Iterative manner involving sunny nonexpansive retractions for nonlinear operators from the perspective of convex programming as applicable to differential problems, image restoration and signal recovery

In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for the proposed method in the setting of uniformly...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 8; no. 3; pp. 7163 - 7195
Main Authors: Yambangwai, Damrongsak, Chairatsiripong, Chonjaroen, Thianwan, Tanakit
Format: Journal Article
Language:English
Published: AIMS Press 2023
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for the proposed method in the setting of uniformly convex Banach spaces. Furthermore, our results can be applied for the purpose of finding common zeros of accretive operators, convexly constrained least square problems and convex minimization problems. Regarding application, some numerical experiments involving real-world problems are provided, with focus on differential problems, image restoration problems and signal recovery problems.
AbstractList In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for the proposed method in the setting of uniformly convex Banach spaces. Furthermore, our results can be applied for the purpose of finding common zeros of accretive operators, convexly constrained least square problems and convex minimization problems. Regarding application, some numerical experiments involving real-world problems are provided, with focus on differential problems, image restoration problems and signal recovery problems.
Author Chairatsiripong, Chonjaroen
Yambangwai, Damrongsak
Thianwan, Tanakit
Author_xml – sequence: 1
  givenname: Damrongsak
  surname: Yambangwai
  fullname: Yambangwai, Damrongsak
– sequence: 2
  givenname: Chonjaroen
  surname: Chairatsiripong
  fullname: Chairatsiripong, Chonjaroen
– sequence: 3
  givenname: Tanakit
  surname: Thianwan
  fullname: Thianwan, Tanakit
BookMark eNpNkc1q3TAQhU1JoGmaXR5AD5CbypYsW8sQ-nMh0E27NiNp7CjYkhkpJvcV-1S1klC6mRmODt8RnE_VWYgBq-q65rdCC_llgfx42_BGCFV_qC4a2YmD0n1_9t_9sbpK6Ylz3tSNbDp5Uf05ZiTIfkO2QAhIzIctzpsPE0vPIZxYiXlZIaTiIcwENvsYEhsjlcfZBwRicS2cSLtOcWH5EdmupBXtKzyOzMaw4QtbKU4Ey1ISIDFY19lbMDOyHJnz44iEIXuYi3OXl3TD_AJTCU97AJR0BsGx5Kew2wht3JBOn6vzEeaEV-_7svr97euv-x-Hh5_fj_d3DwcQWuUDtsYJ17maS3BYgzK6ha6HVsj9hNEoA73VqF3fNaZujIGaO8PbrgMrehSX1fGN6yI8DSvtn6PTEMEPr0KkaQDK3s44SKNaUK3W7eikgrbn-wSNRkkrZcd31s0by1JMiXD8x6v5UGodSq3De63iL-U2oBo
Cites_doi 10.1137/1.9780898718829
10.1186/s40064-016-3056-x
10.1088/0266-5611/21/6/017
10.1137/050626090
10.1090/S0002-9904-1967-11823-8
10.11648/j.acm.20190805.11
10.1090/S0002-9939-1974-0336469-5
10.1109/MSP.2007.914731
10.1016/j.cam.2018.04.057
10.3390/math7090789
10.1007/s11075-018-0605-0
10.1007/s00500-020-05181-3
10.2140/pjm.1970.33.209
10.1109/JSTSP.2007.910281
10.3390/math7030226
10.1109/TIP.2007.909319
10.1109/SYNASC.2007.49
10.1088/0031-9155/51/10/001
10.1109/ACSSC.2017.8335641
10.4236/ajcm.2012.24048
10.1090/S0002-9939-1953-0054846-3
10.1155/2013/574620
10.1016/0362-546X(91)90200-K
10.1137/S1064827596304010
10.21136/AM.2019.0323-18
10.1006/jmaa.2000.7042
10.1007/978-94-009-2121-4
10.1080/01621459.1995.10476626
10.1090/S0002-9904-1968-11983-4
10.1007/s11075-019-00688-9
10.1002/mma.5420
10.1088/0266-5611/20/1/006
10.1090/S0002-9904-1967-11761-0
10.1007/s40840-017-0470-3
10.1002/cpa.20042
10.2298/FIL1610711T
10.1016/j.cam.2010.12.022
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023361
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 7195
ExternalDocumentID oai_doaj_org_article_4b65a65995fd46a58046aa9eb64c4470
10_3934_math_2023361
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a396t-e5bd3d7d104ade1a6b95a78a5346b9afb6ba8c9e9d872b12bba10db0577ac38e3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922837000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:34:35 EDT 2025
Sat Nov 29 06:04:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a396t-e5bd3d7d104ade1a6b95a78a5346b9afb6ba8c9e9d872b12bba10db0577ac38e3
OpenAccessLink https://doaj.org/article/4b65a65995fd46a58046aa9eb64c4470
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_4b65a65995fd46a58046aa9eb64c4470
crossref_primary_10_3934_math_2023361
PublicationCentury 2000
PublicationDate 2023-00-00
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023361-16
key-10.3934/math.2023361-38
key-10.3934/math.2023361-17
key-10.3934/math.2023361-39
key-10.3934/math.2023361-14
key-10.3934/math.2023361-36
key-10.3934/math.2023361-15
key-10.3934/math.2023361-37
key-10.3934/math.2023361-18
key-10.3934/math.2023361-19
key-10.3934/math.2023361-41
key-10.3934/math.2023361-20
key-10.3934/math.2023361-42
key-10.3934/math.2023361-40
key-10.3934/math.2023361-23
key-10.3934/math.2023361-24
key-10.3934/math.2023361-21
key-10.3934/math.2023361-22
key-10.3934/math.2023361-27
key-10.3934/math.2023361-28
key-10.3934/math.2023361-25
key-10.3934/math.2023361-26
key-10.3934/math.2023361-29
key-10.3934/math.2023361-9
key-10.3934/math.2023361-5
key-10.3934/math.2023361-6
key-10.3934/math.2023361-7
key-10.3934/math.2023361-8
key-10.3934/math.2023361-1
key-10.3934/math.2023361-30
key-10.3934/math.2023361-2
key-10.3934/math.2023361-31
key-10.3934/math.2023361-3
key-10.3934/math.2023361-4
key-10.3934/math.2023361-12
key-10.3934/math.2023361-34
key-10.3934/math.2023361-13
key-10.3934/math.2023361-35
key-10.3934/math.2023361-10
key-10.3934/math.2023361-32
key-10.3934/math.2023361-11
key-10.3934/math.2023361-33
References_xml – ident: key-10.3934/math.2023361-23
  doi: 10.1137/1.9780898718829
– ident: key-10.3934/math.2023361-15
  doi: 10.1186/s40064-016-3056-x
– ident: key-10.3934/math.2023361-22
  doi: 10.1088/0266-5611/21/6/017
– ident: key-10.3934/math.2023361-20
  doi: 10.1137/050626090
– ident: key-10.3934/math.2023361-29
  doi: 10.1090/S0002-9904-1967-11823-8
– ident: key-10.3934/math.2023361-40
  doi: 10.11648/j.acm.20190805.11
– ident: key-10.3934/math.2023361-11
  doi: 10.1090/S0002-9939-1974-0336469-5
– ident: key-10.3934/math.2023361-2
  doi: 10.1109/MSP.2007.914731
– ident: key-10.3934/math.2023361-4
  doi: 10.1016/j.cam.2018.04.057
– ident: key-10.3934/math.2023361-9
– ident: key-10.3934/math.2023361-3
  doi: 10.3390/math7090789
– ident: key-10.3934/math.2023361-5
  doi: 10.1007/s11075-018-0605-0
– ident: key-10.3934/math.2023361-39
  doi: 10.1007/s00500-020-05181-3
– ident: key-10.3934/math.2023361-35
  doi: 10.2140/pjm.1970.33.209
– ident: key-10.3934/math.2023361-27
  doi: 10.1109/JSTSP.2007.910281
– ident: key-10.3934/math.2023361-16
– ident: key-10.3934/math.2023361-7
  doi: 10.3390/math7030226
– ident: key-10.3934/math.2023361-33
– ident: key-10.3934/math.2023361-12
– ident: key-10.3934/math.2023361-24
  doi: 10.1109/TIP.2007.909319
– ident: key-10.3934/math.2023361-8
  doi: 10.1109/SYNASC.2007.49
– ident: key-10.3934/math.2023361-21
  doi: 10.1088/0031-9155/51/10/001
– ident: key-10.3934/math.2023361-42
  doi: 10.1109/ACSSC.2017.8335641
– ident: key-10.3934/math.2023361-13
  doi: 10.4236/ajcm.2012.24048
– ident: key-10.3934/math.2023361-10
  doi: 10.1090/S0002-9939-1953-0054846-3
– ident: key-10.3934/math.2023361-38
  doi: 10.1155/2013/574620
– ident: key-10.3934/math.2023361-36
  doi: 10.1016/0362-546X(91)90200-K
– ident: key-10.3934/math.2023361-25
  doi: 10.1137/S1064827596304010
– ident: key-10.3934/math.2023361-6
  doi: 10.21136/AM.2019.0323-18
– ident: key-10.3934/math.2023361-14
  doi: 10.1006/jmaa.2000.7042
– ident: key-10.3934/math.2023361-31
  doi: 10.1007/978-94-009-2121-4
– ident: key-10.3934/math.2023361-26
  doi: 10.1080/01621459.1995.10476626
– ident: key-10.3934/math.2023361-30
  doi: 10.1090/S0002-9904-1968-11983-4
– ident: key-10.3934/math.2023361-37
  doi: 10.1007/s11075-019-00688-9
– ident: key-10.3934/math.2023361-1
  doi: 10.1002/mma.5420
– ident: key-10.3934/math.2023361-19
  doi: 10.1088/0266-5611/20/1/006
– ident: key-10.3934/math.2023361-34
  doi: 10.1090/S0002-9904-1967-11761-0
– ident: key-10.3934/math.2023361-28
  doi: 10.1007/s40840-017-0470-3
– ident: key-10.3934/math.2023361-41
  doi: 10.1002/cpa.20042
– ident: key-10.3934/math.2023361-32
– ident: key-10.3934/math.2023361-17
  doi: 10.2298/FIL1610711T
– ident: key-10.3934/math.2023361-18
  doi: 10.1016/j.cam.2010.12.022
SSID ssj0002124274
Score 2.227005
Snippet In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm...
In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the CR-iteration algorithm in...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 7163
SubjectTerms convex minimization problem
convexly constrained least square problem
image restoration problem
signal recovery problem
sunny nonexpansive retract
Title Iterative manner involving sunny nonexpansive retractions for nonlinear operators from the perspective of convex programming as applicable to differential problems, image restoration and signal recovery
URI https://doaj.org/article/4b65a65995fd46a58046aa9eb64c4470
Volume 8
WOSCitedRecordID wos000922837000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29T90wELcqxNAOFdBWpUB1A2yNXhI7djICApUBxEClt0Xnj0hP4n0oCRUs_IH8Vdw5AV4nli5R5Di25Tuf7-c73wlx6PO8cZm0SUCtEuVcltgsd0muUGrdYJpajMkmzNVVOZ1W12upvtgnbAgPPEzcRFldoOawWI1XGouSAB1iFaxWTikT0XpqqjUwxTKYBLIivDV4ustKqgnpf2x7yKXU2T970Fqo_rinnG-Jz6MyCMfDILbFh7DYEZ8uXyOpdl_E00UMe0wyCebIabJgtiCJwscA0JHy-QCE38M9rWn2Q4c29O1wVaEDUkf5I-uR2MJyFaJFncrb5RyoC1i9XbSEZQPRAf0eRo-tOfeAHYwWbnsboF_CSz4Vkgu3MCaj6X7BbE5iCdqYpSaSGnDhgX1DqBpjblowD1_Fn_Ozm9PfyZh_IUFZ6T4JhfXSG0-IDX3IUNuqQFNiIRW9YmO1xdJVofKlyYnC1mKWeksaoEEnyyC_iQ2eg-8CGpfSr5kpGy9VIBWqyRW17HIlg0RtdsXRC0Xq1RBmoyZ4wpSrmXL1SLldccLkeq3DwbFjAbFMPbJM_R7L_PgfjeyJjzym4TRmX2z07V04EJvubz_r2p-RG-l5-Xj2DPyE7uU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+manner+involving+sunny+nonexpansive+retractions+for+nonlinear+operators+from+the+perspective+of+convex+programming+as+applicable+to+differential+problems%2C+image+restoration+and+signal+recovery&rft.jtitle=AIMS+mathematics&rft.au=Yambangwai%2C+Damrongsak&rft.au=Chairatsiripong%2C+Chonjaroen&rft.au=Thianwan%2C+Tanakit&rft.date=2023&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=3&rft.spage=7163&rft.epage=7195&rft_id=info:doi/10.3934%2Fmath.2023361&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon