Mapping geology and volcanic-hosted massive sulfide alteration in the Hellyer-Mt Charter region, Tasmania, using Random Forests™ and Self-Organising Maps

The Hellyer-Mt Charter region of western Tasmania includes three known and economically significant volcanic-hosted massive sulfide (VHMS) deposits. Thick vegetation and poor outcrop present a considerable challenge to ongoing detailed geological field mapping in this area. Numerous geophysical and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australian journal of earth sciences Jg. 61; H. 2; S. 287 - 304
Hauptverfasser: Cracknell, M. J., Reading, A. M., McNeill, A. W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 2014
Schlagworte:
ISSN:0812-0099, 1440-0952
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Hellyer-Mt Charter region of western Tasmania includes three known and economically significant volcanic-hosted massive sulfide (VHMS) deposits. Thick vegetation and poor outcrop present a considerable challenge to ongoing detailed geological field mapping in this area. Numerous geophysical and soil geochemical datasets covering the Hellyer-Mt Charter region have been collected in recent years. These data provide a rich source of geological information that can assist in defining the spatial distribution of lithologies. The integration and analysis of many layers of data in order to derive meaningful geological interpretations is a non-trivial task; however, machine learning algorithms such as Random Forests and Self-Organising Maps offer geologists methods for indentifying patterns in high-dimensional (many layered) data. In this study, we validate an interpreted geological map of the Hellyer-Mt Charter region by employing Random Forests™ to classify geophysical and geochemical data into 21 discrete lithological units. Our comparison of Random Forests supervised classification predictions to the interpreted geological map highlights the efficacy of this algorithm to map complex geological terranes. Furthermore, Random Forests identifies new geological details regarding the spatial distributions of key lithologies within the economically important Que-Hellyer Volcanics (QHV). We then infer distinct but spatially contiguous sub-classes within footwall and hangingwall, basalts and andesites of the QHV using Self-Organising Maps, an unsupervised clustering algorithm. Insight into compositional variability within volcanic units is gained by visualising the spatial distributions of sub-classes and associated statistical distributions of key geochemical data. Compositional differences in volcanic units are interpreted to reflect contrasting primary composition and VHMS alteration styles. We conclude that combining supervised and unsupervised machine-learning algorithms provides a widely applicable, robust means, of analysing complex and disparate data for machine-assisted geological mapping in challenging terranes.
AbstractList The Hellyer-Mt Charter region of western Tasmania includes three known and economically significant volcanic-hosted massive sulfide (VHMS) deposits. Thick vegetation and poor outcrop present a considerable challenge to ongoing detailed geological field mapping in this area. Numerous geophysical and soil geochemical datasets covering the Hellyer-Mt Charter region have been collected in recent years. These data provide a rich source of geological information that can assist in defining the spatial distribution of lithologies. The integration and analysis of many layers of data in order to derive meaningful geological interpretations is a non-trivial task; however, machine learning algorithms such as Random Forests and Self-Organising Maps offer geologists methods for indentifying patterns in high-dimensional (many layered) data. In this study, we validate an interpreted geological map of the Hellyer-Mt Charter region by employing Random Forests™ to classify geophysical and geochemical data into 21 discrete lithological units. Our comparison of Random Forests supervised classification predictions to the interpreted geological map highlights the efficacy of this algorithm to map complex geological terranes. Furthermore, Random Forests identifies new geological details regarding the spatial distributions of key lithologies within the economically important Que-Hellyer Volcanics (QHV). We then infer distinct but spatially contiguous sub-classes within footwall and hangingwall, basalts and andesites of the QHV using Self-Organising Maps, an unsupervised clustering algorithm. Insight into compositional variability within volcanic units is gained by visualising the spatial distributions of sub-classes and associated statistical distributions of key geochemical data. Compositional differences in volcanic units are interpreted to reflect contrasting primary composition and VHMS alteration styles. We conclude that combining supervised and unsupervised machine-learning algorithms provides a widely applicable, robust means, of analysing complex and disparate data for machine-assisted geological mapping in challenging terranes.
