Involvement of Slab‐Derived Fluid in the Generation of Cenozoic Basalts in Northeast China Inferred From Machine Learning
The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models p...
Uloženo v:
| Vydáno v: | Geophysical research letters Ročník 46; číslo 10; s. 5234 - 5242 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
28.05.2019
|
| Témata: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models predict that most Cenozoic basalts in Northeast China are influenced by fluid and that the fluid activity decreases from east to west. The boundary defined by fluid activity coincides with the westernmost edge of the present‐day stagnant Pacific slab determined by seismic tomography and with the geochemical boundary defined by magnesium isotopes. These observations support the view that the fluid involved in the generation of the basalts is controlled by the stagnant Pacific slab instead of driven by the plume induced by the sinking Izanagi Plate.
Plain Language Summary
Many volcanoes are erupted in Northeast China, and it is of great interest to study the origin of these volcanoes. Previously, the chemical compositions of these volcanoes and typically elemental ratios such as Ba/Th are used to find the answer. In the present study, modern machine learning methods called random forest and deep neural network are used to do the work. The advantage of the new methods is that they can obtain a whole picture of the chemical compositional data instead of a particular one from an elemental ratio. The new methods find that the generation of these basalts is closely related to the Pacific slab, subducting downward at Japan, reaching ~600‐km depth at the border of eastern China, and extending horizontally to the Mongolia border. Materials released from the slab, such as fluid and melt and the elements dissolved in them, move upward and trigger the volcanoes we see on the surface. The boundary between volcanoes affected dominantly by the slab‐derived fluid and those that are not coincides with the westernmost edge of the deeply buried Pacific slab. These findings deepen our understanding of the generation of these volcanoes.
Key Points
Global geochemical data of island arc and ocean island basalts are used to train machine learning models
The models predict that most basalts in Northeast China have been influenced by fluid derived from the stagnant Pacific slab underneath
The boundary defined by fluid activity in basalts coincides with those defined by seismic tomography and Mg isotopes |
|---|---|
| AbstractList | The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models predict that most Cenozoic basalts in Northeast China are influenced by fluid and that the fluid activity decreases from east to west. The boundary defined by fluid activity coincides with the westernmost edge of the present‐day stagnant Pacific slab determined by seismic tomography and with the geochemical boundary defined by magnesium isotopes. These observations support the view that the fluid involved in the generation of the basalts is controlled by the stagnant Pacific slab instead of driven by the plume induced by the sinking Izanagi Plate. The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models predict that most Cenozoic basalts in Northeast China are influenced by fluid and that the fluid activity decreases from east to west. The boundary defined by fluid activity coincides with the westernmost edge of the present‐day stagnant Pacific slab determined by seismic tomography and with the geochemical boundary defined by magnesium isotopes. These observations support the view that the fluid involved in the generation of the basalts is controlled by the stagnant Pacific slab instead of driven by the plume induced by the sinking Izanagi Plate. Plain Language Summary Many volcanoes are erupted in Northeast China, and it is of great interest to study the origin of these volcanoes. Previously, the chemical compositions of these volcanoes and typically elemental ratios such as Ba/Th are used to find the answer. In the present study, modern machine learning methods called random forest and deep neural network are used to do the work. The advantage of the new methods is that they can obtain a whole picture of the chemical compositional data instead of a particular one from an elemental ratio. The new methods find that the generation of these basalts is closely related to the Pacific slab, subducting downward at Japan, reaching ~600‐km depth at the border of eastern China, and extending horizontally to the Mongolia border. Materials released from the slab, such as fluid and melt and the elements dissolved in them, move upward and trigger the volcanoes we see on the surface. The boundary between volcanoes affected dominantly by the slab‐derived fluid and those that are not coincides with the westernmost edge of the deeply buried Pacific slab. These findings deepen our understanding of the generation of these volcanoes. Key Points Global geochemical data of island arc and ocean island basalts are used to train machine learning models The models predict that most basalts in Northeast China have been influenced by fluid derived from the stagnant Pacific slab underneath The boundary defined by fluid activity in basalts coincides with those defined by seismic tomography and Mg isotopes The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods of random forest and deep neural network to train models using data sets of global island arc and ocean island basalts. The trained models predict that most Cenozoic basalts in Northeast China are influenced by fluid and that the fluid activity decreases from east to west. The boundary defined by fluid activity coincides with the westernmost edge of the present‐day stagnant Pacific slab determined by seismic tomography and with the geochemical boundary defined by magnesium isotopes. These observations support the view that the fluid involved in the generation of the basalts is controlled by the stagnant Pacific slab instead of driven by the plume induced by the sinking Izanagi Plate. Many volcanoes are erupted in Northeast China, and it is of great interest to study the origin of these volcanoes. Previously, the chemical compositions of these volcanoes and typically elemental ratios such as Ba/Th are used to find the answer. In the present study, modern machine learning methods called random forest and deep neural network are used to do the work. The advantage of the new methods is that they can obtain a whole picture of the chemical compositional data instead of a particular one from an elemental ratio. The new methods find that the generation of these basalts is closely related to the Pacific slab, subducting downward at Japan, reaching ~600‐km depth at the border of eastern China, and extending horizontally to the Mongolia border. Materials released from the slab, such as fluid and melt and the elements dissolved in them, move upward and trigger the volcanoes we see on the surface. The boundary between volcanoes affected dominantly by the slab‐derived fluid and those that are not coincides with the westernmost edge of the deeply buried Pacific slab. These findings deepen our understanding of the generation of these volcanoes. Global geochemical data of island arc and ocean island basalts are used to train machine learning models The models predict that most basalts in Northeast China have been influenced by fluid derived from the stagnant Pacific slab underneath The boundary defined by fluid activity in basalts coincides with those defined by seismic tomography and Mg isotopes |
| Author | Zhao, Yong Zou, Xinyu Geng, Ming Zhang, Yigang Jiang, Jilian |
| Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0002-2841-047X surname: Zhao fullname: Zhao, Yong email: zhaoyong@mail.iggcas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Yigang surname: Zhang fullname: Zhang, Yigang email: zhangyg@mail.iggcas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Ming orcidid: 0000-0001-5410-0208 surname: Geng fullname: Geng, Ming organization: Chinese Academy of Sciences – sequence: 4 givenname: Jilian orcidid: 0000-0002-1170-8982 surname: Jiang fullname: Jiang, Jilian organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Xinyu surname: Zou fullname: Zou, Xinyu organization: Chinese Academy of Sciences |
| BookMark | eNqFkE1OwzAQRi0EEuVnxwEssaUwsdPYs4QCpVIACdhHTjoBo9QGOy0CNhyBM3ISUsoCsYDVjEZvvk96G2zVeUeM7SSwn4DAAwEJjnLQQgqxwnoJpmlfA6hV1gPAbhcqW2cbMd4DgASZ9Njr2M19M6cpuZb7ml83pvx4ez-mYOc04afNzE64dby9Iz4iR8G01rsFOSTnX7yt-JGJpmnjgrrwoQNNbPnwzjrDx66mEBY5wU_5uam6K_GcTHDW3W6xtdo0kba_5ya7OT25GZ7188vReHiY943Ege5jjVipWmYEQtUKU2UwJaGJBqiyNClBYVlnaESltQKpKkJZagGVhhJJbrLdZexD8I8zim1x72fBdY2FEBJBiEGmO2pvSVXBxxioLh6CnZrwXCRQLOwWP-12uPiFV7b9ctMGY5t_np5sQ89_FhSjq3yAAFp-Amc2jXQ |
| CitedBy_id | crossref_primary_10_1016_j_jseaes_2019_104103 crossref_primary_10_1029_2021JB021856 crossref_primary_10_1130_B38200_1 crossref_primary_10_1016_j_cageo_2023_105511 crossref_primary_10_1016_j_oregeorev_2024_106374 crossref_primary_10_1007_s11004_023_10055_z crossref_primary_10_1007_s11053_022_10146_4 crossref_primary_10_1038_s41467_025_62821_8 crossref_primary_10_2138_am_2020_7137 crossref_primary_10_1016_j_cageo_2021_104717 crossref_primary_10_3390_min15020122 crossref_primary_10_1016_j_gexplo_2024_107421 crossref_primary_10_1016_j_lithos_2023_107241 crossref_primary_10_1051_0004_6361_202140375 crossref_primary_10_1029_2021JB023002 crossref_primary_10_1016_j_earscirev_2023_104590 crossref_primary_10_1007_s12517_022_10943_4 crossref_primary_10_1016_j_pepi_2019_106314 crossref_primary_10_1051_0004_6361_202142874 crossref_primary_10_1016_j_chemgeo_2024_122282 crossref_primary_10_1007_s11004_023_10128_z crossref_primary_10_3389_feart_2022_1084213 crossref_primary_10_1029_2020GL088950 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1016_j_chemgeo_2023_121776 crossref_primary_10_1029_2022JB024584 crossref_primary_10_1029_2022JB025772 |
| Cites_doi | 10.1038/ngeo2166 10.1029/2017GC007401 10.1016/j.chemgeo.2008.06.022 10.1016/S0040-1951(01)00132-9 10.1016/j.pepi.2008.11.009 10.1007/s00410-016-1292-2 10.1038/ngeo1250 10.1360/04wd0125 10.1023/A:1010933404324 10.1111/1467-9876.00275 10.1038/s41561-018-0274-6 10.1002/2013GL057401 10.1093/nsr/nww070 10.1016/j.lithos.2017.12.003 10.1007/978-94-009-4109-0 10.1016/j.tecto.2014.07.022 10.1146/annurev.ea.23.050195.001343 10.1016/B978-0-08-095975-7.00301-6 10.1016/j.lithos.2016.07.011 10.1016/j.gca.2015.04.054 10.1007/s00410-012-0810-0 10.1002/2016JB013156 10.1016/j.chemgeo.2012.05.018 10.1038/srep07077 10.1007/978-3-642-30223-7_87 10.1029/2005JB004066 10.1029/2018GC007663 10.1016/j.epsl.2016.03.051 10.1016/j.gca.2010.04.019 10.1016/j.epsl.2016.11.030 10.1016/0012-821X(86)90038-5 10.1093/nsr/nwx016 10.1038/nature14539 10.1109/MGRS.2017.2762307 10.1016/j.chemgeo.2013.05.040 10.1016/0012-821X(91)90029-H 10.1016/j.lithos.2006.09.015 10.1109/TIT.1980.1056144 10.1016/j.epsl.2017.02.024 10.1029/91JB02749 10.1016/j.epsl.2013.03.026 10.1016/0016-7037(54)90040-X |
| ContentType | Journal Article |
| Copyright | 2019. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2019. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| DOI | 10.1029/2019GL082322 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | 5242 |
| ExternalDocumentID | 10_1029_2019GL082322 GRL59008 |
| Genre | article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Chinese Academy of Sciences (CAS) funderid: XDB 18000000 – fundername: Strategic Priority Research Program (B) |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| ID | FETCH-LOGICAL-a3958-9f99c7f36e027f7947a94e28ee597641b079bf69a2c887037ce93b820c80b9e3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471237500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Sun Sep 07 23:54:09 EDT 2025 Tue Nov 18 22:24:49 EST 2025 Sat Nov 29 02:57:38 EST 2025 Wed Jan 22 16:41:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3958-9f99c7f36e027f7947a94e28ee597641b079bf69a2c887037ce93b820c80b9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2841-047X 0000-0002-1170-8982 0000-0001-5410-0208 |
| PQID | 2239022568 |
| PQPubID | 54723 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2239022568 crossref_primary_10_1029_2019GL082322 crossref_citationtrail_10_1029_2019GL082322 wiley_primary_10_1029_2019GL082322_GRL59008 |
| PublicationCentury | 2000 |
| PublicationDate | 28 May 2019 |
| PublicationDateYYYYMMDD | 2019-05-28 |
| PublicationDate_xml | – month: 05 year: 2019 text: 28 May 2019 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 5 2017; 6 2017; 4 2018; 300‐301 2002; 51 1986; 79 2019; 12 2011; 12 2013; 165 1992; 97 2001; 45 2016; 262 2012; 328 2014; 4 1991; 102 2015; 650 1995; 23 1954; 5 1986 2014; 15 2013; 352 2001; 339 2017; 122 2014; 7 2010; 74 1980; 26 2015; 6 2012 2015; 521 2004; 49 2013; 40 2015; 164 1995 2009; 173 2007; 96 2016; 444 2002 2011; 4 2018; 20 2006; 111 2013; 369‐370 1999 2017; 459 2016; 1 2017; 19 2015 2014 2013 2016; 171 2008; 255 2017; 464 e_1_2_6_51_1 e_1_2_6_53_1 Wang X.‐C. (e_1_2_6_48_1) 2015; 6 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 Kuritani T. (e_1_2_6_24_1) 2013 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 Pedregosa F. (e_1_2_6_38_1) 2011; 12 e_1_2_6_15_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Srivastava N. (e_1_2_6_44_1) 2014; 15 Breiman L. (e_1_2_6_7_1) 1999 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Kuwatani T. (e_1_2_6_26_1) 2014; 4 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 Chollet F. c. c. o. a. o. (e_1_2_6_11_1) 2015 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Goodfellow I. (e_1_2_6_14_1) 2016 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 164 start-page: 298 year: 2015 end-page: 317 article-title: Origin of low δ Mg Cenozoic basalts from South China Block and their geodynamic implications publication-title: Geochimica et Cosmochimica Acta – volume: 1 year: 2016 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine learning in Python publication-title: Journal of Machine Learning Research – volume: 102 start-page: 358 issue: 3‐4 year: 1991 end-page: 374 article-title: Geochemical and geodynamical constraints on subduction zone magmatism publication-title: Earth and Planetary Science Letters – volume: 255 start-page: 134 issue: 1‐2 year: 2008 end-page: 142 article-title: U–Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab publication-title: Chemical Geology – volume: 97 start-page: 4809 issue: B4 year: 1992 end-page: 4822 article-title: Subducting slabs stagnant in the mantle transition zone publication-title: Journal of Geophysical Research – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random Forests publication-title: Machine Learning – volume: 5 start-page: 49 issue: 2 year: 1954 end-page: 73 article-title: The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary) publication-title: Geochimica et Cosmochimica Acta – volume: 12 start-page: 75 issue: 1 year: 2019 end-page: 79 article-title: Continuous chatter of the Cascadia subduction zone revealed by machine learning publication-title: Nature Geoscience – volume: 173 start-page: 197 issue: 3‐4 year: 2009 end-page: 206 article-title: Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab publication-title: Physics of the Earth and Planetary Interiors – volume: 49 start-page: 1401 issue: 13 year: 2004 end-page: 1408 article-title: Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography publication-title: Chinese Science Bulletin – year: 2014 – volume: 4 start-page: 111 issue: 1 year: 2017 end-page: 120 article-title: Deep carbon cycles constrained by a large‐scale mantle Mg isotope anomaly in eastern China publication-title: National Science Review – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 40 start-page: 5652 year: 2013 end-page: 5657 article-title: Finite frequency whole mantle P wave tomography: Improvement of subducted slab images publication-title: Geophysical Research Letters – year: 1986 – start-page: 431 year: 2013 end-page: 439 – volume: 459 start-page: 208 year: 2017 end-page: 220 article-title: Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction publication-title: Earth and Planetary Science Letters – volume: 352 start-page: 1 year: 2013 end-page: 18 article-title: Late Cenozoic magmatic transitions in the central Great Xing'an Range, Northeast China: Geochemical and isotopic constraints on petrogenesis publication-title: Chemical Geology – volume: 4 start-page: 713 issue: 10 year: 2011 end-page: 716 article-title: Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation publication-title: Nature Geoscience – volume: 122 start-page: 988 year: 2017 end-page: 1006 article-title: Dynamic contribution of recycled components from the subducted Pacific slab: Oxygen isotopic composition of the basalts from 106 Ma to 60 Ma in North China Craton publication-title: Journal of Geophysical Research: Solid Earth – volume: 6 issue: 1 year: 2015 article-title: Continental flood basalts derived from the hydrous mantle transition zone publication-title: Nature Communications – year: 2015 – volume: 51 start-page: 375 issue: 4 year: 2002 end-page: 392 article-title: Biplots of compositional data publication-title: Journal of the Royal Statistical Society: Series C: Applied Statistics – volume: 339 start-page: 385 issue: 3‐4 year: 2001 end-page: 401 article-title: Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K‐Ar geochronology publication-title: Tectonophysics – volume: 328 start-page: 185 year: 2012 end-page: 194 article-title: Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle publication-title: Chemical Geology – volume: 23 start-page: 251 issue: 1 year: 1995 end-page: 285 article-title: Tectonic implications of the composition of volcanic arc magmas publication-title: Annual Review of Earth and Planetary Sciences – start-page: 156, 1 year: 2013 end-page: 156, 12 article-title: Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China publication-title: Lithos – volume: 444 start-page: 169 year: 2016 end-page: 178 article-title: Zinc isotope evidence for a large‐scale carbonated mantle beneath eastern China publication-title: Earth and Planetary Science Letters – volume: 7 start-page: 470 issue: 6 year: 2014 end-page: 475 article-title: Changbaishan volcanism in northeast China linked to subduction‐induced mantle upwelling publication-title: Nature Geoscience – volume: 26 start-page: 26 issue: 1 year: 1980 end-page: 37 article-title: Axiomatic derivation of theprinciple of maximum entropy and the principle of minimum cross‐entropy publication-title: IEEE Transactions on Information Theory – volume: 300‐301 start-page: 227 year: 2018 end-page: 249 article-title: Plume‐stagnant slab‐lithosphere interactions: Origin of the late Cenozoic intra‐plate basalts on the East Eurasia margin publication-title: Lithos – volume: 111 year: 2006 article-title: High‐resolution mantle tomography of China and surrounding regions publication-title: Journal of Geophysical Research – volume: 171 start-page: 81 issue: 10 year: 2016 article-title: Solving petrological problems through machine learning: The study case of tectonic discrimination using geochemical and isotopic data publication-title: Contributions to Mineralogy and Petrology – volume: 4 start-page: 1 year: 2014 end-page: 6 article-title: Machine‐learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits publication-title: Scientific Reports – year: 2012 – start-page: 1 year: 2014 end-page: 51 – volume: 74 start-page: 4150 issue: 14 year: 2010 end-page: 4166 article-title: Magnesium isotopic composition of the Earth and chondrites publication-title: Geochimica et Cosmochimica Acta – volume: 96 start-page: 108 issue: 1‐2 year: 2007 end-page: 126 article-title: Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China publication-title: Lithos – volume: 369‐370 start-page: 239 year: 2013 end-page: 247 article-title: Electrical conductivity of dense hydrous magnesium silicates with implication for conductivity in the stagnant slab publication-title: Earth and Planetary Science Letters – volume: 165 start-page: 305 issue: 2 year: 2013 end-page: 326 article-title: Constraints from melt inclusions and their host olivines on the petrogenesis of Oligocene‐Early Miocene Xindian basalts, Chifeng area, North China Craton publication-title: Contributions to Mineralogy and Petrology – volume: 20 start-page: 398 year: 2018 end-page: 416 article-title: Seismic evidence for a mantle transition zone origin of the Wudalianchi and Halaha volcanoes in Northeast China publication-title: Geochemistry, Geophysics, Geosystems – volume: 6 start-page: 125 issue: 1 year: 2017 end-page: 144 article-title: Water in the upper mantle and deep crust of eastern China: Concentration, distribution and implications publication-title: National Science Review – year: 2002 – volume: 650 start-page: 113 year: 2015 end-page: 123 article-title: Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: New constraints from water content publication-title: Tectonophysics – volume: 19 start-page: 1327 year: 2017 end-page: 1347 article-title: Geochemical discrimination and characteristics of magmatic tectonic settings: A machine learning‐based approach publication-title: Geochemistry, Geophysics, Geosystems – volume: 464 start-page: 166 year: 2017 end-page: 174 article-title: Age of the subducting Pacific slab beneath East Asia and its geodynamic implications publication-title: Earth and Planetary Science Letters – volume: 5 start-page: 8 issue: 4 year: 2017 end-page: 36 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geoscience and Remote Sensing Magazine – year: 1995 – volume: 262 start-page: 713 issue: Supplement C year: 2016 end-page: 728 article-title: Compositional variations of ignimbrite magmas in the Central Andes over the past 26 Ma—A multivariate statistical perspective publication-title: Lithos – volume: 79 start-page: 33 issue: 1‐2 year: 1986 end-page: 45 article-title: Nb and Pb in oceanic basalts: New constraints on mantle evolution publication-title: Earth and Planetary Science Letters – year: 1999 – ident: e_1_2_6_23_1 – ident: e_1_2_6_45_1 doi: 10.1038/ngeo2166 – ident: e_1_2_6_47_1 doi: 10.1029/2017GC007401 – ident: e_1_2_6_55_1 doi: 10.1016/j.chemgeo.2008.06.022 – ident: e_1_2_6_30_1 doi: 10.1016/S0040-1951(01)00132-9 – ident: e_1_2_6_53_1 doi: 10.1016/j.pepi.2008.11.009 – ident: e_1_2_6_39_1 doi: 10.1007/s00410-016-1292-2 – ident: e_1_2_6_25_1 doi: 10.1038/ngeo1250 – ident: e_1_2_6_52_1 doi: 10.1360/04wd0125 – ident: e_1_2_6_22_1 – ident: e_1_2_6_6_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_6_4_1 doi: 10.1111/1467-9876.00275 – ident: e_1_2_6_40_1 doi: 10.1038/s41561-018-0274-6 – ident: e_1_2_6_36_1 doi: 10.1002/2013GL057401 – ident: e_1_2_6_29_1 doi: 10.1093/nsr/nww070 – ident: e_1_2_6_21_1 doi: 10.1016/j.lithos.2017.12.003 – ident: e_1_2_6_3_1 doi: 10.1007/978-94-009-4109-0 – ident: e_1_2_6_9_1 doi: 10.1016/j.tecto.2014.07.022 – ident: e_1_2_6_37_1 doi: 10.1146/annurev.ea.23.050195.001343 – ident: e_1_2_6_41_1 doi: 10.1016/B978-0-08-095975-7.00301-6 – ident: e_1_2_6_5_1 doi: 10.1016/j.lithos.2016.07.011 – ident: e_1_2_6_19_1 doi: 10.1016/j.gca.2015.04.054 – ident: e_1_2_6_18_1 doi: 10.1007/s00410-012-0810-0 – ident: e_1_2_6_31_1 doi: 10.1002/2016JB013156 – ident: e_1_2_6_51_1 doi: 10.1016/j.chemgeo.2012.05.018 – volume: 4 start-page: 1 year: 2014 ident: e_1_2_6_26_1 article-title: Machine‐learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits publication-title: Scientific Reports doi: 10.1038/srep07077 – ident: e_1_2_6_28_1 doi: 10.1007/978-3-642-30223-7_87 – ident: e_1_2_6_20_1 doi: 10.1029/2005JB004066 – volume-title: Classification and regression trees year: 1999 ident: e_1_2_6_7_1 – ident: e_1_2_6_34_1 – ident: e_1_2_6_49_1 doi: 10.1029/2018GC007663 – ident: e_1_2_6_32_1 doi: 10.1016/j.epsl.2016.03.051 – ident: e_1_2_6_46_1 doi: 10.1016/j.gca.2010.04.019 – ident: e_1_2_6_8_1 doi: 10.1016/j.epsl.2016.11.030 – ident: e_1_2_6_17_1 doi: 10.1016/0012-821X(86)90038-5 – ident: e_1_2_6_50_1 doi: 10.1093/nsr/nwx016 – ident: e_1_2_6_27_1 doi: 10.1038/nature14539 – ident: e_1_2_6_54_1 doi: 10.1109/MGRS.2017.2762307 – ident: e_1_2_6_16_1 doi: 10.1016/j.chemgeo.2013.05.040 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: e_1_2_6_44_1 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 6 issue: 1 year: 2015 ident: e_1_2_6_48_1 article-title: Continental flood basalts derived from the hydrous mantle transition zone publication-title: Nature Communications – ident: e_1_2_6_35_1 doi: 10.1016/0012-821X(91)90029-H – ident: e_1_2_6_10_1 doi: 10.1016/j.lithos.2006.09.015 – start-page: 156, 1 year: 2013 ident: e_1_2_6_24_1 article-title: Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China publication-title: Lithos – ident: e_1_2_6_42_1 doi: 10.1109/TIT.1980.1056144 – ident: e_1_2_6_33_1 doi: 10.1016/j.epsl.2017.02.024 – ident: e_1_2_6_13_1 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_6_38_1 article-title: Scikit‐learn: Machine learning in Python publication-title: Journal of Machine Learning Research – ident: e_1_2_6_12_1 doi: 10.1029/91JB02749 – ident: e_1_2_6_15_1 doi: 10.1016/j.epsl.2013.03.026 – volume-title: Keras year: 2015 ident: e_1_2_6_11_1 – volume-title: Deep learning year: 2016 ident: e_1_2_6_14_1 – ident: e_1_2_6_2_1 doi: 10.1016/0016-7037(54)90040-X – ident: e_1_2_6_43_1 |
| SSID | ssj0003031 |
| Score | 2.470549 |
| Snippet | The origin and involvement of fluid in the generation of Cenozoic basalts in Northeast China are still under debate. Here we apply the machine learning methods... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5234 |
| SubjectTerms | Artificial intelligence Artificial neural networks Basalt Cenozoic Chemical composition Island arcs Isotopes Learning algorithms Machine learning Magma Magnesium Magnesium isotopes Neural networks Ocean models Organic chemistry Ratios Seismic tomography Subduction (geology) Tomography Volcanic eruptions Volcanoes |
| Title | Involvement of Slab‐Derived Fluid in the Generation of Cenozoic Basalts in Northeast China Inferred From Machine Learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL082322 https://www.proquest.com/docview/2239022568 |
| Volume | 46 |
| WOSCitedRecordID | wos000471237500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231214 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hoFIvQF_ikaI9tKfKwllv7J0jhSaNFKKKguBmrTdjFCnYKA6RWi78hP7G_pLOrE0Ih1aquFnW7K7leezMzuw3QnyIbKRytIrLyvNAAwUokHRcoDCOMoMWcpf5ZhPJcGguL-Fbc-DGd2FqfIjFgRtrhrfXrOA2qxqwAcbIpJ0LegNOFCk2wW3t9fKiP1wYYrLOdcM80IFRSdzUvdPwg-XBT3ekRzdz2Vn1u01387nfuSU2Gj9THtaC8UqsYPFavOj5Pr4_6MlXfrrqjbjrF2ShPGr4TJa5_E5i8fv-1zFJ5hxHsju5HY_kuJDkKMoao5pZyZRHWJQ_y7GTn21lJ7OKqXwaiNsBSd-YW_b5PuGU55mW1_LEV26ibEBdr96Ks-6Xs6OvQdORIbARdMgy5gAuyaMYKZrNSZUTCxqVQaS4JNbtLEwgy2OwypHxCqPEIRDLVehMmAFG78RqURa4LWQbcMRJTRuOrFYIRmsgd8O6JAQKsfSO-PTAlNQ1aOXcNGOS-qy5gnT5v-6Ijwvqmxql4y90rQf-po2uVik5SLQ0uX6GFvWc_Occae90wK1Wze5_Ue-Jl_yeCw-UaYnV2fQW34t1N5-Nq-m-WDs-7Z4P9r0A_wE58uwI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQBZULpT8IKFAf2hOKGhyTeI6UssuqywrBSuUWOd4JWmlJ0GZBor30EXjGPklnnLAsB5AqbjlM7Cjz47Fn_H1CfI5spHK0itvK80ADbVAg2XOBwjjKDFrIXebJJpJez5yfw0nDc8p3YWp8iOmBG3uGj9fs4Hwg3aANMEgmLV3Q7nKlSFEMfqVjbdgzf3Z601BM8bmmzAMdGJXETec7vf919u3Ha9JDojmbrvr1pvXmxV-6IpabVFPu17bxVsxh8U4stj2V7y09-eZPV70XvzsFBSkPHD6RZS7PyDL-_rn7TsZ5gwPZGl0PB3JYSMoVZQ1TzdpkyQMsyl_l0MlvtrKjScVSvhLEjEDSc3PLDl8pHPM44_JSHvvmTZQNruvFB9FvHfYPjoKGlCGwEexRcMwBXJJHMdKGNidvTixoVAaRtiax3s3CBLI8Bqscxa8wShwCaV2FzoQZYLQq5ouywDUhdwEHXNe04cBqhWC0Bso4rEtCoF2WXhc791pJXQNYzrwZo9QXzhWks_91XXyZSl_VQB1PyG3eKzht3LVKKUeiqSn7MzSpV-WzY6Tt0y6zrZqN_5L-JF4f9Y-7abfT-_FRLLEM9yEosynmJ-Nr3BIL7mYyrMbb3or_Abq27o8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQ0IpL6a9KC60P7amKGhxv4jkWliyrbleIUolb5DjjaqVtgjYLEnDpI_QZeRLGjtluD61Uccth4kSZH89kxt_H2LtEJ8KiFm6s3EYSqECBrGcigWlSKtRgTenJJrLxWJ2ewlHgOXVnYTp8iMUPN-cZPl47B8ezyga0AQeSSVsXDEauUyQoBq_JHkgy9LX-cf5ttAjGFKE70jyQkRJZGmbfaYWPy_f_uSv9TjWXE1a_4-Sb937Xx-xRSDb5p846nrAVrJ-yBwNP5ntJV37807TP2PWwpjDlocPnvLH8K9nGzc9ffTLPC6x4Pj2fVHxSc8oWeQdU7fTpJPexbq6aieF7utXTeeukfC_IcQJxz87Nh-5Q4cytM2t-8C9-fBN5QHb9_pyd5Acn-4dRoGWIdAI9Co8WwGQ2SZFKWkv-nGmQKBQiFSep3C3jDEqbghaGIlicZAaB9C5io-ISMHnBVuumxpeM7wJWrrOp40pLgaCkBMo5tMlioDpLbrEPd1opTIAsd8wZ08K3zgUUy991i71fSJ91UB1_kdu-U3ARHLYtKEuiR1P-p-ihXpX_XKMYHI8c36p69V_Sb9nDo35ejIbjz6_ZhhNxgwhCbbPV-ewcd9i6uZhP2tmbYMa3G2vvLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Involvement+of+Slab%E2%80%90Derived+Fluid+in+the+Generation+of+Cenozoic+Basalts+in+Northeast+China+Inferred+From+Machine+Learning&rft.jtitle=Geophysical+research+letters&rft.au=Zhao%2C+Yong&rft.au=Zhang%2C+Yigang&rft.au=Geng%2C+Ming&rft.au=Jiang%2C+Jilian&rft.date=2019-05-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=46&rft.issue=10&rft.spage=5234&rft.epage=5242&rft_id=info:doi/10.1029%2F2019GL082322&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |