Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales

Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that may be used for further processing. Spatial relationships are not necessarily correlated with spectral data for a given class, and including...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing Vol. 38; no. 5; pp. 1312 - 1338
Main Author: Hall-Beyer, Mryka
Format: Journal Article
Language:English
Published: London Taylor & Francis 04.03.2017
Taylor & Francis Ltd
Subjects:
ISSN:0143-1161, 1366-5901, 1366-5901
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that may be used for further processing. Spatial relationships are not necessarily correlated with spectral data for a given class, and including a measure of them improves classification accuracy. This research develops a guideline for choosing among the Haralick (Grey Level Co-occurrence Matrix [GLCM]) set of texture measures. These guidelines are derived using a variety of land covers and spatial scales (window sizes). Principal component analysis (PCA) of eight GLCM measures was performed for three Landsat TM and ETM+ images: a mid-latitude agricultural and natural vegetation scene, a glacier-rock-sea ice scene, and a desert scene with dunes and structurally complex rocks. PCA was performed separately for neighbourhoods consisting of squares with 25, 13, and 5 pixels on a side to demonstrate robustness to different spatial scales. PCA loadings show that contrast (Con), dissimilarity, entropy (Ent), and GLCM variance are most commonly associated with visual edges of land-cover patches; homogeneity, GLCM mean, GLCM correlation (GLCM Cor), and angular second moment are associated with patch interiors. Edge-highlighting textures account for most dataset variance but fail to differentiate among classes. Eigenchannels highlighting patch interior characteristics rely on GLCM mean and to some extent GLCM Cor. These two textures do contribute to distinguishing individual class signatures for classification purposes. Ent does not appear consistently in edge or interior groupings. Ent is interpreted as important to the textures of particular classes, but which classes is not generalized from one scene to another. Con is effective for outlining patch edges and may serve for object formation in geographic object-based image analysis (GEOBIA). For classification purposes, the proposed guideline is a choose Mean and, where a class patch is likely to contain edge-like features within it, Con. Cor is an alternative for Mean in these situations, Dis may similarly be used in place of Con. For more detailed texture study, add Ent. This guideline does not constitute a complete texture analysis but may allow confident use of GLCM texture to enhance the efficiency of Landsat-based classification.
AbstractList Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that may be used for further processing. Spatial relationships are not necessarily correlated with spectral data for a given class, and including a measure of them improves classification accuracy. This research develops a guideline for choosing among the Haralick (Grey Level Co-occurrence Matrix [GLCM]) set of texture measures. These guidelines are derived using a variety of land covers and spatial scales (window sizes).Principal component analysis (PCA) of eight GLCM measures was performed for three Landsat TM and ETM+ images: a mid-latitude agricultural and natural vegetation scene, a glacier-rock-sea ice scene, and a desert scene with dunes and structurally complex rocks. PCA was performed separately for neighbourhoods consisting of squares with 25, 13, and 5 pixels on a side to demonstrate robustness to different spatial scales. PCA loadings show that contrast (Con), dissimilarity, entropy (Ent), and GLCM variance are most commonly associated with visual edges of land-cover patches; homogeneity, GLCM mean, GLCM correlation (GLCM Cor), and angular second moment are associated with patch interiors. Edge-highlighting textures account for most dataset variance but fail to differentiate among classes. Eigenchannels highlighting patch interior characteristics rely on GLCM mean and to some extent GLCM Cor. These two textures do contribute to distinguishing individual class signatures for classification purposes. Ent does not appear consistently in edge or interior groupings. Ent is interpreted as important to the textures of particular classes, but which classes is not generalized from one scene to another. Con is effective for outlining patch edges and may serve for object formation in geographic object-based image analysis (GEOBIA).For classification purposes, the proposed guideline is a choose Mean and, where a class patch is likely to contain edge-like features within it, Con. Cor is an alternative for Mean in these situations, Dis may similarly be used in place of Con. For more detailed texture study, add Ent. This guideline does not constitute a complete texture analysis but may allow confident use of GLCM texture to enhance the efficiency of Landsat-based classification.
Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that may be used for further processing. Spatial relationships are not necessarily correlated with spectral data for a given class, and including a measure of them improves classification accuracy. This research develops a guideline for choosing among the Haralick (Grey Level Co-occurrence Matrix [GLCM]) set of texture measures. These guidelines are derived using a variety of land covers and spatial scales (window sizes). Principal component analysis (PCA) of eight GLCM measures was performed for three Landsat TM and ETM+ images: a mid-latitude agricultural and natural vegetation scene, a glacier-rock-sea ice scene, and a desert scene with dunes and structurally complex rocks. PCA was performed separately for neighbourhoods consisting of squares with 25, 13, and 5 pixels on a side to demonstrate robustness to different spatial scales. PCA loadings show that contrast (Con), dissimilarity, entropy (Ent), and GLCM variance are most commonly associated with visual edges of land-cover patches; homogeneity, GLCM mean, GLCM correlation (GLCM Cor), and angular second moment are associated with patch interiors. Edge-highlighting textures account for most dataset variance but fail to differentiate among classes. Eigenchannels highlighting patch interior characteristics rely on GLCM mean and to some extent GLCM Cor. These two textures do contribute to distinguishing individual class signatures for classification purposes. Ent does not appear consistently in edge or interior groupings. Ent is interpreted as important to the textures of particular classes, but which classes is not generalized from one scene to another. Con is effective for outlining patch edges and may serve for object formation in geographic object-based image analysis (GEOBIA). For classification purposes, the proposed guideline is a choose Mean and, where a class patch is likely to contain edge-like features within it, Con. Cor is an alternative for Mean in these situations, Dis may similarly be used in place of Con. For more detailed texture study, add Ent. This guideline does not constitute a complete texture analysis but may allow confident use of GLCM texture to enhance the efficiency of Landsat-based classification.
Author Hall-Beyer, Mryka
Author_xml – sequence: 1
  givenname: Mryka
  surname: Hall-Beyer
  fullname: Hall-Beyer, Mryka
  email: mhallbey@ucalgary.ca
  organization: Department of Geography, University of Calgary
BookMark eNqFkT9vFDEQxS0UJC6Bj4BkiYZmD896_1k0oBMkSIeggNoaeceHg88-bG8gHR89Pi40KaByMb_3xvPeOTsLMRBjz0GsQUzilYBOAgywbgUMa2jHSUL3iK1ADkPTKwFnbHVkmiP0hJ3nfC2EGMZ-XLHfnxOa4gx6vlvcTN4FytzGxM23GLMLO3653XzkhX6VJdVRiXzJxF3gHsOcDR6IG485O1tdiouBF8zfM483lDjyhGFHPFq-jzMlLMTzoWJ1X9V6yk_ZY4s-07P794J9ff_uy-aq2X66_LB5u21Qqq40VpnRTkAozUQCpn6AEQzO46zMhKobZ1Q9AVmjjBVI7ay6vhvtIDurJmPlBXt58j2k-GOhXPTeZUO-XkFxybqtkbQwtGqq6IsH6HVcUqi_06BaKSQIkJV6faJMijknstq48ieAktB5DUIf29F_29HHdvR9O1XdP1Afkttjuv2v7s1J50ItaY8_Y_KzLnjrY7I1a-Oylv-2uAMFm6m8