The Hellyer-Mt Charter region of western Tasmania includes three known and economically significant volcanic-hosted massive sulfide (VHMS) deposits. Thick vegetation and poor outcrop present a considerable challenge to ongoing detailed geological field mapping in this area. Numerous geophysical and soil geochemical datasets covering the Hellyer-Mt Charter region have been collected in recent years. These data provide a rich source of geological information that can assist in defining the spatial distribution of lithologies. The integration and analysis of many layers of data in order to derive meaningful geological interpretations is a non-trivial task; however, machine learning algorithms such as Random Forests and Self-Organising Maps offer geologists methods for indentifying patterns in high-dimensional (many layered) data. In this study, we validate an interpreted geological map of the Hellyer-Mt Charter region by employing Random Forests(TM) to classify geophysical and geochemical data into 21 discrete lithological units. Our comparison of Random Forests supervised classification predictions to the interpreted geological map highlights the efficacy of this algorithm to map complex geological terranes. Furthermore, Random Forests identifies new geological details regarding the spatial distributions of key lithologies within the economically important Que-Hellyer Volcanics (QHV). We then infer distinct but spatially contiguous sub-classes within footwall and hangingwall, basalts and andesites of the QHV using Self-Organising Maps, an unsupervised clustering algorithm. Insight into compositional variability within volcanic units is gained by visualising the spatial distributions of sub-classes and associated statistical distributions of key geochemical data. Compositional differences in volcanic units are interpreted to reflect contrasting primary composition and VHMS alteration styles. We conclude that combining supervised and unsupervised machine-learning algorithms provides a widely applicable, robust means, of analysing complex and disparate data for machine-assisted geological mapping in challenging terranes. 塔 斯 马 尼 亚 岛 西 部 &#x 7684; Hellyer-Mt Charter区 包 括 三 个 已 知 684; 和 具 有 显 著 经 济 意 义 的 大 量 火 山 岩 内 &#x 786b; 化 物 ( ( VHMS ) )矿 床 茂 密 植 被 和 不 &# x4f73; 露 头 对 该 区 持 续 ݨ 4; 详 细 地 质 实 地 制 图 &# x662f; 一 个 相 当 大 的 挑 ء 8; 最 近 几 年 收 集 了 该 &# x533a; 众 多 地 球 物 理 和 ձ f; 壤 地 球 化 学 数 据 这 &# x4e9b; 数 据 是 地 质 资 料 ݨ 4; 丰 富 来 源 ,可 以 协 助 & #x786e; 定 岩 性 的 空 间 分 ^ 03; 为 了 获 得 有 意 义 的 & #x5730; 质 解 释 而 对 多 层 e 70; 据 进 行 综 合 及 分 析 & #x662f; 一 件 不 平 凡 的 任 R a1; ; 但 是 ,机 学 算 法 如 随 ; 机 林 (Random Forests) 和 自 组 地 图 (Self-Organising Map)...
Author Reading, A. M.
McNeill, A. W.
Cracknell, M. J.
Author_xml – sequence: 1
  givenname: M. J.
  surname: Cracknell
  fullname: Cracknell, M. J.
  email: M.J.Cracknell@utas.edu.au
  organization: CODES Centre of Excellence in Ore Deposits and School of Earth Sciences, University of Tasmania
– sequence: 2
  givenname: A. M.
  surname: Reading
  fullname: Reading, A. M.
  organization: CODES Centre of Excellence in Ore Deposits and School of Earth Sciences, University of Tasmania
– sequence: 3
  givenname: A. W.
  surname: McNeill
  fullname: McNeill, A. W.
  organization: Mineral Resources Tasmania, Department of Infrastructure, Energy and Resources
BookMark eNqNkc9uVCEUxompidPqG7hg6aJ3hAvcP26MmbTWpE0TrWtyeu9hBsOFEZia2fsW7nw0n0TujG5cqBsgh9_3nQPfKTnxwSMhzzlbctaxl6zjNWN9v6wZl8tOdaXwiCy4lKxivapPyGJGqpl5Qk5T-sQYF1x1C_LtBrZb69d0jcGF9Z6CH-lDcAN4O1SbkDKOdIKU7APStHPGjkjBZYyQbfDUepo3SK_QuT3G6ibT1QZiuaYR1wU4p3eQpmIG53SX5kbvS4cw0csQMeX04-v3Q8sP6Ex1G9eFPFBlrPSUPDbgEj77tZ-Rj5cXd6ur6vr27bvVm-sKRN_kSgpR92N_r0yHbS_LeRyE5GzoUYCUbSPalrU9orhH1Q68MUoYruRYAwdmOnFGXhx9tzF83pWp9GTTUF4EHsMuad60XDWsbf8DVYoz1ZS1oPKIDjGkFNHobbQTxL3mTM-x6d-x6Tk2fYytyF79IRtsPvx1jmDdv8Svj2LrTYgTfAnRjTrD3oVoIvjBJi3-6vATV3q0ag
CitedBy_id crossref_primary_10_1109_JSTARS_2018_2855207
crossref_primary_10_1007_s13202_024_01879_4
crossref_primary_10_1016_j_gexplo_2018_01_002
crossref_primary_10_1190_geo2022_0476_1
crossref_primary_10_1016_j_agrformet_2022_109216
crossref_primary_10_1016_j_cageo_2018_12_005
crossref_primary_10_1016_j_icarus_2023_115865
crossref_primary_10_1007_s42461_024_01065_4
crossref_primary_10_1144_jgs2022_136
crossref_primary_10_1016_j_oregeorev_2015_03_014
crossref_primary_10_1016_j_gsf_2020_09_018
crossref_primary_10_1016_j_cageo_2021_104717
crossref_primary_10_1080_08123985_2020_1725387
crossref_primary_10_1007_s11600_023_01151_z
crossref_primary_10_1016_j_rse_2015_04_029
crossref_primary_10_1007_s11707_019_0748_x
crossref_primary_10_1016_j_oregeorev_2018_04_011
crossref_primary_10_1016_j_oregeorev_2021_104442
crossref_primary_10_1007_s11053_017_9335_6
crossref_primary_10_1016_j_oregeorev_2019_103015
crossref_primary_10_1190_geo2017_0590_1
crossref_primary_10_3390_app10051785
crossref_primary_10_1016_j_cageo_2025_105965
crossref_primary_10_1144_geochem2016_012
crossref_primary_10_1016_j_geodrs_2017_02_001
crossref_primary_10_1016_j_cageo_2021_104949
crossref_primary_10_1016_j_gexplo_2014_11_010
crossref_primary_10_1002_nsg_12036
crossref_primary_10_1139_cjes_2021_0089
crossref_primary_10_1016_j_jcp_2021_110147
crossref_primary_10_1007_s11053_020_09788_z
crossref_primary_10_1016_j_gsf_2022_101435
crossref_primary_10_1190_geo2019_0461_1
crossref_primary_10_3390_rs12142319
crossref_primary_10_3390_make7030069
crossref_primary_10_1016_j_ecolind_2021_108373
crossref_primary_10_1016_j_jappgeo_2025_105846
crossref_primary_10_1109_JSTARS_2014_2382760
crossref_primary_10_3390_geosciences8090318
crossref_primary_10_1002_2016TC004289
crossref_primary_10_3390_rs14205169
crossref_primary_10_1016_j_gexplo_2018_01_019
crossref_primary_10_1126_science_aau0323
crossref_primary_10_1007_s11707_018_0704_1
crossref_primary_10_1007_s11053_015_9268_x
crossref_primary_10_3390_min9090529
crossref_primary_10_1016_j_cageo_2014_10_004
crossref_primary_10_1016_j_gsf_2023_101715
crossref_primary_10_1016_j_gexplo_2023_107279
crossref_primary_10_1016_j_oregeorev_2022_104714
crossref_primary_10_3390_min15050534
crossref_primary_10_1016_j_watres_2020_116638
Cites_doi 10.2113/gsecongeo.96.5.913
10.1201/9781439808085
10.1190/1.1444744
10.1017/CBO9780511812651
10.1016/j.rse.2009.02.007
10.1190/geo2011-0302.1
10.2113/gsecongeo.87.3.650
10.1016/j.isprsjprs.2009.01.003
10.1080/01431160412331269698
10.1016/j.cageo.2004.10.009
10.2113/gsecongeo.87.3.597
10.1080/01431160903252327
10.1080/08120099.2012.754793
10.1016/0034-4257(93)90013-N
10.1016/j.precamres.2007.05.005
10.3233/IDA-2002-6504
10.1016/0375-6742(84)90085-2
10.1007/BF00337288
10.1109/64.539013
10.1080/08120098908729481
10.1023/A:1010933404324
10.1201/9781420048568
10.1007/BF00058655
10.2113/gsecongeo.96.5.1003
10.1016/S0899-5362(03)00071-X
10.1890/07-0539.1
10.1007/978-0-387-84858-7
10.1080/08120090701581406
10.2747/1548-1603.49.5.623
10.1002/0471660264
10.1109/TGRS.2004.842481
10.1109/72.846731
10.1016/j.rse.2010.08.019
10.1111/j.1751-3928.2010.00146.x
10.1144/GSL.SP.2002.204.01.02
10.18637/jss.v021.i05
10.1016/S0899-5362(02)00029-5
10.5589/m09-018
10.1023/A:1006593614256
10.1190/geo2012-0411.1
ContentType Journal Article
Copyright 2013 Geological Society of Australia 2013
Copyright_xml – notice: 2013 Geological Society of Australia 2013
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1080/08120099.2014.858081
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Economics
EISSN 1440-0952
EndPage 304
ExternalDocumentID 10_1080_08120099_2014_858081
858081
Genre Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
1OC
23N
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJIA
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LW6
M4Z
NA5
NX0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEI
TFL
TFT
TFW
TN5
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
WH7
ZGOLN
~02
~S~
AAYXX
CITATION
8FD
FR3
KR7
ID FETCH-LOGICAL-a396t-43329d9b5f8e79429ddc3410c9e3a4476377079ee3be57c16f53f154d2a1a0f83
IEDL.DBID TFW
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334158900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0812-0099
IngestDate Fri Sep 05 07:52:19 EDT 2025
Fri Sep 05 10:57:02 EDT 2025
Tue Nov 18 22:27:38 EST 2025
Sat Nov 29 06:07:10 EST 2025
Mon Oct 20 23:47:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a396t-43329d9b5f8e79429ddc3410c9e3a4476377079ee3be57c16f53f154d2a1a0f83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1551056551
PQPubID 23500
PageCount 18
ParticipantIDs crossref_primary_10_1080_08120099_2014_858081
proquest_miscellaneous_1671560778
proquest_miscellaneous_1551056551
crossref_citationtrail_10_1080_08120099_2014_858081
informaworld_taylorfrancis_310_1080_08120099_2014_858081
PublicationCentury 2000
PublicationDate 2014-00-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014-00-00
PublicationDecade 2010
PublicationTitle Australian journal of earth sciences
PublicationYear 2014
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0033
cit0034
cit0031
cit0032
cit0070
Kuhn M. (cit0043) 2012
cit0039
cit0037
cit0035
cit0067
cit0020
cit0064
Liaw A. (cit0047) 2002; 2
cit0065
Galley A. (cit0023) 2007
Marsland S. (cit0048) 2009
Wehrens R. (cit0069) 2007; 21
cit0028
cit0029
cit0026
cit0027
cit0068
cit0011
cit0012
cit0053
cit0010
cit0054
Waske B. (cit0066) 2012
Mitchell J. M. O. (cit0051) 1994
Boettinger J. L. (cit0006) 2008
cit0050
Williams D. (cit0071) 2009
Cudahy T. (cit0016) 2012
Sinclair B. J. (cit0060) 1994
Reid J. E. (cit0056) 2003
Galley A. G. (cit0024) 1995; 88
Franklin J. M. (cit0021) 2005
Yu L. (cit0073) 2004; 5
cit0017
Dohm J. M. (cit0018) 2007
cit0015
cit0059
Kohonen T. (cit0040) 2001; 30
cit0014
cit0044
cit0001
cit0045
cit0042
Large R. R. (cit0046) 2001; 96
Guyon I. (cit0030) 2008
Kotsiantis S. B. (cit0041) 2007; 31
Mshiu E. E. (cit0052) 2011; 37
Breiman L. (cit0009) 1984
Witten I. H. (cit0072) 2005
Japkowicz N. (cit0036) 2002; 6
Gemmell J. B. (cit0025) 2001; 96
cit0008
Tomes K. L. (cit0061) 2011
cit0007
cit0004
Vapnik V. N. (cit0063) 1998
cit0002
cit0003
References_xml – volume: 96
  start-page: 913
  year: 2001
  ident: cit0046
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.96.5.913
– volume-title: Statistical Learning Theory
  year: 1998
  ident: cit0063
– start-page: 365
  volume-title: Signal and Image Processing for Remote Sensing
  year: 2012
  ident: cit0066
– volume-title: version 1, Geoscience Australia
  year: 2012
  ident: cit0016
– volume: 37
  start-page: 26
  year: 2011
  ident: cit0052
  publication-title: Tanzania Journal of Science
– ident: cit0037
  doi: 10.1201/9781439808085
– volume-title: Classification and Regression Trees (The Wadsworths & Brooks/Cole Statistics/Probability Series)
  year: 1984
  ident: cit0009
– volume: 31
  start-page: 249
  year: 2007
  ident: cit0041
  publication-title: Informatica
– ident: cit0034
  doi: 10.1190/1.1444744
– ident: cit0059
  doi: 10.1017/CBO9780511812651
– ident: cit0002
  doi: 10.1016/j.rse.2009.02.007
– start-page: 141
  volume-title: Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication
  year: 2007
  ident: cit0023
– volume-title: western Tasmania. B.Sc. (Hons.) thesis
  year: 2011
  ident: cit0061
– ident: cit0010
  doi: 10.1190/geo2011-0302.1
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2005
  ident: cit0072
– ident: cit0068
  doi: 10.2113/gsecongeo.87.3.650
– start-page: 192
  volume-title: Digital Soil Mapping with Limited Data
  year: 2008
  ident: cit0006
– ident: cit0067
  doi: 10.1016/j.isprsjprs.2009.01.003
– ident: cit0053
  doi: 10.1080/01431160412331269698
– ident: cit0054
  doi: 10.1016/j.cageo.2004.10.009
– volume: 2
  start-page: 18
  year: 2002
  ident: cit0047
  publication-title: RNews
– ident: cit0015
  doi: 10.2113/gsecongeo.87.3.597
– ident: cit0027
  doi: 10.1080/01431160903252327
– ident: cit0050
  doi: 10.1080/08120099.2012.754793
– ident: cit0042
  doi: 10.1016/0034-4257(93)90013-N
– ident: cit0028
  doi: 10.1016/j.precamres.2007.05.005
– start-page: 17
  volume-title: Machine Learning, Neural and Statistical Classification
  year: 1994
  ident: cit0051
– volume-title: Western Tasmania. B.Sc. (Hons.) thesis
  year: 1994
  ident: cit0060
– volume: 6
  start-page: 429
  year: 2002
  ident: cit0036
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2002-6504
– volume: 5
  start-page: 1205
  year: 2004
  ident: cit0073
  publication-title: Journal of Machine Learning Research
– volume-title: caret: Classification and Regression Training, R package version 5.15-023
  year: 2012
  ident: cit0043
– ident: cit0031
  doi: 10.1016/0375-6742(84)90085-2
– ident: cit0039
  doi: 10.1007/BF00337288
– volume: 88
  start-page: 15
  year: 1995
  ident: cit0024
  publication-title: Canadian Institute of Mining Bulletin
– ident: cit0020
  doi: 10.1109/64.539013
– ident: cit0003
  doi: 10.1080/08120098908729481
– ident: cit0008
  doi: 10.1023/A:1010933404324
– volume-title: Machine Learning: An Algorithmic Perspective
  year: 2009
  ident: cit0048
– volume: 30
  volume-title: Springer series in information sciences
  year: 2001
  ident: cit0040
– ident: cit0012
  doi: 10.1201/9781420048568
– ident: cit0007
  doi: 10.1007/BF00058655
– volume: 96
  start-page: 1003
  year: 2001
  ident: cit0025
  publication-title: Economic Geology and the Bulletin of the Society of Economic Geologists
  doi: 10.2113/gsecongeo.96.5.1003
– ident: cit0035
  doi: 10.1016/S0899-5362(03)00071-X
– start-page: 27
  volume-title: Mining Massive Data Sets for Security – Advances in Data Mining, Search, Social Networks and Text Mining, and their Applications to Security
  year: 2008
  ident: cit0030
– volume-title: University of Tasmania
  year: 2003
  ident: cit0056
– ident: cit0017
  doi: 10.1890/07-0539.1
– ident: cit0033
  doi: 10.1007/978-0-387-84858-7
– start-page: 1
  volume-title: NASA Science Technology Conference
  year: 2007
  ident: cit0018
– ident: cit0004
  doi: 10.1080/08120090701581406
– ident: cit0026
  doi: 10.2747/1548-1603.49.5.623
– ident: cit0044
  doi: 10.1002/0471660264
– ident: cit0032
  doi: 10.1109/TGRS.2004.842481
– ident: cit0064
  doi: 10.1109/72.846731
– ident: cit0029
  doi: 10.1016/j.rse.2010.08.019
– ident: cit0011
  doi: 10.1111/j.1751-3928.2010.00146.x
– ident: cit0001
  doi: 10.1144/GSL.SP.2002.204.01.02
– volume: 21
  start-page: 1
  year: 2007
  ident: cit0069
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v021.i05
– ident: cit0045
  doi: 10.1016/S0899-5362(02)00029-5
– ident: cit0065
  doi: 10.5589/m09-018
– ident: cit0070
  doi: 10.1023/A:1006593614256
– start-page: 523
  volume-title: Economic Geology, 100th Anniversary Volume
  year: 2005
  ident: cit0021
– ident: cit0014
  doi: 10.1190/geo2012-0411.1
– volume-title: Landsat 7 science data user's handbook
  year: 2009
  ident: cit0071
SSID ssj0013158
Score 2.2900138
Snippet The Hellyer-Mt Charter region of western Tasmania includes three known and economically significant volcanic-hosted massive sulfide (VHMS) deposits. Thick...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 287
SubjectTerms Algorithms
Economics
Forests
Geochemistry
Geological mapping
Geology
machine learning
Random Forests
Self-Organising Maps
Spatial distribution
Tasmania
volcanic-hosted massive sulfide
Title Mapping geology and volcanic-hosted massive sulfide alteration in the Hellyer-Mt Charter region, Tasmania, using Random Forests™ and Self-Organising Maps
URI https://www.tandfonline.com/doi/abs/10.1080/08120099.2014.858081
https://www.proquest.com/docview/1551056551
https://www.proquest.com/docview/1671560778
Volume 61
WOSCitedRecordID wos000334158900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1440-0952
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013158
  issn: 0812-0099
  databaseCode: TFW
  dateStart: 19840301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQCqReKNBWpVA0SBxxm2xezhEhFi6sULuo3CLbsVeRlizaZCv1zr_gxk_rL-mMvSmgiq0ElyiJn7I9D3s88zF2oGTZJ9HKMV3gBiVNuNJByTOZ2FxnRqm4dGAT2XAorq7yi0de_HStkvbQ1geKcLyaiFuqprsR9xWlGJ3pk5tJGH8RCYFHIBNGyU-UORr8eDAjhA6gkwpwKtH5zj1TyRPZ9CRy6T-c2omfwdvXd3yDrS9UTzjya2WTrZh6i62dOmjfX-_Y3bmkWA1jGPs_gM0AMi8c-0pz7wwC16hrI3-EZj6xVWnAGdvd5EJVAyqTgHJsgmo8P2-BTPmYDAT-MK0PYSQbirYhD4Fu24_hG7YwvQZCB23a5vftvWvyu5lY7l1EXS7sVvOeXQ5ORsdnfAHdwGWUpy35YfXzMleJFQYpHt9LjfIy0LmJZBwjU8soNJ8xkTJJpsPUJpFFba7sy1AGVkQfWK-e1uYjA5mnBneBOg2EjkMVYlWl0akSSZJiJdE2i7pJK_QirjnBa0yKsAt_uhj2goa98MO-zfjfUjc-rsd_8ovH66Fo3XmK9eAnRbS86H63dgqkXTLIyNpM501B6ioqoPhckifNyNk9y8Snl3dhh72hL390tMt67WxuPrNV_bOtmtmeo5k_fBIUhg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZgAcGllD-1UOhU4ljTzSZOnCOqui1id1WVRfRmOY69WmmbRU22EnfeghuPxpMwYyctFaJIiEsUxb9y7Jmxx_N9jL0udDkg1coxXeIGJRW8MP2SZ1q43GS2KJLSk01kk4k8Pc2P29uEdXutkvbQLgBFeFlNi5sOo7srcXuoxuhQn-JMouSNFMQecZvdEahqCT5_Ovx05UiIPEUnleBUpIue-0Mt17TTNezS32S1V0DDh_-h6-tsrbU-4W2YLo_YLVs9ZvcOPbvvlyfs21gTXMMMZuELYDuA8guHf254iAeBMzS3UURCvVq4eWnB-9v9_4V5BWhPAqqyBVryfNwAefMxGYj_YVntwlTXBLihd4Eu3M_gBFtYngERhNZN_ePrd9_kB7twPESJ-lzYrfop-zg8mO4f8Za9ges4TxsKxRrkZV4IJy0uenwvDarMvsltrJME5VpG6HzWxoUVmYlSJ2KHBl050JHuOxk_Y71qWdkNBjpPLW4ETdqXJomKCKsqrUkLKUSKlcSbLO7-mjIttDkxbCxU1CGgtsOuaNhVGPZNxi9LfQ7QHn_JL3-dEKrxRyou8J-o-OaiO93kUbh8ySejK7tc1YosVrRB8XlDnjSjePcsk8__vQvb7P7RdDxSo3eT9y_YA0oJJ0lbrNecr-xLdtdcNPP6_JVfQD8B8aUYsA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKC6gXylMUKAwSx5puNonjHBF0C4KuKlhEb5bjx2qlbbZqspV677_g1p_WX9IZe0NbIYoElyiKn5qMZ8Yez3yMvam07ZNq5VgucYMicl6ZnuWFzn1pCldVmQ1gE8VwKPf3y70rUfx0rZL20D4migiymhb3ofXdjbgt1GJ0pk9hJkn2VuYEHnGLraDlLIjHR4Mfl36EJCB0UgtOTbrguT_0ck05XUtd-puoDvpnsPb_M7_P7i1sT3gXmeUBW3L1Q3ZnJ2D7njxiP3c1JWsYwzh-ARwGUHoh8SeGx2gQOEBjGwUkNPOpn1gHwdse_i5MakBrElCRTdGO57stkC8fi4HQH2b1Jox0Q-k29CbQdfsxfMURZgdA8KBN25yfnoUhv7mp5zFGNNTCaTWP2ffB9uj9R77AbuA6LUVLgVj90pZV7qXDJY_v1qDC7JnSpTrLUKoVlJvPubRyeWES4fPUozln-zrRPS_TJ2y5ntXuKQNdCofbQCN60mRJlWBX1hlRyTwX2Em6ztLupymzSGxO-BpTlXT5TxdkV0R2Fcm-zvivVocxscdf6sur_KDacKDiI_qJSm9u-rrjHYWLlzwyunazeaPIXkULFJ831BEFRbsXhXz271N4xe7ufRioL5-Gn5-zVSqIx0gv2HJ7NHcb7LY5bifN0cuwfC4AjgkXYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+geology+and+volcanic-hosted+massive+sulfide+alteration+in+the+Hellyer-Mt+Charter+region%2C+Tasmania%2C+using+Random+Forests%28TM%29+and+Self-Organising+Maps&rft.jtitle=Australian+journal+of+earth+sciences&rft.au=Cracknell%2C+MJ&rft.au=Reading%2C+A+M&rft.au=McNeill%2C+A+W&rft.date=2014&rft.issn=0812-0099&rft.eissn=1440-0952&rft.volume=61&rft.issue=2&rft.spage=287&rft.epage=304&rft_id=info:doi/10.1080%2F08120099.2014.858081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0812-0099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0812-0099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0812-0099&client=summon