The Lin-Ni’s problem for mean convex domains
The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Providence, Rhode Island
American Mathematical Society
2011
|
| Edition: | 1 |
| Series: | Memoirs of the American Mathematical Society |
| Subjects: | |
| ISBN: | 9780821869093, 0821869094 |
| ISSN: | 0065-9266, 1947-6221 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration can occur only on boundary points with nonpositive mean curvature when $n=3$ or $n\geq 7$. As a direct consequence, they prove the validity of the Lin-Ni's conjecture in dimension $n=3$ and $n\geq 7$ for mean convex domains and with bounded energy. Recent examples by Wang-Wei-Yan show that the bound on the energy is a necessary condition. |
|---|---|
| AbstractList | The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration can occur only on boundary points with nonpositive mean curvature when $n=3$ or $n\geq 7$. As a direct consequence, they prove the validity of the Lin-Ni's conjecture in dimension $n=3$ and $n\geq 7$ for mean convex domains and with bounded energy. Recent examples by Wang-Wei-Yan show that the bound on the energy is a necessary condition. We prove some refined asymptotic estimates for positive blow-up solutions to |
| Author | Wei, Juncheng Robert, Frédéric Druet, Olivier |
| Author_xml | – sequence: 1 fullname: Druet, Olivier – sequence: 2 fullname: Robert, Frédéric – sequence: 3 fullname: Wei, Juncheng |
| BackLink | https://cir.nii.ac.jp/crid/1130000794356193408$$DView record in CiNii |
| BookMark | eNpVkctOwzAQRc1TFOg3kAUSYmGYsWPHs4SKl1TBAsTWchJHBNIE6vJY8hv8Hl-C01YgvPDImqM7nnu32XrbtZ6xPYQjBILjWwCtOAmtuQBEHp-p5mqFDSkzYAQaAtRqlQ2Q0oxrIXDtr6cJSK6zwa_IBtuOMgIgE5husgEJQQa1VFtsGMIjxGOioqQBO7p78Mm4bvl1_f35FZLnaZc3fpJU3TSZeNcmRde--Y-k7CaubsMu26hcE_xwWXfY_fnZ3eiSj28urkYnY-4kpcbwyjmVgYASoMw8Co9IpXRGVOhK4bDIqwK9zl0hYi2kVk4T5WRUGVcqKrnDDhfCLjz59_DQNbNg3xqfd91TsP9ciezBgo2ff3n1YWbnWOHb2dQ19ux0JBFTqWUk9xdkW9e2qPsbUfZ-ZJRKpZFkCiZiuBw-CXY5EsH2Udl5VLZ32fZR2XlUVskfuC15lQ |
| CitedBy_id | crossref_primary_10_1007_s00526_025_03035_0 crossref_primary_10_1007_s00208_024_02888_8 crossref_primary_10_1090_memo_1554 crossref_primary_10_1515_acv_2019_0023 crossref_primary_10_1007_s00526_014_0730_0 |
| ContentType | eBook Book |
| Copyright | Copyright 2011 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2011 American Mathematical Society |
| DBID | RYH |
| DEWEY | 515/.3533 |
| DOI | 10.1090/S0065-9266-2011-00646-5 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9780821890165 0821890166 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9780821890165 EBC3114363 BB09540653 10_1090_S0065_9266_2011_00646_5 |
| GroupedDBID | --Z -~X 123 4.4 6TJ 85S AAFVP ABPPZ ACNCT AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 XOL YNT YQT 38. 50G AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AERYV AFOJC AHWGJ AJFER AZZ BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a39488-faa57020d00d7e12e119d3a82f1ad2a1cbfc1e6bac2c1ec365a699b985d082cf3 |
| ISBN | 9780821869093 0821869094 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000050793&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 05:34:41 EST 2024 Wed Nov 26 03:47:43 EST 2025 Thu Jun 26 21:09:21 EDT 2025 Thu Aug 14 15:25:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Neumann elliptic problem critical exponent blow-up |
| LCCN | 2012007214 |
| LCCallNum_Ident | QA374 .D784 2011 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a39488-faa57020d00d7e12e119d3a82f1ad2a1cbfc1e6bac2c1ec365a699b985d082cf3 |
| Notes | "July 2012, volume 218, number 1027 (end of volume)"--T.p Includes bibliography (p. 103-105) |
| OCLC | 922981635 |
| OpenAccessLink | https://hal.science/hal-01279343 |
| PQID | EBC3114363 |
| PageCount | 118 |
| ParticipantIDs | askewsholts_vlebooks_9780821890165 proquest_ebookcentral_EBC3114363 nii_cinii_1130000794356193408 ams_ebooks_10_1090_S0065_9266_2011_00646_5 |
| PublicationCentury | 2000 |
| PublicationDate | c2011. |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – year: 2011 text: c2011. |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, R.I – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2011 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0000889039 ssj0008047 |
| Score | 2.5879898 |
| Snippet | We prove some refined asymptotic estimates for positive blow-up solutions to The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$,... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Blowing up (Algebraic geometry) Convex domains Differential equations, Elliptic Neumann problem |
| TableOfContents | Introduction
--
<inline-formula content-type="math/mathml">
L ∞
− L^\infty -
</inline-formula>bounded solutions
--
Smooth domains and extensions of solutions to elliptic equations
--
Exhaustion of the concentration points
--
A first upper-estimate
--
A sharp upper-estimate
--
Asymptotic estimates in <inline-formula content-type="math/mathml"> C
1 ( Ω
) C^1\left (\Omega \right
) </inline-formula>
--
Convergence to singular harmonic functions
--
Estimates of the interior blow-up rates
--
Estimates of the boundary blow-up rates
--
Proof of Theorems and
--
Construction and estimates on the Green’s function
--
Projection of the test functions Intro -- Contents -- Abstract -- Introduction -- Chapter 1. L-bounded solutions -- Chapter 2. Smooth domains and extensions of solutions to elliptic equations -- Chapter 3. Exhaustion of the concentration points -- Chapter 4. A first upper-estimate -- Chapter 5. A sharp upper-estimate -- Chapter 6. Asymptotic estimates in C1() -- Chapter 7. Convergence to singular harmonic functions -- 1. Convergence at general scale -- 2. Convergence at appropriate scale -- Chapter 8. Estimates of the interior blow-up rates -- Chapter 9. Estimates of the boundary blow-up rates -- Chapter 10. Proof of Theorems 1 and 2 -- Appendix A. Construction and estimates on the Green's function -- Appendix B. Projection of the test functions -- Bibliography |
| Title | The Lin-Ni’s problem for mean convex domains |
| URI | https://www.ams.org/memo/1027/ https://cir.nii.ac.jp/crid/1130000794356193408 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3114363 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780821890165&uid=none |
| Volume | 218 |
| WOSCitedRecordID | wos0000050793&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-ihQM9MT5EGZsihIQEWMRx49jXTh1IoI7DmHazHCeWom0parqpfz7PH01g04Q4cHE-pMTJ-8V53-8BvGVSlLKuKBGlNc5aRYm0pSBGW2a5LCz3vQHPvhXLpTg_l99j79DOtxMo2lZst_Lnf4UazyHYLnX2H-Dub4oncB9BxxFhx_GWRNwfDoijakmWjTfCx1YxPo7wytnbfYD59kO1utJNO_STX18Hf8TJZeN45OCBKWM6z3H0pldhs27M4M5pQmZHi9BHFlgNJtE_LAiDa6gvFOsKkaz6SiS9uonigu9gFXoa3vn5pjIN7l-eE4mMn4TJUOjhJB_4TR8FOJ-jfDdzxXFHMEK1ZwwPPy9OfnztbWQuBCtl0pftjDPPYtGk_kl2MXsy_XTPzL6GbjeBie4ukHEgU9ng0ahtmjv81wsVp09g7BJN9uBB3T6FyUCW7hl8RCyTgOW7LolIJohk4pBMApJJRPI5nB0vTo--kNjXgmgm8YdJrNZ5gXJ6laZVUdOsplRWTIvMUl1lmhpcN7TmpTYZbg3jueZSllLkFb64sewFjNtVW7-ERBguspJrlEPZLM1MqekM15dmuAQFtXYK7_Hllfe8dypEHKTKU0o5SilHKeUppfIpvPmNRurmMl62I7h0uW9TOEDSKdO4kTpvKIqZEqVuVMXxEcQUkh1Rw7Qxylgt5kcMtW_G2au_3GIfHg_f6WsYb3AlHMAjc7NpuvVh_Ep-AT_ZSbg |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=The+Lin-Ni%27s+problem+for+mean+convex+domains&rft.au=Druet%2C+Olivier&rft.au=Robert%2C+Fr%C3%A9d%C3%A9ric&rft.au=Wei%2C+Juncheng&rft.date=2011-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9780821869093&rft_id=info:doi/10.1090%2FS0065-9266-2011-00646-5&rft.externalDocID=BB09540653 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97808218%2F9780821890165.jpg |

