 10.1051/m2an/197004R301541
– ident: key-10.3934/math.2021363-19
– ident: key-10.3934/math.2021363-7
  doi: 10.1080/10556788.2016.1214959
– ident: key-10.3934/math.2021363-13
– ident: key-10.3934/math.2021363-29
  doi: 10.1137/S0363012998338806
– ident: key-10.3934/math.2021363-1
  doi: 10.1088/0266-5611/18/2/310
– ident: key-10.3934/math.2021363-3
  doi: 10.37193/CJM.2020.01.04
– ident: key-10.3934/math.2021363-9
  doi: 10.1016/0022-247X(76)90152-9
SSID ssj0002124274
Score 2.1517155
Snippet We study and investigate a convex minimization problem of the sum of two convex functions in the setting of a Hilbert space. By assuming the Lipschitz...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 6180
SubjectTerms convex minimization problems
forward-backward methods
image restoration problems
inertial techniques
linesearches
regression problems
Title An accelerated forward-backward algorithm with a new linesearch for convex minimization problems and its applications
URI https://doaj.org/article/18ad27083361462b9cec71707c66461b
Volume 6
WOSCitedRecordID wos000672533000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gjBrHbhKPBbVioBUDSN0i--xApTZFbYqY-O3cJQGFiYUliawksu6cu-_Ol-8YuwbpNTmSwBkNgdKoC0QhEAiL2CSxUiuoKPMfkskknU71Y6vVF9WE1fTAteB6IjUuShAoSHQkcWQ1eMAQJEwgjlUsLFlfRD2tYIpsMBpkhfFWXekutVQ9xH-09xAJGctfPqhF1V_5lNE-22vAIB_UkzhgW744ZLvjHybV9RHbDApuANA5EKeD44gxqzpXS3k3vOBm_rLEAP91wSmlyg1HnMznVWNJWsP0AK9Kyz840Ygsmv8uedNJZs1N4fisxHNrK_uYPY-GT3f3QdMqITAIKMrASRPqNEl9IhwiIie9NUbEWvWF8yLH71gYk0Q2NFEKTmrb174f5zISEFkIlTxhnWJZ-FPGDWouzLWGHEMzI0MDkQJCFlpIK1XeZTffwsveakaMDCMJEnJGQs4aIXfZLUn25x7isa4GULtZo93sL-2e_cdLztkOzalOnFywTrna-Eu2De_lbL26qhYOHsefwy-s6MlL
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+forward-backward+algorithm+with+a+new+linesearch+for+convex+minimization+problems+and+its+applications&rft.jtitle=AIMS+mathematics&rft.au=Hanjing%2C+Adisak&rft.au=Jailoka%2C+Pachara&rft.au=Suantai%2C+Suthep&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=6&rft.spage=6180&rft.epage=6200&rft_id=info:doi/10.3934%2Fmath.2021363&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon