Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey

A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of biomechanical engineering Ročník 139; číslo 8
Hlavní autoři: Khani, Mohammadreza, Xing, Tao, Gibbs, Christina, Oshinski, John N, Stewart, Gregory R, Zeller, Jillynne R, Martin, Bryn A
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.08.2017
Témata:
ISSN:1528-8951, 1528-8951
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.
AbstractList A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.
A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.
Author Zeller, Jillynne R
Gibbs, Christina
Xing, Tao
Oshinski, John N
Khani, Mohammadreza
Martin, Bryn A
Stewart, Gregory R
Author_xml – sequence: 1
  givenname: Mohammadreza
  surname: Khani
  fullname: Khani, Mohammadreza
  email: Khan0242@vandals.uidaho.edu
  organization: Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail: Khan0242@vandals.uidaho.edu
– sequence: 2
  givenname: Tao
  surname: Xing
  fullname: Xing, Tao
  email: xing@uidaho.edu
  organization: Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 e-mail: xing@uidaho.edu
– sequence: 3
  givenname: Christina
  surname: Gibbs
  fullname: Gibbs, Christina
  email: gibb6751@vandals.uidaho.edu
  organization: Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail: gibb6751@vandals.uidaho.edu
– sequence: 4
  givenname: John N
  surname: Oshinski
  fullname: Oshinski, John N
  email: jnoshin@emory.edu
  organization: Department of Radiology, Emory University, Atlanta, GA 30322 e-mail: jnoshin@emory.edu
– sequence: 5
  givenname: Gregory R
  surname: Stewart
  fullname: Stewart, Gregory R
  email: grstewart77@gmail.com
  organization: Alchemy Neuroscience, Hanover, MA 02340 e-mail: grstewart77@gmail.com
– sequence: 6
  givenname: Jillynne R
  surname: Zeller
  fullname: Zeller, Jillynne R
  email: Jill.Zeller@northernbiomedical.com
  organization: Northern Biomedical Research, Spring Lake, MI 49456 e-mail: Jill.Zeller@northernbiomedical.com
– sequence: 7
  givenname: Bryn A
  surname: Martin
  fullname: Martin, Bryn A
  email: brynm@uidaho.edu
  organization: Neurophysiological Imaging and Modeling Laboratory, Department of Biological Engineering, University of Idaho, Moscow, ID 83844 e-mail: brynm@uidaho.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28462417$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1OwzAQhS1URH9gwQWQl2xSbCdOnSWkFCq1sKD7aBI7rSGxSxyDcg4uTNQWic3MaN43T6M3RgNjjULompIppZTf0WlEwjgm4gyNKGciEAmng3_zEI2deyeEUhGRCzRkIopZRGcj9PNijTe6tE2N1_ZLmy1-sN5IaDq8Vu3OStxrOLX13rfQamugwovKa4nnnYFaFw6_6dpXBw3bEi9N20C7U0UPpqpReWPdXh_P7Deea9c2OvcHXBsMOO2MrW219a7_wHyo7hKdl1A5dXXqE7RZPG7S52D1-rRM71cBhAlvAyZklAgKAkhIlAIqGCvCSEbAWSHFLE-Ak5jzUISMCFBxmROZ9ysZQyGATdDt0Xbf2E-vXJvV2hWqqsAo611GRRLxviSiR29OqM9rJbN9o-s-oewvR_YLrKZ4IQ
CitedBy_id crossref_primary_10_1186_s12987_019_0164_3
crossref_primary_10_1371_journal_pone_0212239
crossref_primary_10_1016_j_apm_2021_01_037
crossref_primary_10_1016_j_addr_2021_03_002
crossref_primary_10_1186_s12987_020_00185_5
crossref_primary_10_1002_jcph_70034
crossref_primary_10_1186_s12987_025_00691_4
crossref_primary_10_1186_s12987_017_0085_y
crossref_primary_10_1186_s12917_018_1410_7
crossref_primary_10_1371_journal_pone_0244090
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1115/1.4036608
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
Forestry
EISSN 1528-8951
ExternalDocumentID 28462417
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM103408
– fundername: NIMH NIH HHS
  grantid: R44 MH112210
– fundername: NIGMS NIH HHS
  grantid: U54 GM104944
GroupedDBID ---
-~X
.DC
29J
4.4
5AI
5GY
ABJNI
ACBEA
ACGFO
ACGFS
ACKMT
ADPDT
AGNGV
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
H~9
L7B
NPM
P2P
RAI
RNS
RXW
TAE
TN5
UKR
7X8
ID FETCH-LOGICAL-a395t-28d4981a8a030eea1822c34d4a52cd87b9a50655383208ae6fb0db506d6ac8a2
IEDL.DBID 7X8
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404752600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1528-8951
IngestDate Thu Jul 10 22:52:57 EDT 2025
Mon Jul 21 06:06:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a395t-28d4981a8a030eea1822c34d4a52cd87b9a50655383208ae6fb0db506d6ac8a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5467026
PMID 28462417
PQID 1894518998
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1894518998
pubmed_primary_28462417
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanical engineering
PublicationTitleAlternate J Biomech Eng
PublicationYear 2017
References 22183956 - NMR Biomed. 2012 Jul;25(7):891-9
24136970 - Science. 2013 Oct 18;342(6156):373-7
24710111 - PLoS One. 2014 Apr 07;9(4):e91888
25888012 - J Biomech. 2015 Jul 16;48(10):2144-54
24130704 - PLoS One. 2013 Oct 10;8(10):e75335
8596861 - Radiology. 1996 Feb;198(2):523-9
16502653 - J Biomech Eng. 2005 Dec;127(7):1110-20
27043214 - Ann Biomed Eng. 2016 Nov;44(11):3202-3214
25647090 - J Biomech Eng. 2015 May;137(5):051002
23316936 - Mol Pharm. 2013 May 6;10(5):1522-32
1195879 - Med Biol Eng. 1975 Nov;13(6):861-9
21034148 - J Biomech Eng. 2010 Nov;132(11):111007
19917128 - Cerebrospinal Fluid Res. 2009 Nov 16;6:14
19002474 - Acta Neuropathol. 2009 Jan;117(1):1-14
26108203 - Ann Biomed Eng. 2015 Dec;43(12 ):2911-23
20236960 - J R Soc Interface. 2010 Aug 6;7(49):1195-204
22268106 - Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1492-509
20737291 - Ann Biomed Eng. 2011 Jan;39(1):484-96
22569996 - Eur Radiol. 2012 Sep;22(9):1860-70
19174343 - IEEE Trans Biomed Eng. 2009 Jun;56(6):1765-8
22482672 - J Biomech Eng. 2012 Feb;134(2):021005
20887034 - J Biomech Eng. 2010 Jun;132(6):061009
21132572 - J Pharmacokinet Pharmacodyn. 2010 Dec;37(6):629-44
26446009 - Ann Biomed Eng. 2016 May;44(5):1524-37
19246418 - Ann Oncol. 2009 Mar;20(3):399-400
22482686 - J Biomech Eng. 2012 Mar;134(3):031006
24529910 - J Biomech. 2014 Mar 21;47(5):1082-90
23284970 - PLoS One. 2012;7(12):e52284
11277305 - J Biomech Eng. 2001 Feb;123(1):71-9
References_xml – reference: 22482686 - J Biomech Eng. 2012 Mar;134(3):031006
– reference: 22183956 - NMR Biomed. 2012 Jul;25(7):891-9
– reference: 24710111 - PLoS One. 2014 Apr 07;9(4):e91888
– reference: 19002474 - Acta Neuropathol. 2009 Jan;117(1):1-14
– reference: 20887034 - J Biomech Eng. 2010 Jun;132(6):061009
– reference: 22482672 - J Biomech Eng. 2012 Feb;134(2):021005
– reference: 8596861 - Radiology. 1996 Feb;198(2):523-9
– reference: 25888012 - J Biomech. 2015 Jul 16;48(10):2144-54
– reference: 24529910 - J Biomech. 2014 Mar 21;47(5):1082-90
– reference: 24136970 - Science. 2013 Oct 18;342(6156):373-7
– reference: 22268106 - Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1492-509
– reference: 11277305 - J Biomech Eng. 2001 Feb;123(1):71-9
– reference: 19246418 - Ann Oncol. 2009 Mar;20(3):399-400
– reference: 23316936 - Mol Pharm. 2013 May 6;10(5):1522-32
– reference: 23284970 - PLoS One. 2012;7(12):e52284
– reference: 22569996 - Eur Radiol. 2012 Sep;22(9):1860-70
– reference: 24130704 - PLoS One. 2013 Oct 10;8(10):e75335
– reference: 26446009 - Ann Biomed Eng. 2016 May;44(5):1524-37
– reference: 16502653 - J Biomech Eng. 2005 Dec;127(7):1110-20
– reference: 25647090 - J Biomech Eng. 2015 May;137(5):051002
– reference: 19917128 - Cerebrospinal Fluid Res. 2009 Nov 16;6:14
– reference: 19174343 - IEEE Trans Biomed Eng. 2009 Jun;56(6):1765-8
– reference: 27043214 - Ann Biomed Eng. 2016 Nov;44(11):3202-3214
– reference: 20737291 - Ann Biomed Eng. 2011 Jan;39(1):484-96
– reference: 1195879 - Med Biol Eng. 1975 Nov;13(6):861-9
– reference: 21034148 - J Biomech Eng. 2010 Nov;132(11):111007
– reference: 20236960 - J R Soc Interface. 2010 Aug 6;7(49):1195-204
– reference: 26108203 - Ann Biomed Eng. 2015 Dec;43(12 ):2911-23
– reference: 21132572 - J Pharmacokinet Pharmacodyn. 2010 Dec;37(6):629-44
SSID ssj0011840
Score 2.2807517
Snippet A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Animals
Cerebrospinal Fluid - diagnostic imaging
Cerebrospinal Fluid - physiology
Computer Simulation
Hydrodynamics
Macaca fascicularis
Magnetic Resonance Imaging
Male
Title Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey
URI https://www.ncbi.nlm.nih.gov/pubmed/28462417
https://www.proquest.com/docview/1894518998
Volume 139
WOSCitedRecordID wos000404752600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qRPTB-_3CEXyttuktfRLdHPqwIejD3kbaZDJwqa5O2e_wD3tOmqEvguBLKS2hgaRfvnNO8n2MnUkRFImvfI8HVGaMU-1JDHq8TEd0kHPg51xZs4m02xW9XnbvEm6V21Y5w0QL1KosKEd-EYgsigOKDi5fXj1yjaLqqrPQmGeNEL9FW7rS3ncVgaIXq5fKhSeQSjhlISRBF8F5hNid-OJ3ZmlXmPbaf_u2zlYdt4SrejJssDltNtnKD8XBTbZEVpzk74a3HVdW32Kf3dJMDJ3RGkHHphjg2totjafQsRbTgO-gdoBw2UNoP0-GClq1o30FD8ORcwKDcgB3lDNGbokzAJp6jIE3-ZPUzcoPaJFcr3PagqEBCc2pKUfl89Okwh4YRJZt9ti-eWzees6twZNhFr95XKgoE4EUEnFDa4mBCy_CSEUy5oUSaZ7JGPkOAmzIfSF1Msh9leMjlchCSL7DFkxp9B6DjDTSwrgoBNdRniEpDEllUPkC4_g0SffZ6WwY-vgzUIVDGl1Oqv73QOyz3Xos-y-1akcf1-EE6Up68IfWh2yZ0_JtN_odscYAoUAfs8Xi_W1YjU_sLMNr977zBXF-3aU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonuniform+Moving+Boundary+Method+for+Computational+Fluid+Dynamics+Simulation+of+Intrathecal+Cerebrospinal+Flow+Distribution+in+a+Cynomolgus+Monkey&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Khani%2C+Mohammadreza&rft.au=Xing%2C+Tao&rft.au=Gibbs%2C+Christina&rft.au=Oshinski%2C+John+N&rft.date=2017-08-01&rft.issn=1528-8951&rft.eissn=1528-8951&rft.volume=139&rft.issue=8&rft_id=info:doi/10.1115%2F1.4036608&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon