Involvement of Slab‐Derived Fluid in the Generation of Cenozoic Basalts in Northeast China Inferred From Machine Learning

The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical research letters Ročník 46; číslo 10; s. 5234 - 5242
Hlavní autoři: Zhao, Yong, Zhang, Yigang, Geng, Ming, Jiang, Jilian, Zou, Xinyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 28.05.2019
Témata:
ISSN:0094-8276, 1944-8007
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models predict that most Cenozoic basalts in Northeast China are influenced by fluid and that the fluid activity decreases from east to west. The boundary defined by fluid activity coincides with the westernmost edge of the present‐day stagnant Pacific slab determined by seismic tomography and with the geochemical boundary defined by magnesium isotopes. These observations support the view that the fluid involved in the generation of the basalts is controlled by the stagnant Pacific slab instead of driven by the plume induced by the sinking Izanagi Plate. Plain Language Summary Many volcanoes are erupted in Northeast China, and it is of great interest to study the origin of these volcanoes. Previously, the chemical compositions of these volcanoes and typically elemental ratios such as Ba/Th are used to find the answer. In the present study, modern machine learning methods called random forest and deep neural network are used to do the work. The advantage of the new methods is that they can obtain a whole picture of the chemical compositional data instead of a particular one from an elemental ratio. The new methods find that the generation of these basalts is closely related to the Pacific slab, subducting downward at Japan, reaching ~600‐km depth at the border of eastern China, and extending horizontally to the Mongolia border. Materials released from the slab, such as fluid and melt and the elements dissolved in them, move upward and trigger the volcanoes we see on the surface. The boundary between volcanoes affected dominantly by the slab‐derived fluid and those that are not coincides with the westernmost edge of the deeply buried Pacific slab. These findings deepen our understanding of the generation of these volcanoes. Key Points Global geochemical data of island arc and ocean island basalts are used to train machine learning models The models predict that most basalts in Northeast China have been influenced by fluid derived from the stagnant Pacific slab underneath The boundary defined by fluid activity in basalts coincides with those defined by seismic tomography and Mg isotopes
AbstractList The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models predict that most Cenozoic basalts in Northeast China are influenced by fluid and that the fluid activity decreases from east to west. The boundary defined by fluid activity coincides with the westernmost edge of the present‐day stagnant Pacific slab determined by seismic tomography and with the geochemical boundary defined by magnesium isotopes. These observations support the view that the fluid involved in the generation of the basalts is controlled by the stagnant Pacific slab instead of driven by the plume induced by the sinking Izanagi Plate.
The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models predict that most Cenozoic basalts in Northeast China are influenced by fluid and that the fluid activity decreases from east to west. The boundary defined by fluid activity coincides with the westernmost edge of the present‐day stagnant Pacific slab determined by seismic tomography and with the geochemical boundary defined by magnesium isotopes. These observations support the view that the fluid involved in the generation of the basalts is controlled by the stagnant Pacific slab instead of driven by the plume induced by the sinking Izanagi Plate. Plain Language Summary Many volcanoes are erupted in Northeast China, and it is of great interest to study the origin of these volcanoes. Previously, the chemical compositions of these volcanoes and typically elemental ratios such as Ba/Th are used to find the answer. In the present study, modern machine learning methods called random forest and deep neural network are used to do the work. The advantage of the new methods is that they can obtain a whole picture of the chemical compositional data instead of a particular one from an elemental ratio. The new methods find that the generation of these basalts is closely related to the Pacific slab, subducting downward at Japan, reaching ~600‐km depth at the border of eastern China, and extending horizontally to the Mongolia border. Materials released from the slab, such as fluid and melt and the elements dissolved in them, move upward and trigger the volcanoes we see on the surface. The boundary between volcanoes affected dominantly by the slab‐derived fluid and those that are not coincides with the westernmost edge of the deeply buried Pacific slab. These findings deepen our understanding of the generation of these volcanoes. Key Points Global geochemical data of island arc and ocean island basalts are used to train machine learning models The models predict that most basalts in Northeast China have been influenced by fluid derived from the stagnant Pacific slab underneath The boundary defined by fluid activity in basalts coincides with those defined by seismic tomography and Mg isotopes
The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models predict that most Cenozoic basalts in Northeast China are influenced by fluid and that the fluid activity decreases from east to west. The boundary defined by fluid activity coincides with the westernmost edge of the present‐day stagnant Pacific slab determined by seismic tomography and with the geochemical boundary defined by magnesium isotopes. These observations support the view that the fluid involved in the generation of the basalts is controlled by the stagnant Pacific slab instead of driven by the plume induced by the sinking Izanagi Plate. Many volcanoes are erupted in Northeast China, and it is of great interest to study the origin of these volcanoes. Previously, the chemical compositions of these volcanoes and typically elemental ratios such as Ba/Th are used to find the answer. In the present study, modern machine learning methods called random forest and deep neural network are used to do the work. The advantage of the new methods is that they can obtain a whole picture of the chemical compositional data instead of a particular one from an elemental ratio. The new methods find that the generation of these basalts is closely related to the Pacific slab, subducting downward at Japan, reaching ~600‐km depth at the border of eastern China, and extending horizontally to the Mongolia border. Materials released from the slab, such as fluid and melt and the elements dissolved in them, move upward and trigger the volcanoes we see on the surface. The boundary between volcanoes affected dominantly by the slab‐derived fluid and those that are not coincides with the westernmost edge of the deeply buried Pacific slab. These findings deepen our understanding of the generation of these volcanoes. Global geochemical data of island arc and ocean island basalts are used to train machine learning models The models predict that most basalts in Northeast China have been influenced by fluid derived from the stagnant Pacific slab underneath The boundary defined by fluid activity in basalts coincides with those defined by seismic tomography and Mg isotopes
Author Zhao, Yong
Zou, Xinyu
Geng, Ming
Zhang, Yigang
Jiang, Jilian
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0002-2841-047X
  surname: Zhao
  fullname: Zhao, Yong
  email: zhaoyong@mail.iggcas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yigang
  surname: Zhang
  fullname: Zhang, Yigang
  email: zhangyg@mail.iggcas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Ming
  orcidid: 0000-0001-5410-0208
  surname: Geng
  fullname: Geng, Ming
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Jilian
  orcidid: 0000-0002-1170-8982
  surname: Jiang
  fullname: Jiang, Jilian
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Xinyu
  surname: Zou
  fullname: Zou, Xinyu
  organization: Chinese Academy of Sciences
BookMark eNqFkE1OwzAQRi0EEuVnxwEssaUwsdPYs4QCpVIACdhHTjoBo9QGOy0CNhyBM3ISUsoCsYDVjEZvvk96G2zVeUeM7SSwn4DAAwEJjnLQQgqxwnoJpmlfA6hV1gPAbhcqW2cbMd4DgASZ9Njr2M19M6cpuZb7ml83pvx4ez-mYOc04afNzE64dby9Iz4iR8G01rsFOSTnX7yt-JGJpmnjgrrwoQNNbPnwzjrDx66mEBY5wU_5uam6K_GcTHDW3W6xtdo0kba_5ya7OT25GZ7188vReHiY943Ege5jjVipWmYEQtUKU2UwJaGJBqiyNClBYVlnaESltQKpKkJZagGVhhJJbrLdZexD8I8zim1x72fBdY2FEBJBiEGmO2pvSVXBxxioLh6CnZrwXCRQLOwWP-12uPiFV7b9ctMGY5t_np5sQ89_FhSjq3yAAFp-Amc2jXQ
CitedBy_id crossref_primary_10_1016_j_jseaes_2019_104103
crossref_primary_10_1029_2021JB021856
crossref_primary_10_1130_B38200_1
crossref_primary_10_1016_j_cageo_2023_105511
crossref_primary_10_1016_j_oregeorev_2024_106374
crossref_primary_10_1007_s11004_023_10055_z
crossref_primary_10_1007_s11053_022_10146_4
crossref_primary_10_1038_s41467_025_62821_8
crossref_primary_10_2138_am_2020_7137
crossref_primary_10_1016_j_cageo_2021_104717
crossref_primary_10_3390_min15020122
crossref_primary_10_1016_j_gexplo_2024_107421
crossref_primary_10_1016_j_lithos_2023_107241
crossref_primary_10_1051_0004_6361_202140375
crossref_primary_10_1029_2021JB023002
crossref_primary_10_1016_j_earscirev_2023_104590
crossref_primary_10_1007_s12517_022_10943_4
crossref_primary_10_1016_j_pepi_2019_106314
crossref_primary_10_1051_0004_6361_202142874
crossref_primary_10_1016_j_chemgeo_2024_122282
crossref_primary_10_1007_s11004_023_10128_z
crossref_primary_10_3389_feart_2022_1084213
crossref_primary_10_1029_2020GL088950
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1016_j_chemgeo_2023_121776
crossref_primary_10_1029_2022JB024584
crossref_primary_10_1029_2022JB025772
Cites_doi 10.1038/ngeo2166
10.1029/2017GC007401
10.1016/j.chemgeo.2008.06.022
10.1016/S0040-1951(01)00132-9
10.1016/j.pepi.2008.11.009
10.1007/s00410-016-1292-2
10.1038/ngeo1250
10.1360/04wd0125
10.1023/A:1010933404324
10.1111/1467-9876.00275
10.1038/s41561-018-0274-6
10.1002/2013GL057401
10.1093/nsr/nww070
10.1016/j.lithos.2017.12.003
10.1007/978-94-009-4109-0
10.1016/j.tecto.2014.07.022
10.1146/annurev.ea.23.050195.001343
10.1016/B978-0-08-095975-7.00301-6
10.1016/j.lithos.2016.07.011
10.1016/j.gca.2015.04.054
10.1007/s00410-012-0810-0
10.1002/2016JB013156
10.1016/j.chemgeo.2012.05.018
10.1038/srep07077
10.1007/978-3-642-30223-7_87
10.1029/2005JB004066
10.1029/2018GC007663
10.1016/j.epsl.2016.03.051
10.1016/j.gca.2010.04.019
10.1016/j.epsl.2016.11.030
10.1016/0012-821X(86)90038-5
10.1093/nsr/nwx016
10.1038/nature14539
10.1109/MGRS.2017.2762307
10.1016/j.chemgeo.2013.05.040
10.1016/0012-821X(91)90029-H
10.1016/j.lithos.2006.09.015
10.1109/TIT.1980.1056144
10.1016/j.epsl.2017.02.024
10.1029/91JB02749
10.1016/j.epsl.2013.03.026
10.1016/0016-7037(54)90040-X
ContentType Journal Article
Copyright 2019. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2019. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2019GL082322
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 5242
ExternalDocumentID 10_1029_2019GL082322
GRL59008
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Chinese Academy of Sciences (CAS)
  funderid: XDB 18000000
– fundername: Strategic Priority Research Program (B)
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a3958-9f99c7f36e027f7947a94e28ee597641b079bf69a2c887037ce93b820c80b9e3
IEDL.DBID WIN
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471237500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Sun Sep 07 23:54:09 EDT 2025
Tue Nov 18 22:24:49 EST 2025
Sat Nov 29 02:57:38 EST 2025
Wed Jan 22 16:41:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3958-9f99c7f36e027f7947a94e28ee597641b079bf69a2c887037ce93b820c80b9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2841-047X
0000-0002-1170-8982
0000-0001-5410-0208
PQID 2239022568
PQPubID 54723
PageCount 9
ParticipantIDs proquest_journals_2239022568
crossref_primary_10_1029_2019GL082322
crossref_citationtrail_10_1029_2019GL082322
wiley_primary_10_1029_2019GL082322_GRL59008
PublicationCentury 2000
PublicationDate 28 May 2019
PublicationDateYYYYMMDD 2019-05-28
PublicationDate_xml – month: 05
  year: 2019
  text: 28 May 2019
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2017; 6
2017; 4
2018; 300‐301
2002; 51
1986; 79
2019; 12
2011; 12
2013; 165
1992; 97
2001; 45
2016; 262
2012; 328
2014; 4
1991; 102
2015; 650
1995; 23
1954; 5
1986
2014; 15
2013; 352
2001; 339
2017; 122
2014; 7
2010; 74
1980; 26
2015; 6
2012
2015; 521
2004; 49
2013; 40
2015; 164
1995
2009; 173
2007; 96
2016; 444
2002
2011; 4
2018; 20
2006; 111
2013; 369‐370
1999
2017; 459
2016; 1
2017; 19
2015
2014
2013
2016; 171
2008; 255
2017; 464
e_1_2_6_51_1
e_1_2_6_53_1
Wang X.‐C. (e_1_2_6_48_1) 2015; 6
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
Kuritani T. (e_1_2_6_24_1) 2013
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
Pedregosa F. (e_1_2_6_38_1) 2011; 12
e_1_2_6_15_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Srivastava N. (e_1_2_6_44_1) 2014; 15
Breiman L. (e_1_2_6_7_1) 1999
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Kuwatani T. (e_1_2_6_26_1) 2014; 4
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Chollet F. c. c. o. a. o. (e_1_2_6_11_1) 2015
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Goodfellow I. (e_1_2_6_14_1) 2016
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 164
  start-page: 298
  year: 2015
  end-page: 317
  article-title: Origin of low δ Mg Cenozoic basalts from South China Block and their geodynamic implications
  publication-title: Geochimica et Cosmochimica Acta
– volume: 1
  year: 2016
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 102
  start-page: 358
  issue: 3‐4
  year: 1991
  end-page: 374
  article-title: Geochemical and geodynamical constraints on subduction zone magmatism
  publication-title: Earth and Planetary Science Letters
– volume: 255
  start-page: 134
  issue: 1‐2
  year: 2008
  end-page: 142
  article-title: U–Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab
  publication-title: Chemical Geology
– volume: 97
  start-page: 4809
  issue: B4
  year: 1992
  end-page: 4822
  article-title: Subducting slabs stagnant in the mantle transition zone
  publication-title: Journal of Geophysical Research
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random Forests
  publication-title: Machine Learning
– volume: 5
  start-page: 49
  issue: 2
  year: 1954
  end-page: 73
  article-title: The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary)
  publication-title: Geochimica et Cosmochimica Acta
– volume: 12
  start-page: 75
  issue: 1
  year: 2019
  end-page: 79
  article-title: Continuous chatter of the Cascadia subduction zone revealed by machine learning
  publication-title: Nature Geoscience
– volume: 173
  start-page: 197
  issue: 3‐4
  year: 2009
  end-page: 206
  article-title: Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 49
  start-page: 1401
  issue: 13
  year: 2004
  end-page: 1408
  article-title: Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography
  publication-title: Chinese Science Bulletin
– year: 2014
– volume: 4
  start-page: 111
  issue: 1
  year: 2017
  end-page: 120
  article-title: Deep carbon cycles constrained by a large‐scale mantle Mg isotope anomaly in eastern China
  publication-title: National Science Review
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 40
  start-page: 5652
  year: 2013
  end-page: 5657
  article-title: Finite frequency whole mantle P wave tomography: Improvement of subducted slab images
  publication-title: Geophysical Research Letters
– year: 1986
– start-page: 431
  year: 2013
  end-page: 439
– volume: 459
  start-page: 208
  year: 2017
  end-page: 220
  article-title: Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction
  publication-title: Earth and Planetary Science Letters
– volume: 352
  start-page: 1
  year: 2013
  end-page: 18
  article-title: Late Cenozoic magmatic transitions in the central Great Xing'an Range, Northeast China: Geochemical and isotopic constraints on petrogenesis
  publication-title: Chemical Geology
– volume: 4
  start-page: 713
  issue: 10
  year: 2011
  end-page: 716
  article-title: Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation
  publication-title: Nature Geoscience
– volume: 122
  start-page: 988
  year: 2017
  end-page: 1006
  article-title: Dynamic contribution of recycled components from the subducted Pacific slab: Oxygen isotopic composition of the basalts from 106 Ma to 60 Ma in North China Craton
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 6
  issue: 1
  year: 2015
  article-title: Continental flood basalts derived from the hydrous mantle transition zone
  publication-title: Nature Communications
– year: 2015
– volume: 51
  start-page: 375
  issue: 4
  year: 2002
  end-page: 392
  article-title: Biplots of compositional data
  publication-title: Journal of the Royal Statistical Society: Series C: Applied Statistics
– volume: 339
  start-page: 385
  issue: 3‐4
  year: 2001
  end-page: 401
  article-title: Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K‐Ar geochronology
  publication-title: Tectonophysics
– volume: 328
  start-page: 185
  year: 2012
  end-page: 194
  article-title: Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle
  publication-title: Chemical Geology
– volume: 23
  start-page: 251
  issue: 1
  year: 1995
  end-page: 285
  article-title: Tectonic implications of the composition of volcanic arc magmas
  publication-title: Annual Review of Earth and Planetary Sciences
– start-page: 156, 1
  year: 2013
  end-page: 156, 12
  article-title: Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China
  publication-title: Lithos
– volume: 444
  start-page: 169
  year: 2016
  end-page: 178
  article-title: Zinc isotope evidence for a large‐scale carbonated mantle beneath eastern China
  publication-title: Earth and Planetary Science Letters
– volume: 7
  start-page: 470
  issue: 6
  year: 2014
  end-page: 475
  article-title: Changbaishan volcanism in northeast China linked to subduction‐induced mantle upwelling
  publication-title: Nature Geoscience
– volume: 26
  start-page: 26
  issue: 1
  year: 1980
  end-page: 37
  article-title: Axiomatic derivation of theprinciple of maximum entropy and the principle of minimum cross‐entropy
  publication-title: IEEE Transactions on Information Theory
– volume: 300‐301
  start-page: 227
  year: 2018
  end-page: 249
  article-title: Plume‐stagnant slab‐lithosphere interactions: Origin of the late Cenozoic intra‐plate basalts on the East Eurasia margin
  publication-title: Lithos
– volume: 111
  year: 2006
  article-title: High‐resolution mantle tomography of China and surrounding regions
  publication-title: Journal of Geophysical Research
– volume: 171
  start-page: 81
  issue: 10
  year: 2016
  article-title: Solving petrological problems through machine learning: The study case of tectonic discrimination using geochemical and isotopic data
  publication-title: Contributions to Mineralogy and Petrology
– volume: 4
  start-page: 1
  year: 2014
  end-page: 6
  article-title: Machine‐learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits
  publication-title: Scientific Reports
– year: 2012
– start-page: 1
  year: 2014
  end-page: 51
– volume: 74
  start-page: 4150
  issue: 14
  year: 2010
  end-page: 4166
  article-title: Magnesium isotopic composition of the Earth and chondrites
  publication-title: Geochimica et Cosmochimica Acta
– volume: 96
  start-page: 108
  issue: 1‐2
  year: 2007
  end-page: 126
  article-title: Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China
  publication-title: Lithos
– volume: 369‐370
  start-page: 239
  year: 2013
  end-page: 247
  article-title: Electrical conductivity of dense hydrous magnesium silicates with implication for conductivity in the stagnant slab
  publication-title: Earth and Planetary Science Letters
– volume: 165
  start-page: 305
  issue: 2
  year: 2013
  end-page: 326
  article-title: Constraints from melt inclusions and their host olivines on the petrogenesis of Oligocene‐Early Miocene Xindian basalts, Chifeng area, North China Craton
  publication-title: Contributions to Mineralogy and Petrology
– volume: 20
  start-page: 398
  year: 2018
  end-page: 416
  article-title: Seismic evidence for a mantle transition zone origin of the Wudalianchi and Halaha volcanoes in Northeast China
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 6
  start-page: 125
  issue: 1
  year: 2017
  end-page: 144
  article-title: Water in the upper mantle and deep crust of eastern China: Concentration, distribution and implications
  publication-title: National Science Review
– year: 2002
– volume: 650
  start-page: 113
  year: 2015
  end-page: 123
  article-title: Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: New constraints from water content
  publication-title: Tectonophysics
– volume: 19
  start-page: 1327
  year: 2017
  end-page: 1347
  article-title: Geochemical discrimination and characteristics of magmatic tectonic settings: A machine learning‐based approach
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 464
  start-page: 166
  year: 2017
  end-page: 174
  article-title: Age of the subducting Pacific slab beneath East Asia and its geodynamic implications
  publication-title: Earth and Planetary Science Letters
– volume: 5
  start-page: 8
  issue: 4
  year: 2017
  end-page: 36
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– year: 1995
– volume: 262
  start-page: 713
  issue: Supplement C
  year: 2016
  end-page: 728
  article-title: Compositional variations of ignimbrite magmas in the Central Andes over the past 26 Ma—A multivariate statistical perspective
  publication-title: Lithos
– volume: 79
  start-page: 33
  issue: 1‐2
  year: 1986
  end-page: 45
  article-title: Nb and Pb in oceanic basalts: New constraints on mantle evolution
  publication-title: Earth and Planetary Science Letters
– year: 1999
– ident: e_1_2_6_23_1
– ident: e_1_2_6_45_1
  doi: 10.1038/ngeo2166
– ident: e_1_2_6_47_1
  doi: 10.1029/2017GC007401
– ident: e_1_2_6_55_1
  doi: 10.1016/j.chemgeo.2008.06.022
– ident: e_1_2_6_30_1
  doi: 10.1016/S0040-1951(01)00132-9
– ident: e_1_2_6_53_1
  doi: 10.1016/j.pepi.2008.11.009
– ident: e_1_2_6_39_1
  doi: 10.1007/s00410-016-1292-2
– ident: e_1_2_6_25_1
  doi: 10.1038/ngeo1250
– ident: e_1_2_6_52_1
  doi: 10.1360/04wd0125
– ident: e_1_2_6_22_1
– ident: e_1_2_6_6_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_6_4_1
  doi: 10.1111/1467-9876.00275
– ident: e_1_2_6_40_1
  doi: 10.1038/s41561-018-0274-6
– ident: e_1_2_6_36_1
  doi: 10.1002/2013GL057401
– ident: e_1_2_6_29_1
  doi: 10.1093/nsr/nww070
– ident: e_1_2_6_21_1
  doi: 10.1016/j.lithos.2017.12.003
– ident: e_1_2_6_3_1
  doi: 10.1007/978-94-009-4109-0
– ident: e_1_2_6_9_1
  doi: 10.1016/j.tecto.2014.07.022
– ident: e_1_2_6_37_1
  doi: 10.1146/annurev.ea.23.050195.001343
– ident: e_1_2_6_41_1
  doi: 10.1016/B978-0-08-095975-7.00301-6
– ident: e_1_2_6_5_1
  doi: 10.1016/j.lithos.2016.07.011
– ident: e_1_2_6_19_1
  doi: 10.1016/j.gca.2015.04.054
– ident: e_1_2_6_18_1
  doi: 10.1007/s00410-012-0810-0
– ident: e_1_2_6_31_1
  doi: 10.1002/2016JB013156
– ident: e_1_2_6_51_1
  doi: 10.1016/j.chemgeo.2012.05.018
– volume: 4
  start-page: 1
  year: 2014
  ident: e_1_2_6_26_1
  article-title: Machine‐learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits
  publication-title: Scientific Reports
  doi: 10.1038/srep07077
– ident: e_1_2_6_28_1
  doi: 10.1007/978-3-642-30223-7_87
– ident: e_1_2_6_20_1
  doi: 10.1029/2005JB004066
– volume-title: Classification and regression trees
  year: 1999
  ident: e_1_2_6_7_1
– ident: e_1_2_6_34_1
– ident: e_1_2_6_49_1
  doi: 10.1029/2018GC007663
– ident: e_1_2_6_32_1
  doi: 10.1016/j.epsl.2016.03.051
– ident: e_1_2_6_46_1
  doi: 10.1016/j.gca.2010.04.019
– ident: e_1_2_6_8_1
  doi: 10.1016/j.epsl.2016.11.030
– ident: e_1_2_6_17_1
  doi: 10.1016/0012-821X(86)90038-5
– ident: e_1_2_6_50_1
  doi: 10.1093/nsr/nwx016
– ident: e_1_2_6_27_1
  doi: 10.1038/nature14539
– ident: e_1_2_6_54_1
  doi: 10.1109/MGRS.2017.2762307
– ident: e_1_2_6_16_1
  doi: 10.1016/j.chemgeo.2013.05.040
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: e_1_2_6_44_1
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 6
  issue: 1
  year: 2015
  ident: e_1_2_6_48_1
  article-title: Continental flood basalts derived from the hydrous mantle transition zone
  publication-title: Nature Communications
– ident: e_1_2_6_35_1
  doi: 10.1016/0012-821X(91)90029-H
– ident: e_1_2_6_10_1
  doi: 10.1016/j.lithos.2006.09.015
– start-page: 156, 1
  year: 2013
  ident: e_1_2_6_24_1
  article-title: Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China
  publication-title: Lithos
– ident: e_1_2_6_42_1
  doi: 10.1109/TIT.1980.1056144
– ident: e_1_2_6_33_1
  doi: 10.1016/j.epsl.2017.02.024
– ident: e_1_2_6_13_1
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_6_38_1
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_6_12_1
  doi: 10.1029/91JB02749
– ident: e_1_2_6_15_1
  doi: 10.1016/j.epsl.2013.03.026
– volume-title: Keras
  year: 2015
  ident: e_1_2_6_11_1
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_6_14_1
– ident: e_1_2_6_2_1
  doi: 10.1016/0016-7037(54)90040-X
– ident: e_1_2_6_43_1
SSID ssj0003031
Score 2.470549
Snippet The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5234
SubjectTerms Artificial intelligence
Artificial neural networks
Basalt
Cenozoic
Chemical composition
Island arcs
Isotopes
Learning algorithms
Machine learning
Magma
Magnesium
Magnesium isotopes
Neural networks
Ocean models
Organic chemistry
Ratios
Seismic tomography
Subduction (geology)
Tomography
Volcanic eruptions
Volcanoes
Title Involvement of Slab‐Derived Fluid in the Generation of Cenozoic Basalts in Northeast China Inferred From Machine Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL082322
https://www.proquest.com/docview/2239022568
Volume 46
WOSCitedRecordID wos000471237500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hoFIvQF_ikaI9tKfKwllv7J0jhSaNFKKKguBmrTdjFCnYKA6RWi78hP7G_pLOrE0Ih1aquFnW7K7leezMzuw3QnyIbKRytIrLyvNAAwUokHRcoDCOMoMWcpf5ZhPJcGguL-Fbc-DGd2FqfIjFgRtrhrfXrOA2qxqwAcbIpJ0LegNOFCk2wW3t9fKiP1wYYrLOdcM80IFRSdzUvdPwg-XBT3ekRzdz2Vn1u01387nfuSU2Gj9THtaC8UqsYPFavOj5Pr4_6MlXfrrqjbjrF2ShPGr4TJa5_E5i8fv-1zFJ5hxHsju5HY_kuJDkKMoao5pZyZRHWJQ_y7GTn21lJ7OKqXwaiNsBSd-YW_b5PuGU55mW1_LEV26ibEBdr96Ks-6Xs6OvQdORIbARdMgy5gAuyaMYKZrNSZUTCxqVQaS4JNbtLEwgy2OwypHxCqPEIRDLVehMmAFG78RqURa4LWQbcMRJTRuOrFYIRmsgd8O6JAQKsfSO-PTAlNQ1aOXcNGOS-qy5gnT5v-6Ijwvqmxql4y90rQf-po2uVik5SLQ0uX6GFvWc_Occae90wK1Wze5_Ue-Jl_yeCw-UaYnV2fQW34t1N5-Nq-m-WDs-7Z4P9r0A_wE58uwI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQBZULpT8IKFAf2hOKGhyTeI6UssuqywrBSuUWOd4JWmlJ0GZBor30EXjGPklnnLAsB5AqbjlM7Cjz47Fn_H1CfI5spHK0itvK80ADbVAg2XOBwjjKDFrIXebJJpJez5yfw0nDc8p3YWp8iOmBG3uGj9fs4Hwg3aANMEgmLV3Q7nKlSFEMfqVjbdgzf3Z601BM8bmmzAMdGJXETec7vf919u3Ha9JDojmbrvr1pvXmxV-6IpabVFPu17bxVsxh8U4stj2V7y09-eZPV70XvzsFBSkPHD6RZS7PyDL-_rn7TsZ5gwPZGl0PB3JYSMoVZQ1TzdpkyQMsyl_l0MlvtrKjScVSvhLEjEDSc3PLDl8pHPM44_JSHvvmTZQNruvFB9FvHfYPjoKGlCGwEexRcMwBXJJHMdKGNidvTixoVAaRtiax3s3CBLI8Bqscxa8wShwCaV2FzoQZYLQq5ouywDUhdwEHXNe04cBqhWC0Bso4rEtCoF2WXhc791pJXQNYzrwZo9QXzhWks_91XXyZSl_VQB1PyG3eKzht3LVKKUeiqSn7MzSpV-WzY6Tt0y6zrZqN_5L-JF4f9Y-7abfT-_FRLLEM9yEosynmJ-Nr3BIL7mYyrMbb3or_Abq27o8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQ0IpL6a9KC60P7amKGhxv4jkWliyrbleIUolb5DjjaqVtgjYLEnDpI_QZeRLGjtluD61Uccth4kSZH89kxt_H2LtEJ8KiFm6s3EYSqECBrGcigWlSKtRgTenJJrLxWJ2ewlHgOXVnYTp8iMUPN-cZPl47B8ezyga0AQeSSVsXDEauUyQoBq_JHkgy9LX-cf5ttAjGFKE70jyQkRJZGmbfaYWPy_f_uSv9TjWXE1a_4-Sb937Xx-xRSDb5p846nrAVrJ-yBwNP5ntJV37807TP2PWwpjDlocPnvLH8K9nGzc9ffTLPC6x4Pj2fVHxSc8oWeQdU7fTpJPexbq6aieF7utXTeeukfC_IcQJxz87Nh-5Q4cytM2t-8C9-fBN5QHb9_pyd5Acn-4dRoGWIdAI9Co8WwGQ2SZFKWkv-nGmQKBQiFSep3C3jDEqbghaGIlicZAaB9C5io-ISMHnBVuumxpeM7wJWrrOp40pLgaCkBMo5tMlioDpLbrEPd1opTIAsd8wZ08K3zgUUy991i71fSJ91UB1_kdu-U3ARHLYtKEuiR1P-p-ihXpX_XKMYHI8c36p69V_Sb9nDo35ejIbjz6_ZhhNxgwhCbbPV-ewcd9i6uZhP2tmbYMa3G2vvLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Involvement+of+Slab%E2%80%90Derived+Fluid+in+the+Generation+of+Cenozoic+Basalts+in+Northeast+China+Inferred+From+Machine+Learning&rft.jtitle=Geophysical+research+letters&rft.au=Zhao%2C+Yong&rft.au=Zhang%2C+Yigang&rft.au=Geng%2C+Ming&rft.au=Jiang%2C+Jilian&rft.date=2019-05-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=46&rft.issue=10&rft.spage=5234&rft.epage=5242&rft_id=info:doi/10.1029%2F2019GL082322&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon