Effects of Molecular Structure on Organic Contaminants' Degradation Efficiency and Dominant ROS in the Advanced Oxidation Process with Multiple ROS

In this study, the previously overlooked effects of contaminants' molecular structure on their degradation efficiencies and dominant reactive oxygen species (ROS) in advanced oxidation processes (AOPs) are investigated with a peroxymonosulfate (PMS) activation system selected as the typical AOP...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental science & technology Ročník 56; číslo 12; s. 8784
Hlavní autori: Xie, Zhi-Hui, He, Chuan-Shu, Zhou, Hong-Yu, Li, Ling-Li, Liu, Yang, Du, Ye, Liu, Wen, Mu, Yang, Lai, Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 21.06.2022
Predmet:
ISSN:1520-5851, 1520-5851
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, the previously overlooked effects of contaminants' molecular structure on their degradation efficiencies and dominant reactive oxygen species (ROS) in advanced oxidation processes (AOPs) are investigated with a peroxymonosulfate (PMS) activation system selected as the typical AOP system. Averagely, degradation efficiencies of 19 contaminants are discrepant in the CoCaAl-LDO/PMS system with production of SO , OH, and O . Density functional theory calculations indicated that compounds with high , low-energy gap (Δ = - ), and low vertical ionization potential are more vulnerable to be attacked. Further analysis disclosed that the dominant ROS was the same one when treating similar types of contaminants, namely SO , O , O , and OH for the degradation of CBZ-like compounds, SAs, bisphenol, and triazine compounds, respectively. This phenomenon may be caused by the contaminants' structures especially the commonly shared or basic parent structures which can affect their effective reaction time and second-order rate constants with ROS, thus influencing the contribution of each ROS during its degradation. Overall, the new insights gained in this study provide a basis for designing more effective AOPs to improve their practical application in wastewater treatment.
AbstractList In this study, the previously overlooked effects of contaminants' molecular structure on their degradation efficiencies and dominant reactive oxygen species (ROS) in advanced oxidation processes (AOPs) are investigated with a peroxymonosulfate (PMS) activation system selected as the typical AOP system. Averagely, degradation efficiencies of 19 contaminants are discrepant in the CoCaAl-LDO/PMS system with production of SO4•-, •OH, and 1O2. Density functional theory calculations indicated that compounds with high EHOMO, low-energy gap (ΔE = ELUMO - EHOMO), and low vertical ionization potential are more vulnerable to be attacked. Further analysis disclosed that the dominant ROS was the same one when treating similar types of contaminants, namely SO4•-, 1O2, 1O2, and •OH for the degradation of CBZ-like compounds, SAs, bisphenol, and triazine compounds, respectively. This phenomenon may be caused by the contaminants' structures especially the commonly shared or basic parent structures which can affect their effective reaction time and second-order rate constants with ROS, thus influencing the contribution of each ROS during its degradation. Overall, the new insights gained in this study provide a basis for designing more effective AOPs to improve their practical application in wastewater treatment.In this study, the previously overlooked effects of contaminants' molecular structure on their degradation efficiencies and dominant reactive oxygen species (ROS) in advanced oxidation processes (AOPs) are investigated with a peroxymonosulfate (PMS) activation system selected as the typical AOP system. Averagely, degradation efficiencies of 19 contaminants are discrepant in the CoCaAl-LDO/PMS system with production of SO4•-, •OH, and 1O2. Density functional theory calculations indicated that compounds with high EHOMO, low-energy gap (ΔE = ELUMO - EHOMO), and low vertical ionization potential are more vulnerable to be attacked. Further analysis disclosed that the dominant ROS was the same one when treating similar types of contaminants, namely SO4•-, 1O2, 1O2, and •OH for the degradation of CBZ-like compounds, SAs, bisphenol, and triazine compounds, respectively. This phenomenon may be caused by the contaminants' structures especially the commonly shared or basic parent structures which can affect their effective reaction time and second-order rate constants with ROS, thus influencing the contribution of each ROS during its degradation. Overall, the new insights gained in this study provide a basis for designing more effective AOPs to improve their practical application in wastewater treatment.
In this study, the previously overlooked effects of contaminants' molecular structure on their degradation efficiencies and dominant reactive oxygen species (ROS) in advanced oxidation processes (AOPs) are investigated with a peroxymonosulfate (PMS) activation system selected as the typical AOP system. Averagely, degradation efficiencies of 19 contaminants are discrepant in the CoCaAl-LDO/PMS system with production of SO , OH, and O . Density functional theory calculations indicated that compounds with high , low-energy gap (Δ = - ), and low vertical ionization potential are more vulnerable to be attacked. Further analysis disclosed that the dominant ROS was the same one when treating similar types of contaminants, namely SO , O , O , and OH for the degradation of CBZ-like compounds, SAs, bisphenol, and triazine compounds, respectively. This phenomenon may be caused by the contaminants' structures especially the commonly shared or basic parent structures which can affect their effective reaction time and second-order rate constants with ROS, thus influencing the contribution of each ROS during its degradation. Overall, the new insights gained in this study provide a basis for designing more effective AOPs to improve their practical application in wastewater treatment.
Author Li, Ling-Li
Xie, Zhi-Hui
Zhou, Hong-Yu
Mu, Yang
Liu, Yang
He, Chuan-Shu
Liu, Wen
Lai, Bo
Du, Ye
Author_xml – sequence: 1
  givenname: Zhi-Hui
  orcidid: 0000-0003-4699-5093
  surname: Xie
  fullname: Xie, Zhi-Hui
  organization: Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
– sequence: 2
  givenname: Chuan-Shu
  orcidid: 0000-0002-7805-0142
  surname: He
  fullname: He, Chuan-Shu
  organization: Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
– sequence: 3
  givenname: Hong-Yu
  surname: Zhou
  fullname: Zhou, Hong-Yu
  organization: Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
– sequence: 4
  givenname: Ling-Li
  surname: Li
  fullname: Li, Ling-Li
  organization: Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
– sequence: 5
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
– sequence: 6
  givenname: Ye
  orcidid: 0000-0001-8099-0996
  surname: Du
  fullname: Du, Ye
  organization: Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
– sequence: 7
  givenname: Wen
  orcidid: 0000-0002-6787-2431
  surname: Liu
  fullname: Liu, Wen
  organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
– sequence: 8
  givenname: Yang
  orcidid: 0000-0001-7338-7398
  surname: Mu
  fullname: Mu, Yang
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
– sequence: 9
  givenname: Bo
  orcidid: 0000-0002-7105-1345
  surname: Lai
  fullname: Lai, Bo
  organization: Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35584301$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPAjEYRRuDUVDX7kx3ugH7mtIuDeAj0WB8rElpv9GaocW2o_I7_MNCxMTVvYtz7uL2UCfEAAgdUzKghNFzY_MAchkwS4iQYgd1acVIv1IV7fzr-6iX8xshhHGi9tA-ryolOKFd9D2pa7Al41jju9iAbRuT8GNJrS1tAhwDnqYXE7zFoxiKWfhgQsmneAwvyThT_JpYb3jrIdgVNsHhcfyl8MP0EfuAyyvgC_dhggWHp19-a92naCFn_OnLK75rm-KXDWycQ7RbmybD0TYP0PPl5Gl03b-dXt2MLm77hmtR-ppI5WpJ2FwRJ0BQoYRQ3DHNdQWaWwnWASe84hXVw3rurObSUVULXhOt2AE6-91dpvjerm-cLXy20DQmQGzzjEkpNRkO5QY92aLtfAFutkx-YdJq9nck-wEuG3iC
CitedBy_id crossref_primary_10_1016_j_jiec_2025_05_005
crossref_primary_10_1016_j_seppur_2022_122962
crossref_primary_10_1016_j_jece_2025_116776
crossref_primary_10_1016_j_jcis_2025_02_110
crossref_primary_10_1002_adfm_202417441
crossref_primary_10_1016_j_chemosphere_2023_140214
crossref_primary_10_1016_j_jcis_2022_12_110
crossref_primary_10_1016_j_jenvman_2025_126429
crossref_primary_10_1016_j_cej_2024_150692
crossref_primary_10_1002_anie_202407870
crossref_primary_10_1016_j_watres_2024_121936
crossref_primary_10_1002_ange_202422892
crossref_primary_10_1016_j_scitotenv_2023_162208
crossref_primary_10_1016_j_jhazmat_2023_131790
crossref_primary_10_1016_j_apcatb_2024_124601
crossref_primary_10_1016_j_cej_2024_154388
crossref_primary_10_1016_j_jhazmat_2023_131554
crossref_primary_10_1002_adfm_202514460
crossref_primary_10_1016_j_cej_2022_138215
crossref_primary_10_1080_09593330_2025_2485363
crossref_primary_10_1016_j_envres_2024_120273
crossref_primary_10_1016_j_mtcomm_2024_109385
crossref_primary_10_1016_j_seppur_2023_126129
crossref_primary_10_1016_j_seppur_2024_126649
crossref_primary_10_1016_j_seppur_2024_127858
crossref_primary_10_1016_j_cej_2023_144961
crossref_primary_10_1016_j_cej_2023_147555
crossref_primary_10_1016_j_envres_2024_119957
crossref_primary_10_1016_j_jclepro_2024_143705
crossref_primary_10_1016_j_watres_2024_122456
crossref_primary_10_1016_j_jcis_2024_05_035
crossref_primary_10_1016_j_watres_2023_120697
crossref_primary_10_1016_j_jcis_2023_03_145
crossref_primary_10_1002_smll_202411116
crossref_primary_10_1016_j_scitotenv_2023_164067
crossref_primary_10_1016_j_seppur_2024_126997
crossref_primary_10_3390_ijms26104785
crossref_primary_10_1016_j_cej_2023_145253
crossref_primary_10_1016_j_jallcom_2025_178862
crossref_primary_10_1016_j_watcyc_2024_12_001
crossref_primary_10_1007_s10311_024_01798_0
crossref_primary_10_1016_j_seppur_2025_134098
crossref_primary_10_1016_j_seppur_2022_123034
crossref_primary_10_1016_j_watres_2024_122244
crossref_primary_10_1021_acsami_5c08493
crossref_primary_10_1016_j_jcis_2024_10_050
crossref_primary_10_1016_j_psep_2023_09_022
crossref_primary_10_1016_j_jhazmat_2025_137312
crossref_primary_10_1016_j_cej_2024_153390
crossref_primary_10_1016_j_memsci_2025_124574
crossref_primary_10_1016_j_jcis_2022_12_012
crossref_primary_10_1016_j_jwpe_2023_104531
crossref_primary_10_1016_j_watres_2022_119392
crossref_primary_10_1016_j_jhazmat_2025_137790
crossref_primary_10_1016_j_seppur_2025_133328
crossref_primary_10_1016_j_cej_2025_160649
crossref_primary_10_1016_j_jenvman_2025_127300
crossref_primary_10_1016_j_cclet_2024_110017
crossref_primary_10_1016_j_scitotenv_2023_162798
crossref_primary_10_1016_j_jhazmat_2024_136621
crossref_primary_10_1016_j_seppur_2024_126862
crossref_primary_10_1016_j_scitotenv_2022_159465
crossref_primary_10_1016_j_scitotenv_2025_178469
crossref_primary_10_1016_j_cej_2025_168002
