Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey
A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes...
Uloženo v:
| Vydáno v: | Journal of biomechanical engineering Ročník 139; číslo 8 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.08.2017
|
| Témata: | |
| ISSN: | 1528-8951, 1528-8951 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s. |
|---|---|
| AbstractList | A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s. A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s. |
| Author | Zeller, Jillynne R Gibbs, Christina Xing, Tao Oshinski, John N Khani, Mohammadreza Martin, Bryn A Stewart, Gregory R |
| Author_xml | – sequence: 1 givenname: Mohammadreza surname: Khani fullname: Khani, Mohammadreza email: Khan0242@vandals.uidaho.edu organization: Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail: Khan0242@vandals.uidaho.edu – sequence: 2 givenname: Tao surname: Xing fullname: Xing, Tao email: xing@uidaho.edu organization: Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 e-mail: xing@uidaho.edu – sequence: 3 givenname: Christina surname: Gibbs fullname: Gibbs, Christina email: gibb6751@vandals.uidaho.edu organization: Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail: gibb6751@vandals.uidaho.edu – sequence: 4 givenname: John N surname: Oshinski fullname: Oshinski, John N email: jnoshin@emory.edu organization: Department of Radiology, Emory University, Atlanta, GA 30322 e-mail: jnoshin@emory.edu – sequence: 5 givenname: Gregory R surname: Stewart fullname: Stewart, Gregory R email: grstewart77@gmail.com organization: Alchemy Neuroscience, Hanover, MA 02340 e-mail: grstewart77@gmail.com – sequence: 6 givenname: Jillynne R surname: Zeller fullname: Zeller, Jillynne R email: Jill.Zeller@northernbiomedical.com organization: Northern Biomedical Research, Spring Lake, MI 49456 e-mail: Jill.Zeller@northernbiomedical.com – sequence: 7 givenname: Bryn A surname: Martin fullname: Martin, Bryn A email: brynm@uidaho.edu organization: Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail: brynm@uidaho.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28462417$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1OwzAQhS1URH9gwQWQl2xSbCdOnSWkFCq1sKD7aBI7rSGxSxyDcg4uTNQWic3MaN43T6M3RgNjjULompIppZTf0WlEwjgm4gyNKGciEAmng3_zEI2deyeEUhGRCzRkIopZRGcj9PNijTe6tE2N1_ZLmy1-sN5IaDq8Vu3OStxrOLX13rfQamugwovKa4nnnYFaFw6_6dpXBw3bEi9N20C7U0UPpqpReWPdXh_P7Deea9c2OvcHXBsMOO2MrW219a7_wHyo7hKdl1A5dXXqE7RZPG7S52D1-rRM71cBhAlvAyZklAgKAkhIlAIqGCvCSEbAWSHFLE-Ak5jzUISMCFBxmROZ9ysZQyGATdDt0Xbf2E-vXJvV2hWqqsAo611GRRLxviSiR29OqM9rJbN9o-s-oewvR_YLrKZ4IQ |
| CitedBy_id | crossref_primary_10_1186_s12987_019_0164_3 crossref_primary_10_1371_journal_pone_0212239 crossref_primary_10_1016_j_apm_2021_01_037 crossref_primary_10_1016_j_addr_2021_03_002 crossref_primary_10_1186_s12987_020_00185_5 crossref_primary_10_1002_jcph_70034 crossref_primary_10_1186_s12987_025_00691_4 crossref_primary_10_1186_s12987_017_0085_y crossref_primary_10_1186_s12917_018_1410_7 crossref_primary_10_1371_journal_pone_0244090 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1115/1.4036608 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Engineering Forestry |
| EISSN | 1528-8951 |
| ExternalDocumentID | 28462417 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM103408 – fundername: NIMH NIH HHS grantid: R44 MH112210 – fundername: NIGMS NIH HHS grantid: U54 GM104944 |
| GroupedDBID | --- -~X .DC 29J 4.4 5AI 5GY ABJNI ACBEA ACGFO ACGFS ACKMT ADPDT AGNGV ALMA_UNASSIGNED_HOLDINGS CGR CS3 CUY CVF EBS ECM EIF EJD F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UKR 7X8 |
| ID | FETCH-LOGICAL-a395t-28d4981a8a030eea1822c34d4a52cd87b9a50655383208ae6fb0db506d6ac8a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404752600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1528-8951 |
| IngestDate | Thu Jul 10 22:52:57 EDT 2025 Mon Jul 21 06:06:27 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a395t-28d4981a8a030eea1822c34d4a52cd87b9a50655383208ae6fb0db506d6ac8a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5467026 |
| PMID | 28462417 |
| PQID | 1894518998 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1894518998 pubmed_primary_28462417 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomechanical engineering |
| PublicationTitleAlternate | J Biomech Eng |
| PublicationYear | 2017 |
| References | 22183956 - NMR Biomed. 2012 Jul;25(7):891-9 24136970 - Science. 2013 Oct 18;342(6156):373-7 24710111 - PLoS One. 2014 Apr 07;9(4):e91888 25888012 - J Biomech. 2015 Jul 16;48(10):2144-54 24130704 - PLoS One. 2013 Oct 10;8(10):e75335 8596861 - Radiology. 1996 Feb;198(2):523-9 16502653 - J Biomech Eng. 2005 Dec;127(7):1110-20 27043214 - Ann Biomed Eng. 2016 Nov;44(11):3202-3214 25647090 - J Biomech Eng. 2015 May;137(5):051002 23316936 - Mol Pharm. 2013 May 6;10(5):1522-32 1195879 - Med Biol Eng. 1975 Nov;13(6):861-9 21034148 - J Biomech Eng. 2010 Nov;132(11):111007 19917128 - Cerebrospinal Fluid Res. 2009 Nov 16;6:14 19002474 - Acta Neuropathol. 2009 Jan;117(1):1-14 26108203 - Ann Biomed Eng. 2015 Dec;43(12 ):2911-23 20236960 - J R Soc Interface. 2010 Aug 6;7(49):1195-204 22268106 - Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1492-509 20737291 - Ann Biomed Eng. 2011 Jan;39(1):484-96 22569996 - Eur Radiol. 2012 Sep;22(9):1860-70 19174343 - IEEE Trans Biomed Eng. 2009 Jun;56(6):1765-8 22482672 - J Biomech Eng. 2012 Feb;134(2):021005 20887034 - J Biomech Eng. 2010 Jun;132(6):061009 21132572 - J Pharmacokinet Pharmacodyn. 2010 Dec;37(6):629-44 26446009 - Ann Biomed Eng. 2016 May;44(5):1524-37 19246418 - Ann Oncol. 2009 Mar;20(3):399-400 22482686 - J Biomech Eng. 2012 Mar;134(3):031006 24529910 - J Biomech. 2014 Mar 21;47(5):1082-90 23284970 - PLoS One. 2012;7(12):e52284 11277305 - J Biomech Eng. 2001 Feb;123(1):71-9 |
| References_xml | – reference: 22482686 - J Biomech Eng. 2012 Mar;134(3):031006 – reference: 22183956 - NMR Biomed. 2012 Jul;25(7):891-9 – reference: 24710111 - PLoS One. 2014 Apr 07;9(4):e91888 – reference: 19002474 - Acta Neuropathol. 2009 Jan;117(1):1-14 – reference: 20887034 - J Biomech Eng. 2010 Jun;132(6):061009 – reference: 22482672 - J Biomech Eng. 2012 Feb;134(2):021005 – reference: 8596861 - Radiology. 1996 Feb;198(2):523-9 – reference: 25888012 - J Biomech. 2015 Jul 16;48(10):2144-54 – reference: 24529910 - J Biomech. 2014 Mar 21;47(5):1082-90 – reference: 24136970 - Science. 2013 Oct 18;342(6156):373-7 – reference: 22268106 - Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1492-509 – reference: 11277305 - J Biomech Eng. 2001 Feb;123(1):71-9 – reference: 19246418 - Ann Oncol. 2009 Mar;20(3):399-400 – reference: 23316936 - Mol Pharm. 2013 May 6;10(5):1522-32 – reference: 23284970 - PLoS One. 2012;7(12):e52284 – reference: 22569996 - Eur Radiol. 2012 Sep;22(9):1860-70 – reference: 24130704 - PLoS One. 2013 Oct 10;8(10):e75335 – reference: 26446009 - Ann Biomed Eng. 2016 May;44(5):1524-37 – reference: 16502653 - J Biomech Eng. 2005 Dec;127(7):1110-20 – reference: 25647090 - J Biomech Eng. 2015 May;137(5):051002 – reference: 19917128 - Cerebrospinal Fluid Res. 2009 Nov 16;6:14 – reference: 19174343 - IEEE Trans Biomed Eng. 2009 Jun;56(6):1765-8 – reference: 27043214 - Ann Biomed Eng. 2016 Nov;44(11):3202-3214 – reference: 20737291 - Ann Biomed Eng. 2011 Jan;39(1):484-96 – reference: 1195879 - Med Biol Eng. 1975 Nov;13(6):861-9 – reference: 21034148 - J Biomech Eng. 2010 Nov;132(11):111007 – reference: 20236960 - J R Soc Interface. 2010 Aug 6;7(49):1195-204 – reference: 26108203 - Ann Biomed Eng. 2015 Dec;43(12 ):2911-23 – reference: 21132572 - J Pharmacokinet Pharmacodyn. 2010 Dec;37(6):629-44 |
| SSID | ssj0011840 |
| Score | 2.2807517 |
| Snippet | A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Animals Cerebrospinal Fluid - diagnostic imaging Cerebrospinal Fluid - physiology Computer Simulation Hydrodynamics Macaca fascicularis Magnetic Resonance Imaging Male |
| Title | Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28462417 https://www.proquest.com/docview/1894518998 |
| Volume | 139 |
| WOSCitedRecordID | wos000404752600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEBVNXUJ7aBI3TZOmZQK9br0r7Yf2VFK7poXaGOKDb0arj2CItY7XTsjv6B_uSCvjXgqFXpZlF4FgRk9vZqR5hHyiOpMxk2UUM5VHqciySJgY15XMVcU0Q47v-8z-LMZjPpuVk5Bwa8Kxyh0meqBWtXQ58l7CyzRLXHTwZXUfOdUoV10NEhoHpMOQyrgjXcVsX0Vw0Yvvl0p5xJFKhM5CSIJ6yecUsTuP-d-Zpd9hhkf_O7dj8jpwS7huneGEPNO2S1790XGwSw6dFKfTd8PXUSirvyG_xrXdWndHawkjn2KAr15uaf0EIy8xDfgPWgWIkD2E4d12oWDQKto3cLNYBiUwqA38cDlj5JboAdDXawy8nT5JO6x-hIFr1xuUtmBhQUD_ydbL-u522-AMLCLLKZkOv03736Og1hAJVmabiHKVljwRXCBuaC0wcKGSpQrtT6XiRVWKDPkOAiyjMRc6N1WsKvykciG5oG_Jc1tb_Y6ATmNTGElLrVTKhEF3iTNTGY6G45ksz8nVzgxzXAyuwiGsrrfNfG-Ic3LW2nK-art2zHEfzpGuFBf_MPo9eUnd9u0P-l2SjkEo0B_IC_mwWTTrj97L8DmejH4DklLfkQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonuniform+Moving+Boundary+Method+for+Computational+Fluid+Dynamics+Simulation+of+Intrathecal+Cerebrospinal+Flow+Distribution+in+a+Cynomolgus+Monkey&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Khani%2C+Mohammadreza&rft.au=Xing%2C+Tao&rft.au=Gibbs%2C+Christina&rft.au=Oshinski%2C+John+N&rft.date=2017-08-01&rft.issn=1528-8951&rft.eissn=1528-8951&rft.volume=139&rft.issue=8&rft_id=info:doi/10.1115%2F1.4036608&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon |