Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales
Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that may be used for further processing. Spatial relationships are not necessarily correlated with spectral data for a given class, and including...
Saved in:
| Published in: | International journal of remote sensing Vol. 38; no. 5; pp. 1312 - 1338 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Taylor & Francis
04.03.2017
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0143-1161, 1366-5901, 1366-5901 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that may be used for further processing. Spatial relationships are not necessarily correlated with spectral data for a given class, and including a measure of them improves classification accuracy. This research develops a guideline for choosing among the Haralick (Grey Level Co-occurrence Matrix [GLCM]) set of texture measures. These guidelines are derived using a variety of land covers and spatial scales (window sizes).
Principal component analysis (PCA) of eight GLCM measures was performed for three Landsat TM and ETM+ images: a mid-latitude agricultural and natural vegetation scene, a glacier-rock-sea ice scene, and a desert scene with dunes and structurally complex rocks. PCA was performed separately for neighbourhoods consisting of squares with 25, 13, and 5 pixels on a side to demonstrate robustness to different spatial scales. PCA loadings show that contrast (Con), dissimilarity, entropy (Ent), and GLCM variance are most commonly associated with visual edges of land-cover patches; homogeneity, GLCM mean, GLCM correlation (GLCM Cor), and angular second moment are associated with patch interiors. Edge-highlighting textures account for most dataset variance but fail to differentiate among classes. Eigenchannels highlighting patch interior characteristics rely on GLCM mean and to some extent GLCM Cor. These two textures do contribute to distinguishing individual class signatures for classification purposes. Ent does not appear consistently in edge or interior groupings. Ent is interpreted as important to the textures of particular classes, but which classes is not generalized from one scene to another. Con is effective for outlining patch edges and may serve for object formation in geographic object-based image analysis (GEOBIA).
For classification purposes, the proposed guideline is a choose Mean and, where a class patch is likely to contain edge-like features within it, Con. Cor is an alternative for Mean in these situations, Dis may similarly be used in place of Con. For more detailed texture study, add Ent. This guideline does not constitute a complete texture analysis but may allow confident use of GLCM texture to enhance the efficiency of Landsat-based classification. |
|---|---|
| AbstractList | Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that may be used for further processing. Spatial relationships are not necessarily correlated with spectral data for a given class, and including a measure of them improves classification accuracy. This research develops a guideline for choosing among the Haralick (Grey Level Co-occurrence Matrix [GLCM]) set of texture measures. These guidelines are derived using a variety of land covers and spatial scales (window sizes).Principal component analysis (PCA) of eight GLCM measures was performed for three Landsat TM and ETM+ images: a mid-latitude agricultural and natural vegetation scene, a glacier-rock-sea ice scene, and a desert scene with dunes and structurally complex rocks. PCA was performed separately for neighbourhoods consisting of squares with 25, 13, and 5 pixels on a side to demonstrate robustness to different spatial scales. PCA loadings show that contrast (Con), dissimilarity, entropy (Ent), and GLCM variance are most commonly associated with visual edges of land-cover patches; homogeneity, GLCM mean, GLCM correlation (GLCM Cor), and angular second moment are associated with patch interiors. Edge-highlighting textures account for most dataset variance but fail to differentiate among classes. Eigenchannels highlighting patch interior characteristics rely on GLCM mean and to some extent GLCM Cor. These two textures do contribute to distinguishing individual class signatures for classification purposes. Ent does not appear consistently in edge or interior groupings. Ent is interpreted as important to the textures of particular classes, but which classes is not generalized from one scene to another. Con is effective for outlining patch edges and may serve for object formation in geographic object-based image analysis (GEOBIA).For classification purposes, the proposed guideline is a choose Mean and, where a class patch is likely to contain edge-like features within it, Con. Cor is an alternative for Mean in these situations, Dis may similarly be used in place of Con. For more detailed texture study, add Ent. This guideline does not constitute a complete texture analysis but may allow confident use of GLCM texture to enhance the efficiency of Landsat-based classification. Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that may be used for further processing. Spatial relationships are not necessarily correlated with spectral data for a given class, and including a measure of them improves classification accuracy. This research develops a guideline for choosing among the Haralick (Grey Level Co-occurrence Matrix [GLCM]) set of texture measures. These guidelines are derived using a variety of land covers and spatial scales (window sizes). Principal component analysis (PCA) of eight GLCM measures was performed for three Landsat TM and ETM+ images: a mid-latitude agricultural and natural vegetation scene, a glacier-rock-sea ice scene, and a desert scene with dunes and structurally complex rocks. PCA was performed separately for neighbourhoods consisting of squares with 25, 13, and 5 pixels on a side to demonstrate robustness to different spatial scales. PCA loadings show that contrast (Con), dissimilarity, entropy (Ent), and GLCM variance are most commonly associated with visual edges of land-cover patches; homogeneity, GLCM mean, GLCM correlation (GLCM Cor), and angular second moment are associated with patch interiors. Edge-highlighting textures account for most dataset variance but fail to differentiate among classes. Eigenchannels highlighting patch interior characteristics rely on GLCM mean and to some extent GLCM Cor. These two textures do contribute to distinguishing individual class signatures for classification purposes. Ent does not appear consistently in edge or interior groupings. Ent is interpreted as important to the textures of particular classes, but which classes is not generalized from one scene to another. Con is effective for outlining patch edges and may serve for object formation in geographic object-based image analysis (GEOBIA). For classification purposes, the proposed guideline is a choose Mean and, where a class patch is likely to contain edge-like features within it, Con. Cor is an alternative for Mean in these situations, Dis may similarly be used in place of Con. For more detailed texture study, add Ent. This guideline does not constitute a complete texture analysis but may allow confident use of GLCM texture to enhance the efficiency of Landsat-based classification. |
| Author | Hall-Beyer, Mryka |
| Author_xml | – sequence: 1 givenname: Mryka surname: Hall-Beyer fullname: Hall-Beyer, Mryka email: mhallbey@ucalgary.ca organization: Department of Geography, University of Calgary |
| BookMark | eNqFkT9vFDEQxS0UJC6Bj4BkiYZmD896_1k0oBMkSIeggNoaeceHg88-bG8gHR89Pi40KaByMb_3xvPeOTsLMRBjz0GsQUzilYBOAgywbgUMa2jHSUL3iK1ADkPTKwFnbHVkmiP0hJ3nfC2EGMZ-XLHfnxOa4gx6vlvcTN4FytzGxM23GLMLO3653XzkhX6VJdVRiXzJxF3gHsOcDR6IG485O1tdiouBF8zfM483lDjyhGFHPFq-jzMlLMTzoWJ1X9V6yk_ZY4s-07P794J9ff_uy-aq2X66_LB5u21Qqq40VpnRTkAozUQCpn6AEQzO46zMhKobZ1Q9AVmjjBVI7ay6vhvtIDurJmPlBXt58j2k-GOhXPTeZUO-XkFxybqtkbQwtGqq6IsH6HVcUqi_06BaKSQIkJV6faJMijknstq48ieAktB5DUIf29F_29HHdvR9O1XdP1Afkttjuv2v7s1J50ItaY8_Y_KzLnjrY7I1a-Oylv-2uAMFm6m8 |
| CitedBy_id | crossref_primary_10_1016_j_rse_2021_112411 crossref_primary_10_3390_rs14020244 crossref_primary_10_1016_j_ecoser_2021_101391 crossref_primary_10_3390_rs14030727 crossref_primary_10_3390_s25144314 crossref_primary_10_1016_j_jag_2021_102435 crossref_primary_10_1016_j_ecolind_2023_110190 crossref_primary_10_1002_rse2_260 crossref_primary_10_3389_fpls_2025_1640779 crossref_primary_10_1002_rse2_140 crossref_primary_10_1080_07038992_2021_1908118 crossref_primary_10_3390_rs16030598 crossref_primary_10_1016_j_jag_2017_11_006 crossref_primary_10_1016_j_culher_2020_01_002 crossref_primary_10_1016_j_jag_2022_102828 crossref_primary_10_1007_s10708_018_9908_x crossref_primary_10_1016_j_isprsjprs_2021_03_012 crossref_primary_10_1007_s40747_021_00545_0 crossref_primary_10_1007_s10596_024_10285_y crossref_primary_10_3390_rs13040681 crossref_primary_10_3390_agronomy13061541 crossref_primary_10_1007_s00500_022_06794_6 crossref_primary_10_1080_10106049_2025_2461523 crossref_primary_10_1016_j_rsase_2022_100843 crossref_primary_10_1016_j_resenv_2025_100272 crossref_primary_10_1007_s11355_025_00648_7 crossref_primary_10_1007_s10518_023_01716_9 crossref_primary_10_1016_j_jnc_2025_126941 crossref_primary_10_1038_s41598_020_78865_3 crossref_primary_10_1016_j_isprsjprs_2019_01_008 crossref_primary_10_3390_rs15143512 crossref_primary_10_3390_rs15071818 crossref_primary_10_1007_s10980_024_01914_z crossref_primary_10_3390_f10030226 crossref_primary_10_1109_JSTARS_2025_3564008 crossref_primary_10_1016_j_rse_2024_114204 crossref_primary_10_1080_15481603_2024_2302221 crossref_primary_10_1007_s00477_020_01880_3 crossref_primary_10_3390_rs17061083 crossref_primary_10_5194_tc_15_1551_2021 crossref_primary_10_1038_s41467_022_32533_4 crossref_primary_10_1016_j_compag_2022_107504 crossref_primary_10_1117_1_JEI_31_6_062009 crossref_primary_10_14359_51732640 crossref_primary_10_3390_rs15020312 crossref_primary_10_1029_2020WR029472 crossref_primary_10_1155_2021_6679914 crossref_primary_10_1007_s11119_024_10176_3 crossref_primary_10_1080_01431161_2019_1594440 crossref_primary_10_1016_j_rse_2019_05_026 crossref_primary_10_1080_01431161_2020_1820617 crossref_primary_10_1016_j_rsase_2021_100560 crossref_primary_10_3390_app10155060 crossref_primary_10_1016_j_rse_2021_112751 crossref_primary_10_1007_s10661_022_10266_7 crossref_primary_10_1016_j_enggeo_2025_108355 crossref_primary_10_4103_jmu_jmu_173_21 crossref_primary_10_3390_rs17091606 crossref_primary_10_3390_f15050847 crossref_primary_10_1007_s10661_024_12992_6 crossref_primary_10_1007_s43762_023_00109_7 crossref_primary_10_3390_land14020244 crossref_primary_10_1080_01431161_2020_1734254 crossref_primary_10_1007_s11707_019_0751_2 crossref_primary_10_3390_f11070763 crossref_primary_10_3390_rs14061345 crossref_primary_10_3390_agronomy10060845 crossref_primary_10_1177_15533506231220968 crossref_primary_10_1080_01431161_2019_1594431 crossref_primary_10_1029_2024JH000550 crossref_primary_10_1515_geo_2022_0465 crossref_primary_10_1109_TGRS_2025_3568031 crossref_primary_10_1016_j_foodcont_2024_110850 crossref_primary_10_1109_ACCESS_2024_3485512 crossref_primary_10_1007_s12524_023_01783_0 crossref_primary_10_1016_j_jag_2025_104413 crossref_primary_10_3390_ijgi8040179 crossref_primary_10_1007_s10044_024_01375_9 crossref_primary_10_1016_j_bspc_2021_102695 crossref_primary_10_3390_app10144995 crossref_primary_10_3390_rs13142678 crossref_primary_10_3390_agronomy14061313 crossref_primary_10_1016_j_apgeog_2023_102968 crossref_primary_10_1186_s13021_023_00221_5 crossref_primary_10_1016_j_rse_2023_113661 crossref_primary_10_3390_electronics13122299 crossref_primary_10_3390_rs13193909 crossref_primary_10_1089_jop_2022_0154 crossref_primary_10_3390_ijgi9090499 crossref_primary_10_1109_TGRS_2025_3572909 crossref_primary_10_1007_s00330_022_08897_y crossref_primary_10_1016_j_rsase_2024_101339 crossref_primary_10_3390_su152416593 crossref_primary_10_1016_j_asr_2022_04_032 crossref_primary_10_1016_j_earscirev_2022_103944 crossref_primary_10_3389_fpls_2022_1035379 crossref_primary_10_3390_agriculture13061113 crossref_primary_10_3390_rs14194987 crossref_primary_10_1016_j_measurement_2021_110601 crossref_primary_10_1080_01431161_2018_1530813 crossref_primary_10_3390_rs12193120 crossref_primary_10_3390_app142210504 crossref_primary_10_1007_s12517_019_4600_0 crossref_primary_10_1016_j_procs_2024_04_201 crossref_primary_10_1016_j_isprsjprs_2025_07_001 crossref_primary_10_1002_jcsm_12957 crossref_primary_10_1088_1755_1315_733_1_012082 crossref_primary_10_1177_0309133319840770 crossref_primary_10_1007_s10661_023_11115_x crossref_primary_10_3390_rs16122150 crossref_primary_10_1016_j_ecolind_2022_108930 crossref_primary_10_1007_s10661_021_09321_6 crossref_primary_10_3390_rs13112036 crossref_primary_10_3390_rs13040743 crossref_primary_10_1007_s13131_024_2394_8 crossref_primary_10_3390_insects16080793 crossref_primary_10_3390_rs14246239 crossref_primary_10_3390_s20061724 crossref_primary_10_1007_s00259_022_05816_7 crossref_primary_10_1007_s11042_022_12186_7 crossref_primary_10_1016_j_compag_2022_107122 crossref_primary_10_1016_j_compag_2022_107360 crossref_primary_10_1038_s41598_024_81976_w crossref_primary_10_3390_rs14133190 crossref_primary_10_1007_s11042_023_17950_x crossref_primary_10_1002_qj_3823 crossref_primary_10_3390_f15112025 crossref_primary_10_1016_j_jag_2021_102397 crossref_primary_10_1016_j_ecoinf_2024_102813 crossref_primary_10_3390_rs12122012 crossref_primary_10_1016_j_apgeog_2019_05_004 crossref_primary_10_1016_j_compag_2024_108685 crossref_primary_10_3389_fvets_2023_1206916 crossref_primary_10_3390_rs14092127 crossref_primary_10_3390_rs14205130 crossref_primary_10_1109_ACCESS_2019_2915553 crossref_primary_10_1109_JSTARS_2021_3107543 crossref_primary_10_3390_land14020421 crossref_primary_10_1016_j_jag_2021_102388 crossref_primary_10_1038_s41467_019_11007_0 crossref_primary_10_3390_cli8100102 crossref_primary_10_1002_nbm_5019 crossref_primary_10_1038_s41598_025_01333_3 crossref_primary_10_1016_j_compag_2017_08_024 crossref_primary_10_1080_01431161_2018_1539275 crossref_primary_10_3389_fpls_2023_1214931 crossref_primary_10_3390_rs14030563 crossref_primary_10_1029_2023EA002845 crossref_primary_10_3390_rs11121409 crossref_primary_10_3390_plants13141926 crossref_primary_10_5194_amt_16_4571_2023 crossref_primary_10_1016_j_conbuildmat_2023_132731 crossref_primary_10_1016_j_renene_2025_124381 crossref_primary_10_1080_10106049_2022_2109760 crossref_primary_10_1109_ACCESS_2025_3550303 crossref_primary_10_1007_s12517_022_11035_z crossref_primary_10_1080_15481603_2023_2177448 crossref_primary_10_3390_rs14143354 crossref_primary_10_3390_f14020287 crossref_primary_10_1155_2020_4216160 crossref_primary_10_1016_j_procs_2025_03_216 crossref_primary_10_1088_1742_6596_2410_1_012012 crossref_primary_10_1016_j_jag_2023_103492 crossref_primary_10_3390_f14061193 crossref_primary_10_14746_quageo_2023_0032 crossref_primary_10_1115_1_4065276 crossref_primary_10_1109_TGRS_2022_3215895 crossref_primary_10_1080_10106049_2023_2236579 crossref_primary_10_3390_rs15204935 crossref_primary_10_1016_j_aei_2025_103609 crossref_primary_10_3389_ffgc_2024_1420533 crossref_primary_10_3390_urbansci8040183 crossref_primary_10_1080_01431161_2021_2020364 crossref_primary_10_3390_rs15194714 crossref_primary_10_3390_w15071285 crossref_primary_10_3390_rs14112628 crossref_primary_10_1016_j_rsase_2022_100812 crossref_primary_10_1111_cpf_12636 crossref_primary_10_3390_rs16234406 crossref_primary_10_3390_rs12060958 crossref_primary_10_3390_rs13153040 crossref_primary_10_1080_10106049_2019_1566406 crossref_primary_10_3390_f15101799 crossref_primary_10_1002_fes3_434 crossref_primary_10_3390_rs12010056 crossref_primary_10_1016_j_isprsjprs_2024_10_016 crossref_primary_10_3390_land12010099 crossref_primary_10_3390_rs13091789 crossref_primary_10_1016_j_polar_2021_100719 crossref_primary_10_1080_22797254_2023_2214690 crossref_primary_10_1007_s11119_024_10186_1 crossref_primary_10_1007_s42853_025_00263_2 crossref_primary_10_1109_TPWRD_2021_3059307 crossref_primary_10_1016_j_rsase_2025_101598 crossref_primary_10_1080_01431161_2024_2377836 crossref_primary_10_1038_s41598_022_25788_w crossref_primary_10_3390_rs12223776 crossref_primary_10_1371_journal_pone_0294118 crossref_primary_10_14358_PERS_22_00123R2 crossref_primary_10_1007_s10661_024_12993_5 crossref_primary_10_3390_rs16234414 crossref_primary_10_1016_j_ultrasmedbio_2020_12_012 