Deep learning for computer vision expert techniques to train advanced neural networks using TensorFlow and Keras

Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision, the science of manipulating and processing images. In this book, you will learn different techniques in deep learning to accomplish tasks related to object classification, object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Shanmugamani, Rajalingappaa
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Birmingham PACKT Publishing 2018
Packt Publishing
Packt Publishing, Limited
Packt Publishing Limited
Ausgabe:1st ed.
Schlagworte:
ISBN:9781788295628, 1788293355, 9781788293358, 1788295625
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision, the science of manipulating and processing images. In this book, you will learn different techniques in deep learning to accomplish tasks related to object classification, object detection, image segmentation, captioning, ...
AbstractList Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python-and some understanding of machine learning concepts-is required to get the best out of this book.
Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision, the science of manipulating and processing images. In this book, you will learn different techniques in deep learning to accomplish tasks related to object classification, object detection, image segmentation, captioning,.
Author Shanmugamani, Rajalingappaa
Author_xml – sequence: 1
  fullname: Shanmugamani, Rajalingappaa
BackLink https://cir.nii.ac.jp/crid/1130580517320666665$$DView record in CiNii
BookMark eNplkU1PwzAMhoP4EGzsyL1ISMBh0DhNkxxHGR9iEhwmrlWapltY15am3bR_T0aRYMIHx5aevK-d9NBBURYaoTPs3_gubgXjmHEOghDK99Bgp9__09MQ-BHqYR-ACcKxOEYDaz-cBkDIgJETdH6vdeXlWtaFKWZeVtaeKpdV2-jaWxlryuIUHWYyt3rwc_bR-8N4Gj0NJ6-Pz9FoMpREMIChxATCNBMCB85askQJHnAFqZsmUCoTQZLxhAWJL5QIqQKREcrcFQBKWcpJH113wtIu9NrOy7yx8SrXSVkubLyz5C-7lrkbNdWzut24Il7KWv1jLzu2qsvPVtsm_pZUumhqmcfju4gCDagIHXnRkYUxsTLbjDHxKfcpZgT8cBvUYVcdZmZVm-TGzt3TxVVtnPkmfhtFL9PtP_kBkC9bxHj4
ContentType eBook
Book
DBID PASLL
RYH
DEWEY 006.3
DOI 10.0000/9781788293358
DatabaseName Packt Publishing
CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISBN 9781788293358
1788293355
Edition 1st ed.
1
ExternalDocumentID 9781788293358
EBC5254596
BD05467556
PACKT0000042
GroupedDBID -VX
20A
38.
AABBV
AAFKH
AAKGN
AANYM
AAWZI
AAZEP
AAZGR
ABARN
ABIWA
ABMRC
ABQPQ
ABRSK
ABWNX
ACBYE
ACIWJ
ACLGV
ACXXF
ADBND
ADVEM
AECLD
AEHEP
AEIUR
AEOCW
AERYV
AFOJC
AFQEX
AGICN
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
ALUEM
APVFW
ATDNW
AZZ
BBABE
CMZ
CZZ
DUGUG
E2F
EBSCA
GEOUK
IHRAH
J-X
K-E
KU5
L7C
OHILO
OODEK
PASLL
QD8
TD3
UE6
ABCYV
AVGCG
RYH
ID FETCH-LOGICAL-a39722-a1326df9914829a7bc9848c2d7814ccf94bf8b74b09c965c29f35726d22557d83
ISBN 9781788295628
1788293355
9781788293358
1788295625
IngestDate Thu Nov 20 10:04:47 EST 2025
Fri Nov 21 19:40:43 EST 2025
Wed Dec 10 10:01:02 EST 2025
Sat Nov 01 10:47:55 EDT 2025
Fri Aug 08 02:35:43 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum TA347.A78
LCCallNum_Ident TA347.A78
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a39722-a1326df9914829a7bc9848c2d7814ccf94bf8b74b09c965c29f35726d22557d83
Notes Includes index
OCLC 1022793819
PQID EBC5254596
PageCount 304
ParticipantIDs askewsholts_vlebooks_9781788293358
walterdegruyter_marc_9781788293358
proquest_ebookcentral_EBC5254596
nii_cinii_1130580517320666665
igpublishing_primary_PACKT0000042
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2018.
2018
[2018]
2018-01-23
PublicationDateYYYYMMDD 2018-01-01
2018-01-23
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Birmingham
PublicationPlace_xml – name: Birmingham
– name: Birmingham, UK
PublicationYear 2018
Publisher PACKT Publishing
Packt Publishing
Packt Publishing, Limited
Packt Publishing Limited
Publisher_xml – name: PACKT Publishing
– name: Packt Publishing
– name: Packt Publishing, Limited
– name: Packt Publishing Limited
RestrictionsOnAccess restricted access
SSID ssj0002267273
Score 2.0430088
Snippet Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision, the science of manipulating and...
Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model...
SourceID askewsholts
walterdegruyter
proquest
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Artificial intelligence
Artificial intelligence-Research
Big Data and Business Intelligence
COM004000 COMPUTERS / Intelligence (AI) & Semantics
COM016000 COMPUTERS / Computer Vision & Pattern Recognition
Computer vision
COMPUTERS / General
COMPUTERS / Neural Networks
Machine learning
Neural networks (Computer science)
SubjectTermsDisplay Artificial intelligence.
Big Data and Business Intelligence
COMPUTERS / General
Neural networks (Computer science)
Subtitle expert techniques to train advanced neural networks using TensorFlow and Keras
TableOfContents Other popular image testing datasets -- The CIFAR dataset -- The Fashion-MNIST dataset -- The ImageNet dataset and competition -- The bigger deep learning models -- The AlexNet model -- The VGG-16 model -- The Google Inception-V3 model -- The Microsoft ResNet-50 model -- The SqueezeNet model -- Spatial transformer networks -- The DenseNet model -- Training a model for cats versus dogs -- Preparing the data -- Benchmarking with simple CNN -- Augmenting the dataset -- Augmentation techniques -- Transfer learning or fine-tuning of a model -- Training on bottleneck features -- Fine-tuning several layers in deep learning -- Developing real-world applications -- Choosing the right model -- Tackling the underfitting and overfitting scenarios -- Gender and age detection from face -- Fine-tuning apparel models -- Brand safety -- Summary -- Chapter 3: Image Retrieval -- Understanding visual features -- Visualizing activation of deep learning models -- Embedding visualization -- Guided backpropagation -- The DeepDream -- Adversarial examples -- Model inference -- Exporting a model -- Serving the trained model -- Content-based image retrieval -- Building the retrieval pipeline -- Extracting bottleneck features for an image -- Computing similarity between query image and target database -- Efficient retrieval -- Matching faster using approximate nearest neighbour -- Advantages of ANNOY -- Autoencoders of raw images -- Denoising using autoencoders -- Summary -- Chapter 4: Object Detection -- Detecting objects in an image -- Exploring the datasets -- ImageNet dataset -- PASCAL VOC challenge -- COCO object detection challenge -- Evaluating datasets using metrics -- Intersection over Union -- The mean average precision -- Localizing algorithms -- Localizing objects using sliding windows -- The scale-space concept
Training a fully connected layer as a convolution layer -- Convolution implementation of sliding window -- Thinking about localization as a regression problem -- Applying regression to other problems -- Combining regression with the sliding window -- Detecting objects -- Regions of the convolutional neural network (R-CNN) -- Fast R-CNN -- Faster R-CNN -- Single shot multi-box detector -- Object detection API -- Installation and setup -- Pre-trained models -- Re-training object detection models -- Data preparation for the Pet dataset -- Object detection training pipeline -- Training the model -- Monitoring loss and accuracy using TensorBoard -- Training a pedestrian detection for a self-driving car -- The YOLO object detection algorithm -- Summary -- Chapter 5: Semantic Segmentation -- Predicting pixels -- Diagnosing medical images -- Understanding the earth from satellite imagery -- Enabling robots to see -- Datasets -- Algorithms for semantic segmentation -- The Fully Convolutional Network -- The SegNet architecture -- Upsampling the layers by pooling -- Sampling the layers by convolution -- Skipping connections for better training -- Dilated convolutions -- DeepLab -- RefiNet -- PSPnet -- Large kernel matters -- DeepLab v3 -- Ultra-nerve segmentation -- Segmenting satellite images -- Modeling FCN for segmentation -- Segmenting instances -- Summary -- Chapter 6: Similarity Learning -- Algorithms for similarity learning -- Siamese networks -- Contrastive loss -- FaceNet -- Triplet loss -- The DeepNet model -- DeepRank -- Visual recommendation systems -- Human face analysis -- Face detection -- Face landmarks and attributes -- The Multi-Task Facial Landmark (MTFL) dataset -- The Kaggle keypoint dataset -- The Multi-Attribute Facial Landmark (MAFL) dataset -- Learning the facial key points -- Face recognition
Cover -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started -- Understanding deep learning -- Perceptron -- Activation functions -- Sigmoid -- The hyperbolic tangent function -- The Rectified Linear Unit (ReLU) -- Artificial neural network (ANN) -- One-hot encoding -- Softmax -- Cross-entropy -- Dropout -- Batch normalization -- L1 and L2 regularization -- Training neural networks -- Backpropagation -- Gradient descent -- Stochastic gradient descent -- Playing with TensorFlow playground -- Convolutional neural network -- Kernel -- Max pooling -- Recurrent neural networks (RNN) -- Long short-term memory (LSTM) -- Deep learning for computer vision -- Classification -- Detection or localization and segmentation -- Similarity learning -- Image captioning -- Generative models -- Video analysis -- Development environment setup -- Hardware and Operating Systems - OS -- General Purpose - Graphics Processing Unit (GP-GPU) -- Computer Unified Device Architecture - CUDA -- CUDA Deep Neural Network - CUDNN -- Installing software packages -- Python -- Open Computer Vision - OpenCV -- The TensorFlow library -- Installing TensorFlow -- TensorFlow example to print Hello, TensorFlow -- TensorFlow example for adding two numbers -- TensorBoard -- The TensorFlow Serving tool -- The Keras library -- Summary -- Chapter 2: Image Classification -- Training the MNIST model in TensorFlow -- The MNIST datasets -- Loading the MNIST data -- Building a perceptron -- Defining placeholders for input data and targets -- Defining the variables for a fully connected layer -- Training the model with data -- Building a multilayer convolutional network -- Utilizing TensorBoard in deep learning -- Training the MNIST model in Keras -- Preparing the dataset -- Building the model
The labeled faces in the wild (LFW) dataset -- The YouTube faces dataset -- The CelebFaces Attributes dataset (CelebA) -- CASIA web face database -- The VGGFace2 dataset -- Computing the similarity between faces -- Finding the optimum threshold -- Face clustering -- Summary -- Chapter 7: Image Captioning -- Understanding the problem and datasets -- Understanding natural language processing for image captioning -- Expressing words in vector form -- Converting words to vectors -- Training an embedding -- Approaches for image captioning and related problems -- Using a condition random field for linking image and text -- Using RNN on CNN features to generate captions -- Creating captions using image ranking -- Retrieving captions from images and images from captions -- Dense captioning -- Using RNN for captioning -- Using multimodal metric space -- Using attention network for captioning -- Knowing when to look -- Implementing attention-based image captioning -- Summary -- Chapter 8: Generative Models -- Applications of generative models -- Artistic style transfer -- Predicting the next frame in a video -- Super-resolution of images -- Interactive image generation -- Image to image translation -- Text to image generation -- Inpainting -- Blending -- Transforming attributes -- Creating training data -- Creating new animation characters -- 3D models from photos -- Neural artistic style transfer -- Content loss -- Style loss using the Gram matrix -- Style transfer -- Generative Adversarial Networks -- Vanilla GAN -- Conditional GAN -- Adversarial loss -- Image translation -- InfoGAN -- Drawbacks of GAN -- Visual dialogue model -- Algorithm for VDM -- Generator -- Discriminator -- Summary -- Chapter 9: Video Classification -- Understanding and classifying videos -- Exploring video classification datasets -- UCF101 -- YouTube-8M -- Other datasets
Splitting videos into frames -- Approaches for classifying videos -- Fusing parallel CNN for video classification -- Classifying videos over long periods -- Streaming two CNN's for action recognition -- Using 3D convolution for temporal learning -- Using trajectory for classification -- Multi-modal fusion -- Attending regions for classification -- Extending image-based approaches to videos -- Regressing the human pose -- Tracking facial landmarks -- Segmenting videos -- Captioning videos -- Generating videos -- Summary -- Chapter 10: Deployment -- Performance of models -- Quantizing the models -- MobileNets -- Deployment in the cloud -- AWS -- Google Cloud Platform -- Deployment of models in devices -- Jetson TX2 -- Android -- iPhone -- Summary -- Other Books You May Enjoy -- Index
Deep Learning for Computer Vision: Expert techniques to train advanced neural networks using TensorFlow and Keras
Title Deep learning for computer vision
URI http://portal.igpublish.com/iglibrary/search/PACKT0000042.html
https://cir.nii.ac.jp/crid/1130580517320666665
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5254596
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781788293358&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BT9swFH5ihcM4jMFAdMAUpt1QRZvYsX2EApoEQtXUVdwix3FKKYSoSQv793uOm9DktB3owWojO3Hf5zy_9-z3GeBHyFweMw8HLxFhh7hu1JHMV_heKYp4U94rzgYc3bDbW353JwZLqousOE6AJQl_fRXpu0KN1xBskzr7H3BXN8UL-B1BxxJhx7JhEVc_LeIXWqclX6rdHVke2XAyKjLIq2jKvUye5mP5ZM9zOvklH6TJSpdpKuVqGKDHG2GAgVTTfDV0Vc-Psu5iD_1dnN49S5beVJ5m6rL7Jer16iTVjcmj2tJXa_YB1s2KrnGGr3_TKuaFpp4xlyzVqXncaa3VJmzKbIq6HfV-nhnu2HFa_SGc-5PJpOYHfHopdhREejyb_8nLFezCMBh-hnVtskW2YU0nO7BVCtxZqswvcGxQcUpUHETFqSpZVHZhdHU57P_sLI-l6Eg03tB3l-jB-1GMljXBnksWKsEJV25k6MOUigUJYx4yEnaFEj5Vrog9yrAJ6k7KIu7tQSt5TvQ-OJHSRHuKa-5LwiMp4m431i71FO1FMSVt-L4ikmDxWCyhZ0FNbm04XpVUkFqekmBw1r8eWi_QbcMRii9QE1Pi-9el3LCzeYbNHz-0DU4p2KB4xnJvcHB53qcumtnCx740BB4YupV6X77-S6UD-Pg2hA-hlc_m-gg21CKfZLNvxZj5C_JeSww
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Deep+Learning+for+Computer+Vision&rft.au=Shanmugamani%2C+Rajalingappaa&rft.date=2018-01-01&rft.pub=Packt+Publishing+Limited&rft.isbn=9781788293358&rft_id=info:doi/10.0000%2F9781788293358&rft.externalDBID=n%2Fa&rft.externalDocID=9781788293358
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97817882%2F9781788293358.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FPACKT0000042_null_0_320.png