Iterative manner involving sunny nonexpansive retractions for nonlinear operators from the perspective of convex programming as applicable to differential problems, image restoration and signal recovery
In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for the proposed method in the setting of uniformly...
Saved in:
| Published in: | AIMS mathematics Vol. 8; no. 3; pp. 7163 - 7195 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
2023
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for the proposed method in the setting of uniformly convex Banach spaces. Furthermore, our results can be applied for the purpose of finding common zeros of accretive operators, convexly constrained least square problems and convex minimization problems. Regarding application, some numerical experiments involving real-world problems are provided, with focus on differential problems, image restoration problems and signal recovery problems. |
|---|---|
| AbstractList | In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for the proposed method in the setting of uniformly convex Banach spaces. Furthermore, our results can be applied for the purpose of finding common zeros of accretive operators, convexly constrained least square problems and convex minimization problems. Regarding application, some numerical experiments involving real-world problems are provided, with focus on differential problems, image restoration problems and signal recovery problems. |
| Author | Chairatsiripong, Chonjaroen Yambangwai, Damrongsak Thianwan, Tanakit |
| Author_xml | – sequence: 1 givenname: Damrongsak surname: Yambangwai fullname: Yambangwai, Damrongsak – sequence: 2 givenname: Chonjaroen surname: Chairatsiripong fullname: Chairatsiripong, Chonjaroen – sequence: 3 givenname: Tanakit surname: Thianwan fullname: Thianwan, Tanakit |
| BookMark | eNpNkc1q3TAQhU1JoGmaXR5AD5CbypYsW8sQ-nMh0E27NiNp7CjYkhkpJvcV-1S1klC6mRmODt8RnE_VWYgBq-q65rdCC_llgfx42_BGCFV_qC4a2YmD0n1_9t_9sbpK6Ylz3tSNbDp5Uf05ZiTIfkO2QAhIzIctzpsPE0vPIZxYiXlZIaTiIcwENvsYEhsjlcfZBwRicS2cSLtOcWH5EdmupBXtKzyOzMaw4QtbKU4Ey1ISIDFY19lbMDOyHJnz44iEIXuYi3OXl3TD_AJTCU97AJR0BsGx5Kew2wht3JBOn6vzEeaEV-_7svr97euv-x-Hh5_fj_d3DwcQWuUDtsYJ17maS3BYgzK6ha6HVsj9hNEoA73VqF3fNaZujIGaO8PbrgMrehSX1fGN6yI8DSvtn6PTEMEPr0KkaQDK3s44SKNaUK3W7eikgrbn-wSNRkkrZcd31s0by1JMiXD8x6v5UGodSq3De63iL-U2oBo |
| Cites_doi | 10.1137/1.9780898718829 10.1186/s40064-016-3056-x 10.1088/0266-5611/21/6/017 10.1137/050626090 10.1090/S0002-9904-1967-11823-8 10.11648/j.acm.20190805.11 10.1090/S0002-9939-1974-0336469-5 10.1109/MSP.2007.914731 10.1016/j.cam.2018.04.057 10.3390/math7090789 10.1007/s11075-018-0605-0 10.1007/s00500-020-05181-3 10.2140/pjm.1970.33.209 10.1109/JSTSP.2007.910281 10.3390/math7030226 10.1109/TIP.2007.909319 10.1109/SYNASC.2007.49 10.1088/0031-9155/51/10/001 10.1109/ACSSC.2017.8335641 10.4236/ajcm.2012.24048 10.1090/S0002-9939-1953-0054846-3 10.1155/2013/574620 10.1016/0362-546X(91)90200-K 10.1137/S1064827596304010 10.21136/AM.2019.0323-18 10.1006/jmaa.2000.7042 10.1007/978-94-009-2121-4 10.1080/01621459.1995.10476626 10.1090/S0002-9904-1968-11983-4 10.1007/s11075-019-00688-9 10.1002/mma.5420 10.1088/0266-5611/20/1/006 10.1090/S0002-9904-1967-11761-0 10.1007/s40840-017-0470-3 10.1002/cpa.20042 10.2298/FIL1610711T 10.1016/j.cam.2010.12.022 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2023361 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 7195 |