crossref_primary_10_1029_2023EA002877 crossref_primary_10_3390_rs15102606 crossref_primary_10_3389_fevo_2023_1137111 crossref_primary_10_3390_rs11131619 crossref_primary_10_1080_17538947_2023_2297013 crossref_primary_10_1080_15481603_2024_2385170 crossref_primary_10_3390_rs12182883 crossref_primary_10_1016_j_ecoinf_2020_101065 crossref_primary_10_5194_essd_16_4189_2024 crossref_primary_10_5194_tc_17_1279_2023 crossref_primary_10_1080_10106049_2022_2134466 crossref_primary_10_3390_plants12162893 crossref_primary_10_3390_rs12233926 crossref_primary_10_1016_j_apgeog_2022_102713 crossref_primary_10_3390_rs11111351 crossref_primary_10_1002_cite_202300170 crossref_primary_10_1016_j_scitotenv_2022_158608 crossref_primary_10_1080_00016489_2025_2450221 crossref_primary_10_1016_j_rse_2023_113601 crossref_primary_10_1002_lom3_10537 crossref_primary_10_1016_j_isprsjprs_2023_05_005 crossref_primary_10_1007_s10708_019_10058_6 crossref_primary_10_1007_s11629_017_4551_4 crossref_primary_10_3390_f15122110 crossref_primary_10_1080_07038992_2024_2403495 crossref_primary_10_3390_rs16193709 crossref_primary_10_3390_agronomy15081991 crossref_primary_10_3389_fpls_2023_1284235 crossref_primary_10_1007_s41748_025_00798_6 crossref_primary_10_1007_s10980_021_01194_x crossref_primary_10_3389_fpls_2022_979103 crossref_primary_10_1111_tgis_12790 crossref_primary_10_1007_s12008_023_01270_3 crossref_primary_10_1016_j_agrformet_2018_06_004 crossref_primary_10_1016_j_rama_2024_06_016 crossref_primary_10_3390_rs15102501 crossref_primary_10_3390_rs16091539 crossref_primary_10_3390_land13122184 crossref_primary_10_20965_jaciii_2019_p0175 crossref_primary_10_1016_j_ecoinf_2025_103279 crossref_primary_10_3390_rs15082177 crossref_primary_10_1007_s00107_023_01946_3 crossref_primary_10_3390_drones5030086 crossref_primary_10_3390_plants13010135 crossref_primary_10_3390_rs14071618 crossref_primary_10_1155_2021_8810279 crossref_primary_10_3390_tomography11080087 crossref_primary_10_1016_j_asr_2021_11_018 crossref_primary_10_3390_rs16213943 crossref_primary_10_3390_plants14152297 crossref_primary_10_3390_rs10091498 |
| Cites_doi | 10.1109/TGRS.2004.825591 10.2307/1478925 10.1016/j.jag.2012.08.002 10.1109/34.946988 10.1016/j.foreco.2012.12.044 10.1080/0143116042000192367 10.1016/j.jag.2010.01.006 10.1080/014311600210993 10.1080/014311600750019985 10.1016/S0034-4257(03)00094-4 10.1080/01431161.2016.1214301 10.14358/PERS.75.7.819 10.5589/m11-010 10.1080/01431169308953962 10.1109/TGRS.2003.817274 10.1080/01431160210155992 10.1080/01431160512331326765 10.1109/TSMC.1973.4309314 10.3846/16486897.2012.688371 10.1016/j.jag.2012.05.004 10.1080/01431161.2016.1204032 10.1109/TGRS.1990.572937 10.14358/PERS.71.3.289 10.14358/PERS.70.7.803 |
| ContentType | Journal Article |
| Copyright | 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 2017 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2016.1278314 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 1338 |
| ExternalDocumentID | 10_1080_01431161_2016_1278314 1278314 |
| Genre | Note |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-a394t-f9c7f81ea3c8e01856171cad7d9c8a947da95e1efc9cf0ae2d94547f634f98cf3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 292 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394647800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:24:27 EDT 2025 Wed Aug 13 06:27:25 EDT 2025 Sat Nov 29 06:13:34 EST 2025 Tue Nov 18 20:07:18 EST 2025 Mon Oct 20 23:48:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a394t-f9c7f81ea3c8e01856171cad7d9c8a947da95e1efc9cf0ae2d94547f634f98cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1923031013 |
| PQPubID | 2045515 |
| PageCount | 27 |
| ParticipantIDs | proquest_miscellaneous_2000216298 informaworld_taylorfrancis_310_1080_01431161_2016_1278314 crossref_citationtrail_10_1080_01431161_2016_1278314 proquest_journals_1923031013 crossref_primary_10_1080_01431161_2016_1278314 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-04 |
| PublicationDateYYYYMMDD | 2017-03-04 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0032 Eastman J. R. (CIT0007) 1993; 69 CIT0034 CIT0011 Jensen J. R. (CIT0017) 2007 Joliffe I. T. (CIT0018) 2002 CIT0036 CIT0013 CIT0016 CIT0038 Ferro C. J. S. (CIT0010) 2002; 68 CIT0019 Ozdemir I. (CIT0029) 2011; 13 CIT0020 CIT0001 Lillesand T. M. (CIT0021) 2007 Gonzalez R. C. (CIT0012) 1992 CIT0022 Rabia A. H. (CIT0033) 2013; 15 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0002 doi: 10.1109/TGRS.2004.825591 – ident: CIT0034 doi: 10.2307/1478925 – ident: CIT0020 doi: 10.1016/j.jag.2012.08.002 – ident: CIT0036 doi: 10.1109/34.946988 – ident: CIT0028 doi: 10.1016/j.foreco.2012.12.044 – ident: CIT0003 doi: 10.1080/0143116042000192367 – volume-title: Remote Sensing of the Environment: An Earth Resource Perspective year: 2007 ident: CIT0017 – ident: CIT0024 doi: 10.1016/j.jag.2010.01.006 – ident: CIT0011 doi: 10.1080/014311600210993 – ident: CIT0005 doi: 10.1080/014311600750019985 – ident: CIT0004 doi: 10.1016/S0034-4257(03)00094-4 – ident: CIT0001 doi: 10.1080/01431161.2016.1214301 – ident: CIT0019 doi: 10.14358/PERS.75.7.819 – ident: CIT0027 doi: 10.5589/m11-010 – ident: CIT0008 doi: 10.1080/01431169308953962 – volume: 69 start-page: 991 year: 1993 ident: CIT0007 publication-title: Photogrammetric Engineering and Remote Sensing – ident: CIT0013 doi: 10.1109/TGRS.2003.817274 – ident: CIT0025 doi: 10.1080/01431160210155992 – ident: CIT0009 doi: 10.1080/01431160512331326765 – volume: 68 start-page: 51 year: 2002 ident: CIT0010 publication-title: Photogrammetric Engineering and Remote Sensing – volume-title: Principal Component Analysis year: 2002 ident: CIT0018 – volume: 13 start-page: 701 year: 2011 ident: CIT0029 publication-title: International Journal of Remote Sensing – volume-title: Remote Sensing and Image Interpretation year: 2007 ident: CIT0021 – volume: 15 start-page: 219 year: 2013 ident: CIT0033 publication-title: Geophysical Research Abstracts – ident: CIT0016 doi: 10.1109/TSMC.1973.4309314 – ident: CIT0030 doi: 10.3846/16486897.2012.688371 – ident: CIT0006 doi: 10.1016/j.jag.2012.05.004 – volume-title: Digital Image Processing year: 1992 ident: CIT0012 – ident: CIT0038 doi: 10.1080/01431161.2016.1204032 – ident: CIT0022 doi: 10.1109/TGRS.1990.572937 – ident: CIT0032 doi: 10.14358/PERS.71.3.289 – ident: CIT0026 doi: 10.14358/PERS.70.7.803 |
| SSID | ssj0006757 |
| Score | 2.624396 |
| Snippet | Texture measurements quantitatively describe relationships of DN values of neighbouring pixels. The output is a continuous measure of spatial information that... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1312 |
| SubjectTerms | Agricultural land Balances (scales) Classification Correlation data collection Dunes Entropy Glaciers Guidelines ice Image analysis Land cover Landsat Landsat satellites landscapes latitude Natural vegetation Pixels principal component analysis Principal components analysis Remote sensing Robustness Rock glaciers Rocks Satellite imagery Sea ice spectral analysis Texture Variance Variance analysis Vegetation |
| Title | Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1278314 https://www.proquest.com/docview/1923031013 https://www.proquest.com/docview/2000216298 |
| Volume | 38 |
| WOSCitedRecordID | wos000394647800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqVKlc-gWILdtqKnENrNfexD5WqAsHQD1QwS1y7DFFRVm0TpC48dPxJM6qCCEO9JxMbHn88ew8v8fYrlYcUWifcY4qk6gxM_kEs5moKu2URKxMZzZRnJ6qiwv9K7EJQ6JV0h7a90IR3VxNg9tUYWDE7ZMkHY9IhYhZ-R4nr4jOyjoie-rjZ_Pz1Vwc4XB_YZqEOGPIcIfnua88Wp0eaZc-mau7BWj-4T9U_SN7n9An_Oi7yyf2BuvP7F0yQv9zt8Hue_2imDi4bEkBi1jxEOsHpNZJ5wpweHxwAsQXaeNOHZoFtAHhqobu0jDRqcASIicKUpd1aEz4G4CoomBgSZcZYOGBLHhIpgICcbpjeTH2GsMm-z3_eXZwlCWThswILZvMa1v4mHAjrMJJXP0jJOLWuMJpq4yWhTN6hhy91dZPDE6dJg0xnwvptbJebLG1elHjNgOZK-fdzMXXc1nFfaAuzIxXUliTS2fsiMkhOaVNCuZkpHFd8kHoNDVvSc1bpuYdsb1V2E0v4fFSgP4382XTnZ343uikFC_EjoduUqbZIJSEokmClYsR-756HMcx_ZwxNS7aQHagEW7lU62-vKL4HbY-JdxBJDk5ZmvNssWv7K29ba7C8ls3Nh4A73oLfA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqWoleKC1UXUrbqcQ1dL12EvuIEAtVlz1tVW6WY48pKsqiTYLEjZ9eTz5WoKri0J6TSSKPP56dN-8xdqAVRxQ6JJyjSiRqTGw2xiQVRaG9koiFbc0m8vlcXVzoh7UwRKukPXTohCLauZoGNx1GD5S4L6RJxyNUIWZWdsjJLIK8rJ-nca0lWt9i-mM9G0dA3JVMkxRnjBmqeP72mEfr0yP10j9m63YJmr76Hx-_zbZ6AApHXY95zZ5h-YZt9l7oP-922H0nYRRzB5cNiWARMR7iBwIJdtLRApzOjs-BKCNN3KxDvYSmQrgqoa0bJkYVOALlxEJqEw-1rX5VQGxRsLCiegZYBiAXHlKqgIpo3fF9MfYaq132fXqyOD5Lep-GxAot6yRol4eYcyucwnEEABEVcWd97rVTVsvcW50ix-C0C2OLE69JRixkQgatXBBv2Ua5LPEdA5kpH3zq4-2ZLOJWUOc25YUUzmbSWzdicsiOcb2IOXlpXBs-aJ32zWuoeU3fvCN2uA676VQ8ngrQD1Nv6vb4JHReJ0Y8Ebs_9BPTTwiVISBNKqxcjNjn9eU4lOn_jC1x2VTkCBoRVzbRau8fXv-JbZ4tzmdm9nX-7T17OSEYQpw5uc826lWDH9gLd1tfVauP7UD5Db3DD50 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQi4AL34ilBQaJa8p67U3sY1VYQJRVD0X0Zjn2uFRU2WqdIHHjp9eTOCsqhHqAczKx5bHHY-fNe4y91oojCh0KzlEVEjUWtpxiMRd1rb2SiLXtxSaq5VKdnOijjCaMGVZJZ-gwEEX0sZoW94UPIyLuDVHS8ZSpEDCr3OOkFUFS1ts9OVaa0seLr5tgnPLhoWKamDiTzVjE87fPXNmerpCX_hGs-x1oce8_9P0-u5vTT9gf5ssDdgObh-x2VkL_9vMR-zUQGCXPwWlHFFgEi4fUPyC6TrpYgPeHB5-BACNdOqpDu4IuIpw10FcNE54KHKXkhEHq3Q6tjd8jEFYULKypmgFWAUiDh3gqIBKoO7WXbM8xPmZfFu-ODz4UWaWhsELLtgjaVSF53AqncJq2_5QTcWd95bVTVsvKWz1HjsFpF6YWZ14TiVgohQxauSCesK1m1eBTBrJUPvi5T6-Xsk4HQV3ZOa-lcLaU3roJk6NzjMsU5qSkcW74yHSah9fQ8Jo8vBO2tzG7GDg8rjPQv3vetP3lSRiUToy4xnZ3nCYmh4NoKI0mDlYuJuzV5nFayPR3xja46iLpgaZ8q5xp9ewfmn_Jbh29XZjDj8tPO-zOjHIQAszJXbbVrjt8zm66H-1ZXL_ol8klTS0OQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+guidelines+for+choosing+GLCM+textures+to+use+in+landscape+classification+tasks+over+a+range+of+moderate+spatial+scales&rft.jtitle=International+journal+of+remote+sensing&rft.au=Hall-Beyer%2C+Mryka&rft.date=2017-03-04&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=38&rft.issue=5&rft.spage=1312&rft.epage=1338&rft_id=info:doi/10.1080%2F01431161.2016.1278314&rft.externalDocID=1278314 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |