Inversion for Thermal Properties with Frequency Domain Thermoreflectance

3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS applied materials & interfaces Ročník 16; číslo 3; s. 4117
Hlavní autoři: Treweek, Benjamin, Akcelik, Volkan, Hodges, Wyatt, Jarzembski, Amun, Bahr, Matthew, Jordan, Matthew, McDonald, Anthony, Yates, Luke, Walsh, Timothy, Pickrell, Gregory
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 24.01.2024
Témata:
ISSN:1944-8252, 1944-8252
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract 3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variations in the coefficient of thermal expansion in such systems lead to stresses that can cause thermomechanical and electrical failures. More advanced characterization and failure analysis techniques are necessary to assess the bond quality between components. Frequency domain thermoreflectance (FDTR) is a nondestructive, noncontact testing method used to determine thermal properties in a sample by fitting the phase lag between an applied heat flux and the surface temperature response. The typical use of FDTR data involves fitting for thermal properties in geometries with a high degree of symmetry. In this work, finite element method simulations are performed using high performance computing codes to facilitate the modeling of samples with arbitrary geometric complexity. A gradient-based optimization technique is also presented to determine unknown thermal properties in a discretized domain. Using experimental FDTR data from a GaN-diamond sample, thermal conductivity is then determined in an unknown layer to provide a spatial map of bond quality at various points in the sample.
AbstractList 3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variations in the coefficient of thermal expansion in such systems lead to stresses that can cause thermomechanical and electrical failures. More advanced characterization and failure analysis techniques are necessary to assess the bond quality between components. Frequency domain thermoreflectance (FDTR) is a nondestructive, noncontact testing method used to determine thermal properties in a sample by fitting the phase lag between an applied heat flux and the surface temperature response. The typical use of FDTR data involves fitting for thermal properties in geometries with a high degree of symmetry. In this work, finite element method simulations are performed using high performance computing codes to facilitate the modeling of samples with arbitrary geometric complexity. A gradient-based optimization technique is also presented to determine unknown thermal properties in a discretized domain. Using experimental FDTR data from a GaN-diamond sample, thermal conductivity is then determined in an unknown layer to provide a spatial map of bond quality at various points in the sample.
3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variations in the coefficient of thermal expansion in such systems lead to stresses that can cause thermomechanical and electrical failures. More advanced characterization and failure analysis techniques are necessary to assess the bond quality between components. Frequency domain thermoreflectance (FDTR) is a nondestructive, noncontact testing method used to determine thermal properties in a sample by fitting the phase lag between an applied heat flux and the surface temperature response. The typical use of FDTR data involves fitting for thermal properties in geometries with a high degree of symmetry. In this work, finite element method simulations are performed using high performance computing codes to facilitate the modeling of samples with arbitrary geometric complexity. A gradient-based optimization technique is also presented to determine unknown thermal properties in a discretized domain. Using experimental FDTR data from a GaN-diamond sample, thermal conductivity is then determined in an unknown layer to provide a spatial map of bond quality at various points in the sample.3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variations in the coefficient of thermal expansion in such systems lead to stresses that can cause thermomechanical and electrical failures. More advanced characterization and failure analysis techniques are necessary to assess the bond quality between components. Frequency domain thermoreflectance (FDTR) is a nondestructive, noncontact testing method used to determine thermal properties in a sample by fitting the phase lag between an applied heat flux and the surface temperature response. The typical use of FDTR data involves fitting for thermal properties in geometries with a high degree of symmetry. In this work, finite element method simulations are performed using high performance computing codes to facilitate the modeling of samples with arbitrary geometric complexity. A gradient-based optimization technique is also presented to determine unknown thermal properties in a discretized domain. Using experimental FDTR data from a GaN-diamond sample, thermal conductivity is then determined in an unknown layer to provide a spatial map of bond quality at various points in the sample.
Author Akcelik, Volkan
Bahr, Matthew
Jarzembski, Amun
McDonald, Anthony
Yates, Luke
Pickrell, Gregory
Hodges, Wyatt
Jordan, Matthew
Treweek, Benjamin
Walsh, Timothy
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0002-6885-2563
  surname: Treweek
  fullname: Treweek, Benjamin
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 2
  givenname: Volkan
  surname: Akcelik
  fullname: Akcelik, Volkan
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 3
  givenname: Wyatt
  orcidid: 0000-0003-0386-8908
  surname: Hodges
  fullname: Hodges, Wyatt
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 4
  givenname: Amun
  surname: Jarzembski
  fullname: Jarzembski, Amun
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 5
  givenname: Matthew
  surname: Bahr
  fullname: Bahr, Matthew
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 6
  givenname: Matthew
  surname: Jordan
  fullname: Jordan, Matthew
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 7
  givenname: Anthony
  surname: McDonald
  fullname: McDonald, Anthony
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 8
  givenname: Luke
  surname: Yates
  fullname: Yates, Luke
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 9
  givenname: Timothy
  surname: Walsh
  fullname: Walsh, Timothy
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
– sequence: 10
  givenname: Gregory
  orcidid: 0000-0003-0337-7236
  surname: Pickrell
  fullname: Pickrell, Gregory
  organization: Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38194473$$D View this record in MEDLINE/PubMed
BookMark eNpNT81LwzAcDTJxW_XqUXr00pmPpk2OMp0bDPQwzyVLf2GRJplJq-y_d7IJnt6D93gfUzTywQNCtwTPCKbkQemknJ0xTVjFxQWaEFmWhaCcjv7xMZqm9IFxxSjmV2jMxK9UswlarvwXxGSDz02I-WYH0akuf4thD7G3kPJv2-_yRYTPAbw-5E_BKetPxhDBdKB75TVco0ujugQ3Z8zQ--J5M18W69eX1fxxXSgm674gTGIuaM1ryVvBjGSV4bjUUrQtLo3cMgFVrY2osCDaUCOpbI2SmNZgFFE0Q_en3H0Mx0mpb5xNGrpOeQhDaqgkDIuyPJZk6O5sHbYO2mYfrVPx0Py9pz8DXV6F
CitedBy_id crossref_primary_10_1002_admi_202401039
crossref_primary_10_2514_1_T6999
crossref_primary_10_1063_5_0237004
crossref_primary_10_1063_5_0224398
crossref_primary_10_1063_5_0201473
crossref_primary_10_1016_j_mee_2025_112325
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acsami.3c13658
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
ExternalDocumentID 38194473
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
ID FETCH-LOGICAL-a397t-139058275795d83f936f504c98dd04f9b38e67cf86081cf2f929dfa9027efa1a2
IEDL.DBID 7X8
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001150601800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1944-8252
IngestDate Fri Jul 11 11:40:06 EDT 2025
Mon Jul 21 05:32:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords thermal boundary conductance
finite element method
heterogeneously integrated microelectronics
gradient-based optimization
GaN-diamond devices
frequency-domain thermoreflectance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a397t-139058275795d83f936f504c98dd04f9b38e67cf86081cf2f929dfa9027efa1a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6885-2563
0000-0003-0386-8908
0000-0003-0337-7236
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acsami.3c13658
PMID 38194473
PQID 2913084458
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2913084458
pubmed_primary_38194473
PublicationCentury 2000
PublicationDate 2024-01-24
PublicationDateYYYYMMDD 2024-01-24
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2024
SSID ssj0063205
Score 2.4793897
Snippet 3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4117
Title Inversion for Thermal Properties with Frequency Domain Thermoreflectance
URI https://www.ncbi.nlm.nih.gov/pubmed/38194473
https://www.proquest.com/docview/2913084458
Volume 16
WOSCitedRecordID wos001150601800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qetCD78f6IoLXsm2SNslJRF32oMseVPZW0jSBBbddtyr4751pu-pFELyUHlook5npN98M8xFyYaSMrFM8YJazQHiXBah0BHcmYhnTSVyvUnq6k8OhGo_1qCXcqnascpET60SdlxY58h7TkG2VELG6nL0EqBqF3dVWQmOZdDhAGQxMOf7qIiSc1SOMUKeLACohtljayKKesRUK7HCLY17qd3hZ_2b6m__9wC2y0QJMetV4xDZZcsUOWf-xdnCXDHC5Rk2TUYCsFDwFsvMzHSEvP8cFqxTZWdqfN2PWH_SmnJpJ0TyIwiRI9aO37JHH_u3D9SBoFRUCA7gDded1GCsmY6njXHGveeLjUFit8jwUXmdcuURaD8elIuuZB_CUe6OhdnVweIbtk5WiLNwhoaFmkbdgSyOtkDbTPMw5MzkgKAj5THbJ-cJMKXgstiFM4cq3Kv02VJccNLZOZ81qjRTrRyEkP_rD28dkjQHCQD6EiRPS8RCv7pSs2vfXSTU_q10BrsPR_SebqL4S
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+for+Thermal+Properties+with+Frequency+Domain+Thermoreflectance&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Treweek%2C+Benjamin&rft.au=Akcelik%2C+Volkan&rft.au=Hodges%2C+Wyatt&rft.au=Jarzembski%2C+Amun&rft.date=2024-01-24&rft.eissn=1944-8252&rft.volume=16&rft.issue=3&rft.spage=4117&rft_id=info:doi/10.1021%2Facsami.3c13658&rft_id=info%3Apmid%2F38194473&rft_id=info%3Apmid%2F38194473&rft.externalDocID=38194473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8252&client=summon