The Lin-Ni’s problem for mean convex domains
The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration...
Uložené v:
| Hlavní autori: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2011
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: | |
| ISBN: | 9780821869093, 0821869094 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration can occur only on boundary points with nonpositive mean curvature when $n=3$ or $n\geq 7$. As a direct consequence, they prove the validity of the Lin-Ni's conjecture in dimension $n=3$ and $n\geq 7$ for mean convex domains and with bounded energy. Recent examples by Wang-Wei-Yan show that the bound on the energy is a necessary condition. |
|---|---|
| Bibliografia: | "July 2012, volume 218, number 1027 (end of volume)"--T.p Includes bibliography (p. 103-105) |
| ISBN: | 9780821869093 0821869094 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/S0065-9266-2011-00646-5 |