| ExternalDocumentID | oai_doaj_org_article_4b65a65995fd46a58046aa9eb64c4470 10_3934_math_2023361 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a396t-e5bd3d7d104ade1a6b95a78a5346b9afb6ba8c9e9d872b12bba10db0577ac38e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922837000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:34:35 EDT 2025 Sat Nov 29 06:04:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a396t-e5bd3d7d104ade1a6b95a78a5346b9afb6ba8c9e9d872b12bba10db0577ac38e3 |
| OpenAccessLink | https://doaj.org/article/4b65a65995fd46a58046aa9eb64c4470 |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4b65a65995fd46a58046aa9eb64c4470 crossref_primary_10_3934_math_2023361 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2023361-16 key-10.3934/math.2023361-38 key-10.3934/math.2023361-17 key-10.3934/math.2023361-39 key-10.3934/math.2023361-14 key-10.3934/math.2023361-36 key-10.3934/math.2023361-15 key-10.3934/math.2023361-37 key-10.3934/math.2023361-18 key-10.3934/math.2023361-19 key-10.3934/math.2023361-41 key-10.3934/math.2023361-20 key-10.3934/math.2023361-42 key-10.3934/math.2023361-40 key-10.3934/math.2023361-23 key-10.3934/math.2023361-24 key-10.3934/math.2023361-21 key-10.3934/math.2023361-22 key-10.3934/math.2023361-27 key-10.3934/math.2023361-28 key-10.3934/math.2023361-25 key-10.3934/math.2023361-26 key-10.3934/math.2023361-29 key-10.3934/math.2023361-9 key-10.3934/math.2023361-5 key-10.3934/math.2023361-6 key-10.3934/math.2023361-7 key-10.3934/math.2023361-8 key-10.3934/math.2023361-1 key-10.3934/math.2023361-30 key-10.3934/math.2023361-2 key-10.3934/math.2023361-31 key-10.3934/math.2023361-3 key-10.3934/math.2023361-4 key-10.3934/math.2023361-12 key-10.3934/math.2023361-34 key-10.3934/math.2023361-13 key-10.3934/math.2023361-35 key-10.3934/math.2023361-10 key-10.3934/math.2023361-32 key-10.3934/math.2023361-11 key-10.3934/math.2023361-33 |
| References_xml | – ident: key-10.3934/math.2023361-23 doi: 10.1137/1.9780898718829 – ident: key-10.3934/math.2023361-15 doi: 10.1186/s40064-016-3056-x – ident: key-10.3934/math.2023361-22 doi: 10.1088/0266-5611/21/6/017 – ident: key-10.3934/math.2023361-20 doi: 10.1137/050626090 – ident: key-10.3934/math.2023361-29 doi: 10.1090/S0002-9904-1967-11823-8 – ident: key-10.3934/math.2023361-40 doi: 10.11648/j.acm.20190805.11 – ident: key-10.3934/math.2023361-11 doi: 10.1090/S0002-9939-1974-0336469-5 – ident: key-10.3934/math.2023361-2 doi: 10.1109/MSP.2007.914731 – ident: key-10.3934/math.2023361-4 doi: 10.1016/j.cam.2018.04.057 – ident: key-10.3934/math.2023361-9 – ident: key-10.3934/math.2023361-3 doi: 10.3390/math7090789 – ident: key-10.3934/math.2023361-5 doi: 10.1007/s11075-018-0605-0 – ident: key-10.3934/math.2023361-39 doi: 10.1007/s00500-020-05181-3 – ident: key-10.3934/math.2023361-35 doi: 10.2140/pjm.1970.33.209 – ident: key-10.3934/math.2023361-27 doi: 10.1109/JSTSP.2007.910281 – ident: key-10.3934/math.2023361-16 – ident: key-10.3934/math.2023361-7 doi: 10.3390/math7030226 – ident: key-10.3934/math.2023361-33 – ident: key-10.3934/math.2023361-12 – ident: key-10.3934/math.2023361-24 doi: 10.1109/TIP.2007.909319 – ident: key-10.3934/math.2023361-8 doi: 10.1109/SYNASC.2007.49 – ident: key-10.3934/math.2023361-21 doi: 10.1088/0031-9155/51/10/001 – ident: key-10.3934/math.2023361-42 doi: 10.1109/ACSSC.2017.8335641 – ident: key-10.3934/math.2023361-13 doi: 10.4236/ajcm.2012.24048 – ident: key-10.3934/math.2023361-10 doi: 10.1090/S0002-9939-1953-0054846-3 – ident: key-10.3934/math.2023361-38 doi: 10.1155/2013/574620 – ident: key-10.3934/math.2023361-36 doi: 10.1016/0362-546X(91)90200-K – ident: key-10.3934/math.2023361-25 doi: 10.1137/S1064827596304010 – ident: key-10.3934/math.2023361-6 doi: 10.21136/AM.2019.0323-18 – ident: key-10.3934/math.2023361-14 doi: 10.1006/jmaa.2000.7042 – ident: key-10.3934/math.2023361-31 doi: 10.1007/978-94-009-2121-4 – ident: key-10.3934/math.2023361-26 doi: 10.1080/01621459.1995.10476626 – ident: key-10.3934/math.2023361-30 doi: 10.1090/S0002-9904-1968-11983-4 – ident: key-10.3934/math.2023361-37 doi: 10.1007/s11075-019-00688-9 – ident: key-10.3934/math.2023361-1 doi: 10.1002/mma.5420 – ident: key-10.3934/math.2023361-19 doi: 10.1088/0266-5611/20/1/006 – ident: key-10.3934/math.2023361-34 doi: 10.1090/S0002-9904-1967-11761-0 – ident: key-10.3934/math.2023361-28 doi: 10.1007/s40840-017-0470-3 – ident: key-10.3934/math.2023361-41 doi: 10.1002/cpa.20042 – ident: key-10.3934/math.2023361-32 – ident: key-10.3934/math.2023361-17 doi: 10.2298/FIL1610711T – ident: key-10.3934/math.2023361-18 doi: 10.1016/j.cam.2010.12.022 |
| SSID | ssj0002124274 |
| Score | 2.227005 |
| Snippet | In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm... In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the CR-iteration algorithm in... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 7163 |
| SubjectTerms | convex minimization problem convexly constrained least square problem image restoration problem signal recovery problem sunny nonexpansive retract |
| Title | Iterative manner involving sunny nonexpansive retractions for nonlinear operators from the perspective of convex programming as applicable to differential problems, image restoration and signal recovery |
| URI | https://doaj.org/article/4b65a65995fd46a58046aa9eb64c4470 |
| Volume | 8 |
| WOSCitedRecordID | wos000922837000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29T90wELcqxNAOFdBWpUB1A2yNXhI7djICApUBxEClt0Xnj0hP4n0oCRUs_IH8Vdw5AV4nli5R5Di25Tuf7-c73wlx6PO8cZm0SUCtEuVcltgsd0muUGrdYJpajMkmzNVVOZ1W12upvtgnbAgPPEzcRFldoOawWI1XGouSAB1iFaxWTikT0XpqqjUwxTKYBLIivDV4ustKqgnpf2x7yKXU2T970Fqo_rinnG-Jz6MyCMfDILbFh7DYEZ8uXyOpdl_E00UMe0wyCebIabJgtiCJwscA0JHy-QCE38M9rWn2Q4c29O1wVaEDUkf5I-uR2MJyFaJFncrb5RyoC1i9XbSEZQPRAf0eRo-tOfeAHYwWbnsboF_CSz4Vkgu3MCaj6X7BbE5iCdqYpSaSGnDhgX1DqBpjblowD1_Fn_Ozm9PfyZh_IUFZ6T4JhfXSG0-IDX3IUNuqQFNiIRW9YmO1xdJVofKlyYnC1mKWeksaoEEnyyC_iQ2eg-8CGpfSr5kpGy9VIBWqyRW17HIlg0RtdsXRC0Xq1RBmoyZ4wpSrmXL1SLldccLkeq3DwbFjAbFMPbJM_R7L_PgfjeyJjzym4TRmX2z07V04EJvubz_r2p-RG-l5-Xj2DPyE7uU |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+manner+involving+sunny+nonexpansive+retractions+for+nonlinear+operators+from+the+perspective+of+convex+programming+as+applicable+to+differential+problems%2C+image+restoration+and+signal+recovery&rft.jtitle=AIMS+mathematics&rft.au=Yambangwai%2C+Damrongsak&rft.au=Chairatsiripong%2C+Chonjaroen&rft.au=Thianwan%2C+Tanakit&rft.date=2023&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=3&rft.spage=7163&rft.epage=7195&rft_id=info:doi/10.3934%2Fmath.2023361&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023361 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |