A transfer deep residual shrinkage network for bird sound recognition
Bird sound recognition has important applications in bird monitoring and ecological protection. However, in complicated environments, noise and insufficient sample data are the major factors affecting recognition accuracy. We proposed a bird sound recognition method based on a developed transfer dee...
Saved in:
| Published in: | Electronic research archive Vol. 33; no. 7; pp. 4135 - 4150 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.07.2025
|
| Subjects: | |
| ISSN: | 2688-1594, 2688-1594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Bird sound recognition has important applications in bird monitoring and ecological protection. However, in complicated environments, noise and insufficient sample data are the major factors affecting recognition accuracy. We proposed a bird sound recognition method based on a developed transfer deep residual shrinkage network. First, a deep residual shrinkage network with noise resistance was constructed based on the structural characteristics of the residual shrinkage module, multi-scale operations, and the characteristics of bird sound Mel spectrograms. Then, the deep residual shrinkage network was pre-trained using a bird sound dataset, applying an unfreezing fine-tuning strategy, to mitigate the impact of insufficient training data. A transfer learning alleviated the problem of data scarcity by utilizing pre-trained models, while the deep residual shrinkage network enhanced the performance of the model in a noisy environment by optimizing the network structure. Experimental results showed that this method achieves high recognition accuracy under noise and small data sets. It has advantages over the compared methods and is suitable for ecological monitoring fields such as bird population monitoring. The method has good application prospects. |
|---|---|
| AbstractList | Bird sound recognition has important applications in bird monitoring and ecological protection. However, in complicated environments, noise and insufficient sample data are the major factors affecting recognition accuracy. We proposed a bird sound recognition method based on a developed transfer deep residual shrinkage network. First, a deep residual shrinkage network with noise resistance was constructed based on the structural characteristics of the residual shrinkage module, multi-scale operations, and the characteristics of bird sound Mel spectrograms. Then, the deep residual shrinkage network was pre-trained using a bird sound dataset, applying an unfreezing fine-tuning strategy, to mitigate the impact of insufficient training data. A transfer learning alleviated the problem of data scarcity by utilizing pre-trained models, while the deep residual shrinkage network enhanced the performance of the model in a noisy environment by optimizing the network structure. Experimental results showed that this method achieves high recognition accuracy under noise and small data sets. It has advantages over the compared methods and is suitable for ecological monitoring fields such as bird population monitoring. The method has good application prospects. |
| Author | Xu, Tong Chen, Xiao Zeng, Zhaoyou |
| Author_xml | – sequence: 1 givenname: Xiao surname: Chen fullname: Chen, Xiao – sequence: 2 givenname: Zhaoyou surname: Zeng fullname: Zeng, Zhaoyou – sequence: 3 givenname: Tong surname: Xu fullname: Xu, Tong |
| BookMark | eNpNkE1LAzEURYNUsNau_APZy9R8N1mWUrVQcKPrIZO81LQ1KckU8d87WhFX7_K4HC7nGo1SToDQLSUzbri4h2JnjDBJtbxAY6a0bqg0YvQvX6FprTtCCNOUEKHGaLXAfbGpBijYAxxxgRr9yR5wfSsx7e0WcIL-I5c9DrngLhaPaz4lPzRd3qbYx5xu0GWwhwrT3ztBrw-rl-VTs3l-XC8Xm8Zyo_pGzQVQSkSgMhihg50ra70nBkzwZG4J1SCNp55JQxxTngvGQRHGO9kNe_kErc9cn-2uPZb4bstnm21sfx65bFtb-ugO0ArtvVVdZ-RcC9dR6xwBEVQgIWin-cC6O7NcybUWCH88Stpvoe0gtP0Vyr8AoSFqiw |
| Cites_doi | 10.3934/mbe.2023860 10.18280/ts.390119 10.3969/j.issn.1000-386x.2014.01.040 10.1109/JSEN.2020.3030634 10.1117/1.JEI.31.4.043006 10.1109/TFUZZ.2017.2690222 10.1038/s41598-022-12121-8 10.1109/AISP48273.2020.9073584 10.1038/s41598-025-93758-z 10.7498/aps.63.184301 10.3934/era.2023011 10.1016/j.foreco.2007.01.080 10.1080/09349847.2015.1023913 10.3934/mbe.2023275 10.1002/cpe.7048 10.1117/1.JRS.16.026510 10.1145/3065386 10.7498/aps.67.20180561 10.3934/era.2025009 10.1109/ACCESS.2022.3142510 |
| ContentType | Journal Article |
| CorporateAuthor | Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| CorporateAuthor_xml | – name: Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China – name: School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/era.2025185 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2688-1594 |
| EndPage | 4150 |
| ExternalDocumentID | oai_doaj_org_article_48dda6bb95784cb1acc0e4f6f0ff8c83 10_3934_era_2025185 |
| GroupedDBID | AAYXX ABDBF ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION GROUPED_DOAJ IAO ICD ITC RAN TUS M~E |
| ID | FETCH-LOGICAL-a396t-674e1104f15f948fa76aadd09e9fd07a018e59d1d2590c26d3423e6023b5b0043 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001525496400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2688-1594 |
| IngestDate | Tue Oct 14 19:09:27 EDT 2025 Sat Nov 29 07:44:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a396t-674e1104f15f948fa76aadd09e9fd07a018e59d1d2590c26d3423e6023b5b0043 |
| OpenAccessLink | https://doaj.org/article/48dda6bb95784cb1acc0e4f6f0ff8c83 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_48dda6bb95784cb1acc0e4f6f0ff8c83 crossref_primary_10_3934_era_2025185 |
| PublicationCentury | 2000 |
| PublicationDate | 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 20250701 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronic research archive |
| PublicationYear | 2025 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/era.2025185-21 key-10.3934/era.2025185-22 key-10.3934/era.2025185-23 key-10.3934/era.2025185-24 key-10.3934/era.2025185-25 key-10.3934/era.2025185-26 key-10.3934/era.2025185-27 key-10.3934/era.2025185-10 key-10.3934/era.2025185-11 key-10.3934/era.2025185-12 key-10.3934/era.2025185-13 key-10.3934/era.2025185-14 key-10.3934/era.2025185-15 key-10.3934/era.2025185-16 key-10.3934/era.2025185-17 key-10.3934/era.2025185-18 key-10.3934/era.2025185-19 key-10.3934/era.2025185-9 key-10.3934/era.2025185-4 key-10.3934/era.2025185-3 key-10.3934/era.2025185-2 key-10.3934/era.2025185-1 key-10.3934/era.2025185-8 key-10.3934/era.2025185-7 key-10.3934/era.2025185-6 key-10.3934/era.2025185-5 key-10.3934/era.2025185-20 |
| References_xml | – ident: key-10.3934/era.2025185-1 doi: 10.3934/mbe.2023860 – ident: key-10.3934/era.2025185-9 doi: 10.18280/ts.390119 – ident: key-10.3934/era.2025185-10 doi: 10.3969/j.issn.1000-386x.2014.01.040 – ident: key-10.3934/era.2025185-27 doi: 10.1109/JSEN.2020.3030634 – ident: key-10.3934/era.2025185-3 doi: 10.1117/1.JEI.31.4.043006 – ident: key-10.3934/era.2025185-22 doi: 10.1109/TFUZZ.2017.2690222 – ident: key-10.3934/era.2025185-20 – ident: key-10.3934/era.2025185-24 doi: 10.1038/s41598-022-12121-8 – ident: key-10.3934/era.2025185-13 – ident: key-10.3934/era.2025185-25 doi: 10.1109/AISP48273.2020.9073584 – ident: key-10.3934/era.2025185-15 – ident: key-10.3934/era.2025185-7 – ident: key-10.3934/era.2025185-26 doi: 10.1038/s41598-025-93758-z – ident: key-10.3934/era.2025185-16 doi: 10.7498/aps.63.184301 – ident: key-10.3934/era.2025185-23 doi: 10.3934/era.2023011 – ident: key-10.3934/era.2025185-2 doi: 10.1016/j.foreco.2007.01.080 – ident: key-10.3934/era.2025185-17 doi: 10.1080/09349847.2015.1023913 – ident: key-10.3934/era.2025185-21 – ident: key-10.3934/era.2025185-12 doi: 10.3934/mbe.2023275 – ident: key-10.3934/era.2025185-19 doi: 10.1002/cpe.7048 – ident: key-10.3934/era.2025185-4 doi: 10.1117/1.JRS.16.026510 – ident: key-10.3934/era.2025185-5 doi: 10.1145/3065386 – ident: key-10.3934/era.2025185-18 doi: 10.7498/aps.67.20180561 – ident: key-10.3934/era.2025185-11 doi: 10.3934/era.2025009 – ident: key-10.3934/era.2025185-8 – ident: key-10.3934/era.2025185-6 doi: 10.1109/ACCESS.2022.3142510 – ident: key-10.3934/era.2025185-14 |
| SSID | ssj0002810046 |
| Score | 2.296014 |
| Snippet | Bird sound recognition has important applications in bird monitoring and ecological protection. However, in complicated environments, noise and insufficient... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 4135 |
| SubjectTerms | audio signal processing bioacoustics bird sound recognition deep learning deep residual shrinkage network ecological monitoring machine learning transfer learning |
| Title | A transfer deep residual shrinkage network for bird sound recognition |
| URI | https://doaj.org/article/48dda6bb95784cb1acc0e4f6f0ff8c83 |
| Volume | 33 |
| WOSCitedRecordID | wos001525496400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2688-1594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810046 issn: 2688-1594 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxQAD4inKSx66RnUSP8eCWrFQMYDULfLjWpQhrdLA92M7ocrGwhpZkXWu7XOPdX0uQpOS-cJQF7SJlSSjhrhMl7rIEllqRqEULjWbEMulXK3U66DVV6wJ6-yBO-CmVDqnuTEqLC1qTa6tJUA998R7aWXy-SRCDcTUZ7oyik5ovHuQV6qSTqGJLkOBzWPX5AEFDZz6E6UsTtFJnwviWTeHM3QA9Tk6ftkbqe4u0HyG25RaQoMdwBYHdZyeT-HdRxNkZDgNcN1VcuOQfmKzbhzexVZJeF8atKkv0fti_vb0nPWdDwJQircZFxQCL1OfM6-o9FpwHQ4iokB5R4QmuQSmXO6CeCG24C76-AEP_GtY3IflFRrVmxquEWZMWCi4iahRQ5VkkgDkHiwrqRfFGE1-wai2ncFFFYRBxKwKmFU9ZmP0GIHaD4mu1OlDiFXVx6r6K1Y3__GTW3QU59SVzN6hUdt8wT06tN_tetc8pGXwAyiCucU |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transfer+deep+residual+shrinkage+network+for+bird+sound+recognition&rft.jtitle=Electronic+research+archive&rft.au=Chen%2C+Xiao&rft.au=Zeng%2C+Zhaoyou&rft.au=Xu%2C+Tong&rft.date=2025-07-01&rft.issn=2688-1594&rft.eissn=2688-1594&rft.volume=33&rft.issue=7&rft.spage=4135&rft.epage=4150&rft_id=info:doi/10.3934%2Fera.2025185&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_era_2025185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-1594&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-1594&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-1594&client=summon |