crossref_primary_10_1016_j_chemosphere_2024_143234
crossref_primary_10_1016_j_cej_2025_165664
crossref_primary_10_1002_adfm_202403964
crossref_primary_10_1016_j_watres_2024_121388
crossref_primary_10_1016_j_efmat_2023_08_002
crossref_primary_10_1016_j_jclepro_2024_143242
crossref_primary_10_1016_j_watres_2023_120317
crossref_primary_10_1016_j_seppur_2025_134525
crossref_primary_10_1016_j_cej_2024_157982
crossref_primary_10_1016_j_carbpol_2022_120235
crossref_primary_10_1016_j_cej_2023_144708
crossref_primary_10_1016_j_watres_2022_119142
crossref_primary_10_1016_j_cej_2024_156532
crossref_primary_10_1016_j_apcatb_2023_123467
crossref_primary_10_1016_j_apcatb_2024_123769
crossref_primary_10_1016_j_apcatb_2025_125447
crossref_primary_10_1016_j_apsusc_2023_156656
crossref_primary_10_1016_j_seppur_2024_126738
crossref_primary_10_1016_j_electacta_2024_145069
crossref_primary_10_1016_j_jece_2024_114399
crossref_primary_10_1016_j_jwpe_2025_107989
crossref_primary_10_1016_j_envpol_2024_124976
crossref_primary_10_1016_j_seppur_2025_134754
crossref_primary_10_1016_j_cclet_2023_108563
crossref_primary_10_1002_smll_202407104
crossref_primary_10_1016_j_apcatb_2023_123314
crossref_primary_10_1016_j_cej_2025_159638
crossref_primary_10_1016_j_seppur_2024_128587
crossref_primary_10_1016_j_cej_2024_151061
crossref_primary_10_1016_j_seppur_2024_130541
crossref_primary_10_1016_j_cej_2024_152046
crossref_primary_10_1016_j_watres_2025_124044
crossref_primary_10_1016_j_apsusc_2024_160066
crossref_primary_10_1016_j_chemosphere_2022_137009
crossref_primary_10_1016_j_colsurfa_2024_135633
crossref_primary_10_1016_j_jhazmat_2024_133895
crossref_primary_10_1002_cssc_202201901
crossref_primary_10_1016_S1872_2067_24_60151_8
crossref_primary_10_1016_j_chemosphere_2024_141737
crossref_primary_10_1016_j_cej_2023_143161
crossref_primary_10_1016_j_cej_2025_167255
crossref_primary_10_1016_j_seppur_2024_126603
crossref_primary_10_1016_j_watres_2024_121601
crossref_primary_10_1016_j_cej_2025_165525
crossref_primary_10_1016_j_chemosphere_2023_139490
crossref_primary_10_1016_j_seppur_2023_123907
crossref_primary_10_1002_ange_202407870
crossref_primary_10_1016_j_cej_2023_141538
crossref_primary_10_1016_j_jece_2024_112647
crossref_primary_10_1016_j_catcom_2023_106660
crossref_primary_10_1016_j_apcatb_2023_123204
crossref_primary_10_3390_magnetochemistry9040110
crossref_primary_10_1016_j_apcatb_2025_125747
crossref_primary_10_1016_j_ceramint_2023_09_280
crossref_primary_10_1016_j_jhazmat_2025_137985
crossref_primary_10_1016_j_cej_2024_155308
crossref_primary_10_1016_j_jhazmat_2023_131524
crossref_primary_10_1016_j_seppur_2024_130092
crossref_primary_10_1016_j_cej_2025_161492
crossref_primary_10_1016_j_watres_2023_120341
crossref_primary_10_1016_j_cej_2024_150514
crossref_primary_10_1039_D4SC02621G
crossref_primary_10_1016_j_watres_2025_123776
crossref_primary_10_1016_j_cej_2023_141885
crossref_primary_10_1016_j_watres_2025_123653
crossref_primary_10_1016_j_jece_2025_117969
crossref_primary_10_1016_j_jece_2023_110734
crossref_primary_10_1016_j_chemosphere_2024_142175
crossref_primary_10_1016_j_jes_2024_12_025
crossref_primary_10_1016_j_jwpe_2025_108291
crossref_primary_10_1016_j_jhazmat_2024_136825
crossref_primary_10_1016_j_jece_2023_109502
crossref_primary_10_1016_j_apcatb_2023_122569
crossref_primary_10_1016_j_apcatb_2025_125512
crossref_primary_10_1016_j_chemosphere_2023_138994
crossref_primary_10_1016_j_seppur_2024_130081
crossref_primary_10_1016_j_apcatb_2023_123410
crossref_primary_10_1016_j_jece_2025_115557
crossref_primary_10_1021_acsnano_5c04030
crossref_primary_10_1007_s10854_023_11357_y
crossref_primary_10_1016_j_watres_2025_123785
crossref_primary_10_1016_j_jwpe_2025_108287
crossref_primary_10_1016_j_jece_2023_110741
crossref_primary_10_3390_catal15070695
crossref_primary_10_1002_anie_202422892
crossref_primary_10_1016_j_jece_2025_116080
crossref_primary_10_1016_j_jhazmat_2022_130593
crossref_primary_10_1016_j_apcatb_2025_125407
crossref_primary_10_1016_j_jhazmat_2024_136930
crossref_primary_10_1016_j_apsusc_2023_156616
crossref_primary_10_1016_j_watres_2023_119925
crossref_primary_10_1016_j_seppur_2023_125666
crossref_primary_10_1016_j_apcatb_2024_124499
crossref_primary_10_1016_j_watres_2023_119926
crossref_primary_10_1007_s11144_023_02500_1
crossref_primary_10_1016_j_seppur_2024_126933
crossref_primary_10_1016_j_watres_2024_122623
crossref_primary_10_1016_j_cej_2025_166801
crossref_primary_10_1016_j_jcis_2023_05_048
crossref_primary_10_1016_j_seppur_2025_131561
crossref_primary_10_1002_ange_202401551
crossref_primary_10_1016_j_jwpe_2025_107423
crossref_primary_10_1016_j_apcatb_2023_122786
crossref_primary_10_1016_j_jhazmat_2023_132363
crossref_primary_10_1016_j_jwpe_2023_103856
crossref_primary_10_1002_ange_202416921
crossref_primary_10_1016_j_jhazmat_2023_130987
crossref_primary_10_1016_j_jhazmat_2022_130469
crossref_primary_10_1016_j_cej_2022_141220
crossref_primary_10_1016_j_fmre_2025_02_015
crossref_primary_10_1016_j_cej_2025_166123
crossref_primary_10_3390_molecules29174120
crossref_primary_10_3389_fmicb_2024_1458185
crossref_primary_10_1016_j_apcatb_2023_123084
crossref_primary_10_1016_j_jhazmat_2022_129359
crossref_primary_10_1016_j_seppur_2024_129195
crossref_primary_10_1016_j_watres_2023_120614
crossref_primary_10_1016_j_cej_2024_151156
crossref_primary_10_1016_j_jwpe_2025_107775
crossref_primary_10_1016_j_watres_2025_124417
crossref_primary_10_1007_s11356_024_34644_5
crossref_primary_10_1016_j_apcatb_2023_122676
crossref_primary_10_1016_j_jhazmat_2023_131286
crossref_primary_10_1016_j_seppur_2024_128773
crossref_primary_10_1021_acsestwater_5c00338
crossref_primary_10_1016_j_seppur_2025_132649
crossref_primary_10_1016_j_jics_2025_101800
crossref_primary_10_1016_j_ceramint_2024_04_125
crossref_primary_10_1016_j_seppur_2023_123382
crossref_primary_10_1016_j_seppur_2024_128771
crossref_primary_10_1016_j_seppur_2023_124479
crossref_primary_10_1016_j_chemosphere_2023_139058
crossref_primary_10_1016_j_seppur_2024_129627
crossref_primary_10_1016_j_cej_2024_151802
crossref_primary_10_1016_j_ces_2025_122210
crossref_primary_10_1016_j_cej_2024_149724
crossref_primary_10_1016_j_jece_2025_116156
crossref_primary_10_1016_j_jece_2024_112999
crossref_primary_10_1016_j_cej_2024_155052
crossref_primary_10_1016_j_colsurfa_2023_132021
crossref_primary_10_1016_j_jece_2023_111585
crossref_primary_10_1021_acsami_4c22020
crossref_primary_10_1016_j_apsusc_2025_164359
crossref_primary_10_1002_smll_202401970
crossref_primary_10_1073_pnas_2322283121
crossref_primary_10_1016_j_seppur_2024_130048
crossref_primary_10_1016_j_cej_2025_161336
crossref_primary_10_1016_j_jes_2023_01_016
crossref_primary_10_1016_j_marpolbul_2025_118557
crossref_primary_10_1016_j_scitotenv_2025_178500
crossref_primary_10_1016_j_apcatb_2025_125038
crossref_primary_10_1016_j_scitotenv_2023_162151
crossref_primary_10_1016_j_seppur_2024_127559
crossref_primary_10_1021_acs_est_4c11950
crossref_primary_10_1016_j_dwt_2024_100823
crossref_primary_10_1016_j_jcis_2025_137639
crossref_primary_10_1016_j_apcatb_2024_124225
crossref_primary_10_1016_j_cej_2025_164044
crossref_primary_10_1016_j_watres_2023_120950
crossref_primary_10_1016_j_cej_2023_148468
crossref_primary_10_1016_j_cej_2025_168412
crossref_primary_10_1016_j_watres_2024_122631
crossref_primary_10_1360_TB_2024_0583
crossref_primary_10_1016_j_dwt_2024_100258
crossref_primary_10_1016_j_cej_2023_142369
crossref_primary_10_1016_j_jhazmat_2025_138379
crossref_primary_10_1016_j_jhazmat_2024_134033
crossref_primary_10_1016_j_jhazmat_2024_135002
crossref_primary_10_1038_s41467_024_50238_8
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1016_j_jece_2025_118902
crossref_primary_10_1016_j_apcatb_2023_122775
crossref_primary_10_1016_j_apcatb_2024_124219
crossref_primary_10_1016_j_colsurfa_2025_136895
crossref_primary_10_1016_j_chemosphere_2023_138788
crossref_primary_10_1016_j_ces_2023_119353
crossref_primary_10_1016_j_envpol_2023_122877
crossref_primary_10_1016_j_jhazmat_2023_132237
crossref_primary_10_1016_j_jhazmat_2024_136455
crossref_primary_10_1016_j_apcatb_2023_122538
crossref_primary_10_1016_j_scitotenv_2023_163596
crossref_primary_10_1016_j_seppur_2023_125225
crossref_primary_10_1016_j_seppur_2024_128758
crossref_primary_10_1016_j_jece_2025_118516
crossref_primary_10_1016_j_jpcs_2023_111380
crossref_primary_10_1007_s10668_023_03834_5
crossref_primary_10_1016_j_jwpe_2024_106535
crossref_primary_10_1016_j_jenvman_2022_116301
crossref_primary_10_1016_j_jenvman_2024_122542
crossref_primary_10_1002_jctb_7300
crossref_primary_10_1016_j_cej_2022_139742
crossref_primary_10_1016_j_seppur_2025_134912
crossref_primary_10_1016_j_watres_2024_122428
crossref_primary_10_1016_j_chemosphere_2023_137801
crossref_primary_10_1016_j_seppur_2023_126202
crossref_primary_10_1016_j_seppur_2024_127899
crossref_primary_10_1002_adma_202311869
crossref_primary_10_1016_j_apcatb_2022_122349
crossref_primary_10_1016_j_watres_2024_121330
crossref_primary_10_1016_S1872_2067_24_60132_4
crossref_primary_10_1016_j_cej_2025_165473
crossref_primary_10_1016_j_jhazmat_2022_130549
crossref_primary_10_1016_j_cej_2024_149144
crossref_primary_10_1016_j_seppur_2024_126449
crossref_primary_10_1016_j_diamond_2023_110152
crossref_primary_10_1016_j_watres_2022_119363
crossref_primary_10_1016_j_watres_2023_119666
crossref_primary_10_1016_j_jece_2023_110481
crossref_primary_10_1016_j_apcatb_2023_122508
crossref_primary_10_1016_j_jhazmat_2025_138313
crossref_primary_10_1039_D4CS00338A
crossref_primary_10_1016_j_jece_2024_113336
crossref_primary_10_1016_j_jwpe_2023_103770
crossref_primary_10_1016_j_jclepro_2023_140133
crossref_primary_10_1016_j_seppur_2024_130810
crossref_primary_10_1016_j_seppur_2023_125240
crossref_primary_10_1016_j_seppur_2024_130013
crossref_primary_10_1002_anie_202401551
crossref_primary_10_1016_j_colsurfa_2024_134156
crossref_primary_10_1016_j_envres_2025_122786
crossref_primary_10_1016_j_jwpe_2022_103428
crossref_primary_10_1016_j_jhazmat_2023_131926
crossref_primary_10_1016_j_psep_2022_10_038
crossref_primary_10_1016_j_inoche_2024_112031
crossref_primary_10_1016_j_jclepro_2023_136483
crossref_primary_10_1002_anie_202416921
crossref_primary_10_1016_j_scitotenv_2023_169820
crossref_primary_10_1016_j_seppur_2024_129140
crossref_primary_10_1016_j_watres_2025_124106
crossref_primary_10_1016_j_jece_2024_113489
crossref_primary_10_1016_j_seppur_2024_130921
crossref_primary_10_1016_j_cej_2024_149928
crossref_primary_10_1016_j_seppur_2025_131742
crossref_primary_10_1021_acs_cgd_5c00310
crossref_primary_10_1016_j_jcis_2024_10_139
crossref_primary_10_1016_j_cej_2024_154049
crossref_primary_10_1016_j_chemosphere_2022_136418
crossref_primary_10_1016_j_apcatb_2025_125913
crossref_primary_10_1016_j_seppur_2023_125134
crossref_primary_10_1016_j_seppur_2024_126783
crossref_primary_10_1016_j_cej_2024_154846
crossref_primary_10_1002_ange_202506322
crossref_primary_10_1016_j_cej_2022_141045
crossref_primary_10_1016_j_cclet_2025_111463
crossref_primary_10_1016_j_jes_2025_06_032
crossref_primary_10_1021_acssynbio_5c00378
crossref_primary_10_1016_j_chemosphere_2024_141135
crossref_primary_10_1016_j_jclepro_2024_142517
crossref_primary_10_1016_j_seppur_2025_134684
crossref_primary_10_1016_j_cej_2024_149812
crossref_primary_10_1016_j_cej_2023_145837
crossref_primary_10_1016_j_cej_2023_143778
crossref_primary_10_1016_j_seppur_2024_127190
crossref_primary_10_1016_j_envres_2024_118563
crossref_primary_10_1007_s12274_024_6874_0
crossref_primary_10_1016_j_jclepro_2024_144497
crossref_primary_10_1038_s41545_023_00293_3
crossref_primary_10_1016_j_seppur_2024_129488
crossref_primary_10_1016_j_cej_2024_155365
crossref_primary_10_1016_j_jhazmat_2023_131463
crossref_primary_10_1016_j_seppur_2023_125383
crossref_primary_10_1016_j_cej_2025_163969
crossref_primary_10_1002_anie_202506322
crossref_primary_10_1016_j_cej_2025_163605
crossref_primary_10_1016_j_jhazmat_2024_135686
crossref_primary_10_1016_j_carbon_2022_12_063
crossref_primary_10_1016_j_jhazmat_2025_138216
crossref_primary_10_1016_j_cej_2023_146365
crossref_primary_10_1016_j_seppur_2023_124735
crossref_primary_10_1016_j_cej_2025_163286
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.est.2c00464
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
ExternalDocumentID 35584301
Genre Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
53G
55A
5GY
5VS
6TJ
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
NPM
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YIN
YZZ
ZCA
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a394t-9068df602b80d4e41484483d29395e93c6ecde303535197fbdc936d18f43f0982
IEDL.DBID 7X8
ISICitedReferencesCount 363
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815662800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5851
IngestDate Thu Oct 02 11:07:51 EDT 2025
Wed Feb 19 02:23:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords molecular structure
dominant ROS
advanced oxidation process
wastewater treatment
degradation efficiencies
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-9068df602b80d4e41484483d29395e93c6ecde303535197fbdc936d18f43f0982
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8099-0996
0000-0002-7805-0142
0000-0001-7338-7398
0000-0002-7105-1345
0000-0003-4699-5093
0000-0002-6787-2431
PMID 35584301
PQID 2666907768
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2666907768
pubmed_primary_35584301
PublicationCentury 2000
PublicationDate 2022-06-21
PublicationDateYYYYMMDD 2022-06-21
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ Sci Technol
PublicationYear 2022
SSID ssj0002308
Score 2.7270658
Snippet In this study, the previously overlooked effects of contaminants' molecular structure on their degradation efficiencies and dominant reactive oxygen species...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8784
Title Effects of Molecular Structure on Organic Contaminants' Degradation Efficiency and Dominant ROS in the Advanced Oxidation Process with Multiple ROS
URI https://www.ncbi.nlm.nih.gov/pubmed/35584301
https://www.proquest.com/docview/2666907768
Volume 56
WOSCitedRecordID wos000815662800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDnBgX8qmQULiZEhjx4lPCEERB1oQm3qrHC9SLwkQivgPfphx4lIuSEhcchrLkWzPvNneEHIo8jRPtDM0yZSk3AhHEYXnNNWJ5poLLeuA_tN12utl_b68DQG3KpRVjnVirahNqX2M_AQNiXfkEB2fPr9QPzXKZ1fDCI1pMssQyvhbnfYnbOEIr-tWuARdJJ_--qb2aZ8oXR37LWJdJ_d-x5e1nblc-u8fLpPFgDDhrLkSK2TKFqtk4Qfv4CrZ6Eza21A0vO9qjXw2ZMYVlA6648G5cF9zzI5eLZQFNM2bGjytlQp1NEdw4TknmvFM0KlZKXxLJ6jCwEXZSMHdzT0MC0DECWeh8gBuPoZhVehYAB8Yhm4oc_Rr1snjZefh_IqGsQ1UMcnfqIxEZpyI4jyLDLccHS70AZlBYCETK5kWVhuLpjPxwwFTlxstmTDtzHHmIpnFG2SmKAu7RSCxPFYWhZlsc6PyPGNC2Tg16IXlTrEWORgfxQCfhc91qMKWo2owOYwW2WzOc_Dc8HcMPKM8R8W2_YfVO2Q-9g0PkaBxe5fMOlQKdo_M6fe3YfW6X983_PZuu1-iouLC
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Molecular+Structure+on+Organic+Contaminants%27+Degradation+Efficiency+and+Dominant+ROS+in+the+Advanced+Oxidation+Process+with+Multiple+ROS&rft.jtitle=Environmental+science+%26+technology&rft.au=Xie%2C+Zhi-Hui&rft.au=He%2C+Chuan-Shu&rft.au=Zhou%2C+Hong-Yu&rft.au=Li%2C+Ling-Li&rft.date=2022-06-21&rft.issn=1520-5851&rft.eissn=1520-5851&rft.volume=56&rft.issue=12&rft.spage=8784&rft_id=info:doi/10.1021%2Facs.est.2c00464&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5851&client=summon