CitedBy_id crossref_primary_10_1016_j_rse_2021_112411
crossref_primary_10_3390_rs14020244
crossref_primary_10_1016_j_ecoser_2021_101391
crossref_primary_10_3390_rs14030727
crossref_primary_10_3390_s25144314
crossref_primary_10_1016_j_jag_2021_102435
crossref_primary_10_1016_j_ecolind_2023_110190
crossref_primary_10_1002_rse2_260
crossref_primary_10_3389_fpls_2025_1640779
crossref_primary_10_1002_rse2_140
crossref_primary_10_1080_07038992_2021_1908118
crossref_primary_10_3390_rs16030598
crossref_primary_10_1016_j_jag_2017_11_006
crossref_primary_10_1016_j_culher_2020_01_002
crossref_primary_10_1016_j_jag_2022_102828
crossref_primary_10_1007_s10708_018_9908_x
crossref_primary_10_1016_j_isprsjprs_2021_03_012
crossref_primary_10_1007_s40747_021_00545_0
crossref_primary_10_1007_s10596_024_10285_y
crossref_primary_10_3390_rs13040681
crossref_primary_10_3390_agronomy13061541
crossref_primary_10_1007_s00500_022_06794_6
crossref_primary_10_1080_10106049_2025_2461523
crossref_primary_10_1016_j_rsase_2022_100843
crossref_primary_10_1016_j_resenv_2025_100272
crossref_primary_10_1007_s11355_025_00648_7
crossref_primary_10_1007_s10518_023_01716_9
crossref_primary_10_1016_j_jnc_2025_126941
crossref_primary_10_1038_s41598_020_78865_3
crossref_primary_10_1016_j_isprsjprs_2019_01_008
crossref_primary_10_3390_rs15143512
crossref_primary_10_3390_rs15071818
crossref_primary_10_1007_s10980_024_01914_z
crossref_primary_10_3390_f10030226
crossref_primary_10_1109_JSTARS_2025_3564008
crossref_primary_10_1016_j_rse_2024_114204
crossref_primary_10_1080_15481603_2024_2302221
crossref_primary_10_1007_s00477_020_01880_3
crossref_primary_10_3390_rs17061083
crossref_primary_10_5194_tc_15_1551_2021
crossref_primary_10_1038_s41467_022_32533_4
crossref_primary_10_1016_j_compag_2022_107504
crossref_primary_10_1117_1_JEI_31_6_062009
crossref_primary_10_14359_51732640
crossref_primary_10_3390_rs15020312
crossref_primary_10_1029_2020WR029472
crossref_primary_10_1155_2021_6679914
crossref_primary_10_1007_s11119_024_10176_3
crossref_primary_10_1080_01431161_2019_1594440
crossref_primary_10_1016_j_rse_2019_05_026
crossref_primary_10_1080_01431161_2020_1820617
crossref_primary_10_1016_j_rsase_2021_100560
crossref_primary_10_3390_app10155060
crossref_primary_10_1016_j_rse_2021_112751
crossref_primary_10_1007_s10661_022_10266_7
crossref_primary_10_1016_j_enggeo_2025_108355
crossref_primary_10_4103_jmu_jmu_173_21
crossref_primary_10_3390_rs17091606
crossref_primary_10_3390_f15050847
crossref_primary_10_1007_s10661_024_12992_6
crossref_primary_10_1007_s43762_023_00109_7
crossref_primary_10_3390_land14020244
crossref_primary_10_1080_01431161_2020_1734254
crossref_primary_10_1007_s11707_019_0751_2
crossref_primary_10_3390_f11070763
crossref_primary_10_3390_rs14061345
crossref_primary_10_3390_agronomy10060845
crossref_primary_10_1177_15533506231220968
crossref_primary_10_1080_01431161_2019_1594431
crossref_primary_10_1029_2024JH000550
crossref_primary_10_1515_geo_2022_0465
crossref_primary_10_1109_TGRS_2025_3568031
crossref_primary_10_1016_j_foodcont_2024_110850
crossref_primary_10_1109_ACCESS_2024_3485512
crossref_primary_10_1007_s12524_023_01783_0
crossref_primary_10_1016_j_jag_2025_104413
crossref_primary_10_3390_ijgi8040179
crossref_primary_10_1007_s10044_024_01375_9
crossref_primary_10_1016_j_bspc_2021_102695
crossref_primary_10_3390_app10144995
crossref_primary_10_3390_rs13142678
crossref_primary_10_3390_agronomy14061313
crossref_primary_10_1016_j_apgeog_2023_102968
crossref_primary_10_1186_s13021_023_00221_5
crossref_primary_10_1016_j_rse_2023_113661
crossref_primary_10_3390_electronics13122299
crossref_primary_10_3390_rs13193909
crossref_primary_10_1089_jop_2022_0154
crossref_primary_10_3390_ijgi9090499
crossref_primary_10_1109_TGRS_2025_3572909
crossref_primary_10_1007_s00330_022_08897_y
crossref_primary_10_1016_j_rsase_2024_101339
crossref_primary_10_3390_su152416593
crossref_primary_10_1016_j_asr_2022_04_032
crossref_primary_10_1016_j_earscirev_2022_103944
crossref_primary_10_3389_fpls_2022_1035379
crossref_primary_10_3390_agriculture13061113
crossref_primary_10_3390_rs14194987
crossref_primary_10_1016_j_measurement_2021_110601
crossref_primary_10_1080_01431161_2018_1530813
crossref_primary_10_3390_rs12193120
crossref_primary_10_3390_app142210504
crossref_primary_10_1007_s12517_019_4600_0
crossref_primary_10_1016_j_procs_2024_04_201
crossref_primary_10_1016_j_isprsjprs_2025_07_001
crossref_primary_10_1002_jcsm_12957
crossref_primary_10_1088_1755_1315_733_1_012082
crossref_primary_10_1177_0309133319840770
crossref_primary_10_1007_s10661_023_11115_x
crossref_primary_10_3390_rs16122150
crossref_primary_10_1016_j_ecolind_2022_108930
crossref_primary_10_1007_s10661_021_09321_6
crossref_primary_10_3390_rs13112036
crossref_primary_10_3390_rs13040743
crossref_primary_10_1007_s13131_024_2394_8
crossref_primary_10_3390_insects16080793
crossref_primary_10_3390_rs14246239
crossref_primary_10_3390_s20061724
crossref_primary_10_1007_s00259_022_05816_7
crossref_primary_10_1007_s11042_022_12186_7
crossref_primary_10_1016_j_compag_2022_107122
crossref_primary_10_1016_j_compag_2022_107360
crossref_primary_10_1038_s41598_024_81976_w
crossref_primary_10_3390_rs14133190
crossref_primary_10_1007_s11042_023_17950_x
crossref_primary_10_1002_qj_3823
crossref_primary_10_3390_f15112025
crossref_primary_10_1016_j_jag_2021_102397
crossref_primary_10_1016_j_ecoinf_2024_102813
crossref_primary_10_3390_rs12122012
crossref_primary_10_1016_j_apgeog_2019_05_004
crossref_primary_10_1016_j_compag_2024_108685
crossref_primary_10_3389_fvets_2023_1206916
crossref_primary_10_3390_rs14092127
crossref_primary_10_3390_rs14205130
crossref_primary_10_1109_ACCESS_2019_2915553
crossref_primary_10_1109_JSTARS_2021_3107543
crossref_primary_10_3390_land14020421
crossref_primary_10_1016_j_jag_2021_102388
crossref_primary_10_1038_s41467_019_11007_0
crossref_primary_10_3390_cli8100102
crossref_primary_10_1002_nbm_5019
crossref_primary_10_1038_s41598_025_01333_3
crossref_primary_10_1016_j_compag_2017_08_024
crossref_primary_10_1080_01431161_2018_1539275
crossref_primary_10_3389_fpls_2023_1214931
crossref_primary_10_3390_rs14030563
crossref_primary_10_1029_2023EA002845
crossref_primary_10_3390_rs11121409
crossref_primary_10_3390_plants13141926
crossref_primary_10_5194_amt_16_4571_2023
crossref_primary_10_1016_j_conbuildmat_2023_132731
crossref_primary_10_1016_j_renene_2025_124381
crossref_primary_10_1080_10106049_2022_2109760
crossref_primary_10_1109_ACCESS_2025_3550303
crossref_primary_10_1007_s12517_022_11035_z
crossref_primary_10_1080_15481603_2023_2177448
crossref_primary_10_3390_rs14143354
crossref_primary_10_3390_f14020287
crossref_primary_10_1155_2020_4216160
crossref_primary_10_1016_j_procs_2025_03_216
crossref_primary_10_1088_1742_6596_2410_1_012012
crossref_primary_10_1016_j_jag_2023_103492
crossref_primary_10_3390_f14061193
crossref_primary_10_14746_quageo_2023_0032
crossref_primary_10_1115_1_4065276
crossref_primary_10_1109_TGRS_2022_3215895
crossref_primary_10_1080_10106049_2023_2236579
crossref_primary_10_3390_rs15204935
crossref_primary_10_1016_j_aei_2025_103609
crossref_primary_10_3389_ffgc_2024_1420533
crossref_primary_10_3390_urbansci8040183
crossref_primary_10_1080_01431161_2021_2020364
crossref_primary_10_3390_rs15194714
crossref_primary_10_3390_w15071285
crossref_primary_10_3390_rs14112628
crossref_primary_10_1016_j_rsase_2022_100812
crossref_primary_10_1111_cpf_12636
crossref_primary_10_3390_rs16234406
crossref_primary_10_3390_rs12060958
crossref_primary_10_3390_rs13153040
crossref_primary_10_1080_10106049_2019_1566406
crossref_primary_10_3390_f15101799
crossref_primary_10_1002_fes3_434
crossref_primary_10_3390_rs12010056
crossref_primary_10_1016_j_isprsjprs_2024_10_016
crossref_primary_10_3390_land12010099
crossref_primary_10_3390_rs13091789
crossref_primary_10_1016_j_polar_2021_100719
crossref_primary_10_1080_22797254_2023_2214690
crossref_primary_10_1007_s11119_024_10186_1
crossref_primary_10_1007_s42853_025_00263_2
crossref_primary_10_1109_TPWRD_2021_3059307
crossref_primary_10_1016_j_rsase_2025_101598
crossref_primary_10_1080_01431161_2024_2377836
crossref_primary_10_1038_s41598_022_25788_w
crossref_primary_10_3390_rs12223776
crossref_primary_10_1371_journal_pone_0294118
crossref_primary_10_14358_PERS_22_00123R2
crossref_primary_10_1007_s10661_024_12993_5
crossref_primary_10_3390_rs16234414
crossref_primary_10_1016_j_ultrasmedbio_2020_12_012
crossref_primary_10_1029_2023EA002877
crossref_primary_10_3390_rs15102606
crossref_primary_10_3389_fevo_2023_1137111
crossref_primary_10_3390_rs11131619
crossref_primary_10_1080_17538947_2023_2297013
crossref_primary_10_1080_15481603_2024_2385170
crossref_primary_10_3390_rs12182883
crossref_primary_10_1016_j_ecoinf_2020_101065
crossref_primary_10_5194_essd_16_4189_2024
crossref_primary_10_5194_tc_17_1279_2023
crossref_primary_10_1080_10106049_2022_2134466
crossref_primary_10_3390_plants12162893
crossref_primary_10_3390_rs12233926
crossref_primary_10_1016_j_apgeog_2022_102713
crossref_primary_10_3390_rs11111351
crossref_primary_10_1002_cite_202300170
crossref_primary_10_1016_j_scitotenv_2022_158608
crossref_primary_10_1080_00016489_2025_2450221
crossref_primary_10_1016_j_rse_2023_113601
crossref_primary_10_1002_lom3_10537
crossref_primary_10_1016_j_isprsjprs_2023_05_005
crossref_primary_10_1007_s10708_019_10058_6
crossref_primary_10_1007_s11629_017_4551_4
crossref_primary_10_3390_f15122110
crossref_primary_10_1080_07038992_2024_2403495
crossref_primary_10_3390_rs16193709
crossref_primary_10_3390_agronomy15081991
crossref_primary_10_3389_fpls_2023_1284235
crossref_primary_10_1007_s41748_025_00798_6
crossref_primary_10_1007_s10980_021_01194_x
crossref_primary_10_3389_fpls_2022_979103
crossref_primary_10_1111_tgis_12790
crossref_primary_10_1007_s12008_023_01270_3
crossref_primary_10_1016_j_agrformet_2018_06_004
crossref_primary_10_1016_j_rama_2024_06_016
crossref_primary_10_3390_rs15102501
crossref_primary_10_3390_rs16091539
crossref_primary_10_3390_land13122184
crossref_primary_10_20965_jaciii_2019_p0175
crossref_primary_10_1016_j_ecoinf_2025_103279
crossref_primary_10_3390_rs15082177
crossref_primary_10_1007_s00107_023_01946_3
crossref_primary_10_3390_drones5030086
crossref_primary_10_3390_plants13010135
crossref_primary_10_3390_rs14071618
crossref_primary_10_1155_2021_8810279
crossref_primary_10_3390_tomography11080087
crossref_primary_10_1016_j_asr_2021_11_018
crossref_primary_10_3390_rs16213943
crossref_primary_10_3390_plants14152297
crossref_primary_10_3390_rs10091498
Cites_doi 10.1109/TGRS.2004.825591
10.2307/1478925
10.1016/j.jag.2012.08.002
10.1109/34.946988
10.1016/j.foreco.2012.12.044
10.1080/0143116042000192367
10.1016/j.jag.2010.01.006
10.1080/014311600210993
10.1080/014311600750019985
10.1016/S0034-4257(03)00094-4
10.1080/01431161.2016.1214301
10.14358/PERS.75.7.819
10.5589/m11-010
10.1080/01431169308953962
10.1109/TGRS.2003.817274
10.1080/01431160210155992
10.1080/01431160512331326765
10.1109/TSMC.1973.4309314
10.3846/16486897.2012.688371
10.1016/j.jag.2012.05.004
10.1080/01431161.2016.1204032
10.1109/TGRS.1990.572937
10.14358/PERS.71.3.289
10.14358/PERS.70.7.803
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
2017 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
– notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2016.1278314
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 1338
ExternalDocumentID 10_1080_01431161_2016_1278314
1278314
Genre Note
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-a394t-f9c7f81ea3c8e01856171cad7d9c8a947da95e1efc9cf0ae2d94547f634f98cf3
IEDL.DBID TFW
ISICitedReferencesCount 292
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394647800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:24:27 EDT 2025
Wed Aug 13 06:27:25 EDT 2025
Sat Nov 29 06:13:34 EST 2025
Tue Nov 18 20:07:18 EST 2025
Mon Oct 20 23:48:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-f9c7f81ea3c8e01856171cad7d9c8a947da95e1efc9cf0ae2d94547f634f98cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1923031013
PQPubID 2045515
PageCount 27
ParticipantIDs proquest_miscellaneous_2000216298
informaworld_taylorfrancis_310_1080_01431161_2016_1278314
crossref_citationtrail_10_1080_01431161_2016_1278314
proquest_journals_1923031013
crossref_primary_10_1080_01431161_2016_1278314
PublicationCentury 2000
PublicationDate 2017-03-04
PublicationDateYYYYMMDD 2017-03-04
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
Eastman J. R. (CIT0007) 1993; 69
CIT0034
CIT0011
Jensen J. R. (CIT0017) 2007
Joliffe I. T. (CIT0018) 2002
CIT0036
CIT0013
CIT0016
CIT0038
Ferro C. J. S. (CIT0010) 2002; 68
CIT0019
Ozdemir I. (CIT0029) 2011; 13
CIT0020
CIT0001
Lillesand T. M. (CIT0021) 2007
Gonzalez R. C. (CIT0012) 1992
CIT0022
Rabia A. H. (CIT0033) 2013; 15
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0002
  doi: 10.1109/TGRS.2004.825591
– ident: CIT0034
  doi: 10.2307/1478925
– ident: CIT0020
  doi: 10.1016/j.jag.2012.08.002
– ident: CIT0036
  doi: 10.1109/34.946988
– ident: CIT0028
  doi: 10.1016/j.foreco.2012.12.044
– ident: CIT0003
  doi: 10.1080/0143116042000192367
– volume-title: Remote Sensing of the Environment: An Earth Resource Perspective
  year: 2007
  ident: CIT0017
– ident: CIT0024
  doi: 10.1016/j.jag.2010.01.006
– ident: CIT0011
  doi: 10.1080/014311600210993
– ident: CIT0005
  doi: 10.1080/014311600750019985
– ident: CIT0004
  doi: 10.1016/S0034-4257(03)00094-4
– ident: CIT0001
  doi: 10.1080/01431161.2016.1214301
– ident: CIT0019
  doi: 10.14358/PERS.75.7.819
– ident: CIT0027
  doi: 10.5589/m11-010
– ident: CIT0008
  doi: 10.1080/01431169308953962
– volume: 69
  start-page: 991
  year: 1993
  ident: CIT0007
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: CIT0013
  doi: 10.1109/TGRS.2003.817274
– ident: CIT0025
  doi: 10.1080/01431160210155992
– ident: CIT0009
  doi: 10.1080/01431160512331326765
– volume: 68
  start-page: 51
  year: 2002
  ident: CIT0010
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume-title: Principal Component Analysis
  year: 2002
  ident: CIT0018
– volume: 13
  start-page: 701
  year: 2011
  ident: CIT0029
  publication-title: International Journal of Remote Sensing
– volume-title: Remote Sensing and Image Interpretation
  year: 2007
  ident: CIT0021
– volume: 15
  start-page: 219
  year: 2013
  ident: CIT0033
  publication-title: Geophysical Research Abstracts
– ident: CIT0016
  doi: 10.1109/TSMC.1973.4309314
– ident: CIT0030
  doi: 10.3846/16486897.2012.688371
– ident: CIT0006
  doi: 10.1016/j.jag.2012.05.004
– volume-title: Digital Image Processing
  year: 1992
  ident: CIT0012
– ident: CIT0038
  doi: 10.1080/01431161.2016.1204032
– ident: CIT0022
  doi: 10.1109/TGRS.1990.572937
– ident: CIT0032
  doi: 10.14358/PERS.71.3.289
– ident: CIT0026
  doi: 10.14358/PERS.70.7.803
SSID ssj0006757
Score 2.624396
Snippet Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1312
SubjectTerms Agricultural land
Balances (scales)
Classification
Correlation
data collection
Dunes
Entropy
Glaciers
Guidelines
ice
Image analysis
Land cover
Landsat
Landsat satellites
landscapes
latitude
Natural vegetation
Pixels
principal component analysis
Principal components analysis
Remote sensing
Robustness
Rock glaciers
Rocks
Satellite imagery
Sea ice
spectral analysis
Texture
Variance
Variance analysis
Vegetation
Title Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1278314
https://www.proquest.com/docview/1923031013
https://www.proquest.com/docview/2000216298
Volume 38
WOSCitedRecordID wos000394647800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqVKlc-gWILdtqKnENrNfexD5WqAsHQD1QwS1y7DFFRVm0TpC48dPxJM6qCCEO9JxMbHn88ew8v8fYrlYcUWifcY4qk6gxM_kEs5moKu2URKxMZzZRnJ6qiwv9K7EJQ6JV0h7a90IR3VxNg9tUYWDE7ZMkHY9IhYhZ-R4nr4jOyjoie-rjZ_Pz1Vwc4XB_YZqEOGPIcIfnua88Wp0eaZc-mau7BWj-4T9U_SN7n9An_Oi7yyf2BuvP7F0yQv9zt8Hue_2imDi4bEkBi1jxEOsHpNZJ5wpweHxwAsQXaeNOHZoFtAHhqobu0jDRqcASIicKUpd1aEz4G4CoomBgSZcZYOGBLHhIpgICcbpjeTH2GsMm-z3_eXZwlCWThswILZvMa1v4mHAjrMJJXP0jJOLWuMJpq4yWhTN6hhy91dZPDE6dJg0xnwvptbJebLG1elHjNgOZK-fdzMXXc1nFfaAuzIxXUliTS2fsiMkhOaVNCuZkpHFd8kHoNDVvSc1bpuYdsb1V2E0v4fFSgP4382XTnZ343uikFC_EjoduUqbZIJSEokmClYsR-756HMcx_ZwxNS7aQHagEW7lU62-vKL4HbY-JdxBJDk5ZmvNssWv7K29ba7C8ls3Nh4A73oLfA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqWoleKC1UXUrbqcQ1dL12EvuIEAtVlz1tVW6WY48pKsqiTYLEjZ9eTz5WoKri0J6TSSKPP56dN-8xdqAVRxQ6JJyjSiRqTGw2xiQVRaG9koiFbc0m8vlcXVzoh7UwRKukPXTohCLauZoGNx1GD5S4L6RJxyNUIWZWdsjJLIK8rJ-nca0lWt9i-mM9G0dA3JVMkxRnjBmqeP72mEfr0yP10j9m63YJmr76Hx-_zbZ6AApHXY95zZ5h-YZt9l7oP-922H0nYRRzB5cNiWARMR7iBwIJdtLRApzOjs-BKCNN3KxDvYSmQrgqoa0bJkYVOALlxEJqEw-1rX5VQGxRsLCiegZYBiAXHlKqgIpo3fF9MfYaq132fXqyOD5Lep-GxAot6yRol4eYcyucwnEEABEVcWd97rVTVsvcW50ix-C0C2OLE69JRixkQgatXBBv2Ua5LPEdA5kpH3zq4-2ZLOJWUOc25YUUzmbSWzdicsiOcb2IOXlpXBs-aJ32zWuoeU3fvCN2uA676VQ8ngrQD1Nv6vb4JHReJ0Y8Ebs_9BPTTwiVISBNKqxcjNjn9eU4lOn_jC1x2VTkCBoRVzbRau8fXv-JbZ4tzmdm9nX-7T17OSEYQpw5uc826lWDH9gLd1tfVauP7UD5Db3DD50
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQi4AL34ilBQaJa8p67U3sY1VYQJRVD0X0Zjn2uFRU2WqdIHHjp9eTOCsqhHqAczKx5bHHY-fNe4y91oojCh0KzlEVEjUWtpxiMRd1rb2SiLXtxSaq5VKdnOijjCaMGVZJZ-gwEEX0sZoW94UPIyLuDVHS8ZSpEDCr3OOkFUFS1ts9OVaa0seLr5tgnPLhoWKamDiTzVjE87fPXNmerpCX_hGs-x1oce8_9P0-u5vTT9gf5ssDdgObh-x2VkL_9vMR-zUQGCXPwWlHFFgEi4fUPyC6TrpYgPeHB5-BACNdOqpDu4IuIpw10FcNE54KHKXkhEHq3Q6tjd8jEFYULKypmgFWAUiDh3gqIBKoO7WXbM8xPmZfFu-ODz4UWaWhsELLtgjaVSF53AqncJq2_5QTcWd95bVTVsvKWz1HjsFpF6YWZ14TiVgohQxauSCesK1m1eBTBrJUPvi5T6-Xsk4HQV3ZOa-lcLaU3roJk6NzjMsU5qSkcW74yHSah9fQ8Jo8vBO2tzG7GDg8rjPQv3vetP3lSRiUToy4xnZ3nCYmh4NoKI0mDlYuJuzV5nFayPR3xja46iLpgaZ8q5xp9ewfmn_Jbh29XZjDj8tPO-zOjHIQAszJXbbVrjt8zm66H-1ZXL_ol8klTS0OQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+guidelines+for+choosing+GLCM+textures+to+use+in+landscape+classification+tasks+over+a+range+of+moderate+spatial+scales&rft.jtitle=International+journal+of+remote+sensing&rft.au=Hall-Beyer%2C+Mryka&rft.date=2017-03-04&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=38&rft.issue=5&rft.spage=1312&rft.epage=1338&rft_id=info:doi/10.1080%2F01431161.2016.1278314&rft.externalDocID=1278314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon