Statistical Approach to Quantum Field Theory An Introduction

This book opens with a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics, and moves on to cover lattice field theory, spin systems, gauge theories and more. Each chapter ends with illustrative problems.

Saved in:
Bibliographic Details
Main Author: Wipf, Andreas
Format: eBook Book
Language:English
Published: Berlin, Heidelberg Springer Nature 2013
Springer
Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Edition:1
Series:Lecture Notes in Physics
Subjects:
ISBN:9783642331053, 364233105X, 9783642331046, 3642331041
ISSN:0075-8450, 1616-6361
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This book opens with a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics, and moves on to cover lattice field theory, spin systems, gauge theories and more. Each chapter ends with illustrative problems.
AbstractList This book opens with a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics, and moves on to cover lattice field theory, spin systems, gauge theories and more. Each chapter ends with illustrative problems.
Author Wipf, Andreas
Author_xml – sequence: 1
  fullname: Wipf, Andreas
BackLink https://cir.nii.ac.jp/crid/1130000793903419520$$DView record in CiNii
BookMark eNpdUMFO3DAQdSlULNv9gN4ihMSlLh6P7dhHWAFFQkIViKs1cRw2bUiWOHvo3-Pd5cQcZqQ3b0bvvRN22A99ZOwHiF8gRHnhSsuRGyU5IgjN8QtbZAwzsgPwgM3AgOEGDXz9tDtks_xDc6u0OGInUoB0Gizab2xmpUDplMJjtkjpr8hVWmu1m7GfjxNNbZraQF1xuV6PA4VVMQ3Fnw310-a1uGljVxdPqziM_7-zo4a6FBcfc86eb66flr_5_cPt3fLynhM6tIqHWlmdVVXW1LqKEHRwtamiaijrF1RBY11JTUNSRmqiAeuqWEdbQyCpCefsYv84rce2f4mjr4bhX_Ig_DYpn5179Nm735nPfc7O9xfZwdsmpsnH7UmI_TRS56-vlihK4UBm5tme2betD-22A-AuE4dOoAKnc15zdrqnBUrUZZp_HfrhZaT1Knmtsgxn8B13G3Yz
ContentType eBook
Book
Copyright Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
DBID I4C
RYH
DEWEY 530
DOI 10.1007/978-3-642-33105-3
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Mathematics
EISBN 9783642331053
364233105X
EISSN 1616-6361
Edition 1
2013
ExternalDocumentID 215690
EBC3070912
BB10813458
5410096
GroupedDBID -K2
-KA
089
0DA
0DI
2HZ
38.
A4J
AABBV
AARVG
ABARN
ABBVZ
ABMLC
ABMNI
ABQPQ
ACLGV
ADVEM
AEKFX
AERYV
AETDV
AEZAY
AFJMS
AFOJC
AGZZB
AJFER
AKBXB
ALMA_UNASSIGNED_HOLDINGS
ARZOH
AZZ
BBABE
CZZ
GEOUK
I4C
IEZ
J-A
JJU
LDQ
MA.
N2R
NUC
SAX
SBO
TPJZQ
Z7X
Z7Y
ACPRQ
ADHDZ
ADNMO
AFPTF
AHWGJ
RYH
-~X
1SB
29L
2HE
ACGFS
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-a39384-cd485310b86d5be1c5c9d6be4fa1610ab1f897affa22eafe6189bede8d1ca25a3
ISBN 9783642331053
364233105X
9783642331046
3642331041
ISSN 0075-8450
IngestDate Wed Sep 17 04:40:39 EDT 2025
Wed Dec 10 11:36:00 EST 2025
Thu Jun 26 23:05:07 EDT 2025
Tue Nov 14 22:44:53 EST 2023
IsPeerReviewed true
IsScholarly true
LCCN 2012951838
LCCallNum_Ident QC
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a39384-cd485310b86d5be1c5c9d6be4fa1610ab1f897affa22eafe6189bede8d1ca25a3
OCLC 820329443
PQID EBC3070912
PageCount 400
ParticipantIDs springer_books_10_1007_978_3_642_33105_3
proquest_ebookcentral_EBC3070912
nii_cinii_1130000793903419520
casalini_monographs_5410096
PublicationCentury 2000
PublicationDate 2013.
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013.
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Netherlands
– name: Heidelberg
– name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Physics
PublicationSeriesTitleAlternate Lect Notes Phys
PublicationYear 2013
Publisher Springer Nature
Springer
Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Publisher_xml – name: Springer Nature
– name: Springer
– name: Springer Berlin / Heidelberg
– name: Springer Berlin Heidelberg
RelatedPersons Pinton, J.-F.
Hjort-Jensen, M.
Mangano, M. L.
Sornette, D.
Vollhardt, D.
Hillebrandt, W.
Englert, B.-G.
von Löhneysen, H.
Longair, M. S.
Raimond, J.-M.
Rubio, A.
Hänggi, P.
Theisen, S.
Salmhofer, M.
Jones, R. A. L.
Frisch, U.
Weise, W.
RelatedPersons_xml – sequence: 1
  givenname: B.-G.
  surname: Englert
  fullname: Englert, B.-G.
– sequence: 2
  givenname: U.
  surname: Frisch
  fullname: Frisch, U.
– sequence: 3
  givenname: P.
  surname: Hänggi
  fullname: Hänggi, P.
– sequence: 4
  givenname: W.
  surname: Hillebrandt
  fullname: Hillebrandt, W.
– sequence: 5
  givenname: M.
  surname: Hjort-Jensen
  fullname: Hjort-Jensen, M.
– sequence: 6
  givenname: R. A. L.
  surname: Jones
  fullname: Jones, R. A. L.
– sequence: 7
  givenname: H.
  surname: von Löhneysen
  fullname: von Löhneysen, H.
– sequence: 8
  givenname: M. S.
  surname: Longair
  fullname: Longair, M. S.
– sequence: 9
  givenname: M. L.
  surname: Mangano
  fullname: Mangano, M. L.
– sequence: 10
  givenname: J.-F.
  surname: Pinton
  fullname: Pinton, J.-F.
– sequence: 11
  givenname: J.-M.
  surname: Raimond
  fullname: Raimond, J.-M.
– sequence: 12
  givenname: A.
  surname: Rubio
  fullname: Rubio, A.
– sequence: 13
  givenname: M.
  surname: Salmhofer
  fullname: Salmhofer, M.
– sequence: 14
  givenname: D.
  surname: Sornette
  fullname: Sornette, D.
– sequence: 15
  givenname: S.
  surname: Theisen
  fullname: Theisen, S.
– sequence: 16
  givenname: D.
  surname: Vollhardt
  fullname: Vollhardt, D.
– sequence: 17
  givenname: W.
  surname: Weise
  fullname: Weise, W.
SSID ssj0000788859
ssj0025441
Score 2.5508165
Snippet This book opens with a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics, and moves on to cover lattice...
SourceID springer
proquest
nii
casalini
SourceType Publisher
SubjectTerms Complex Systems
Elementary Particles, Quantum Field Theory
Field theory (Physics)
Mathematical Methods in Physics
Mathematical physics
Mathematics
Numerical and Computational Physics, Simulation
Physics
Physics and Astronomy
Quantum Field Theories, String Theory
Quantum field theory
Quantum field theory -- Mathematics
Statistical Physics and Dynamical Systems
Subtitle An Introduction
TableOfContents Intro -- Statistical Approach to Quantum Field Theory -- Preface -- Acknowledgments -- Contents -- Notations -- Chapter 1: Introduction -- References -- Chapter 2: Path Integrals in Quantum and Statistical Mechanics -- 2.1 Summing Over All Paths -- 2.2 Recalling Quantum Mechanics -- 2.3 Feynman-Kac Formula -- 2.4 Euclidean Path Integral -- 2.4.1 Quantum Mechanics in Imaginary Time -- 2.4.2 Imaginary-Time Path Integral -- 2.5 Path Integral in Quantum Statistics -- 2.5.1 Thermal Correlation Functions -- 2.6 The Harmonic Oscillator -- 2.7 Problems -- Comment -- References -- Chapter 3: High-Dimensional Integrals -- 3.1 Numerical Algorithms -- 3.1.1 Newton-Cotes Integration Method -- Composite Integration Formulas -- 3.2 Monte Carlo Integration -- 3.2.1 Hit-or-Miss Monte Carlo Method and Binomial Distribution -- Numerical Experiment -- 3.2.2 Sum of Random Numbers and Gaussian Distribution -- 3.3 Importance Sampling -- 3.4 Some Basic Facts in Probability Theory -- 3.5 Programs for Chap. 3 -- 3.6 Problems -- References -- Chapter 4: Monte Carlo Simulations in Quantum Mechanics -- 4.1 Markov Chains -- Stochastic Matrices and Stochastic Vectors -- 4.1.1 Fixed Points of Markov Chains -- 4.2 Detailed Balance -- 4.2.1 Acceptance Rate -- 4.2.2 Metropolis Algorithm -- 2-State System -- 3-State System -- 4.2.3 Heat Bath Algorithm -- 4.3 The Anharmonic Oscillator -- 4.3.1 Simulating the Anharmonic Oscillator -- 4.4 Hybrid-Monte Carlo Algorithm -- 4.4.1 Implementing the HMC-Algorithm -- 4.4.2 HMC-Algorithm for Harmonic Oscillator -- 4.5 Programs for Chap. 4 -- Header-Files -- 4.6 Problems -- References -- Chapter 5: Scalar Fields at Zero and Finite Temperature -- 5.1 Quantization -- 5.2 Scalar Field Theory at Finite Temperature -- 5.2.1 Free Scalar Field -- Zeta-Function Regularization -- Heat Kernel of a Differential Operator
10.2.4 Curl and Divergence on a Lattice -- 10.3 Duality Transformation of Three-Dimensional Ising Model -- 10.3.1 Local Gauge Transformations -- 10.4 Duality Transformation of Three-Dimensional Zn Gauge Model -- 10.4.1 Wilson Loops -- 10.4.2 Duality Transformation of U(1) Gauge Model -- 10.5 Duality Transformation of Four-Dimensional Zn Gauge Model -- 10.6 Problems -- References -- Chapter 11: Renormalization Group on the Lattice -- 11.1 Decimation of Spins -- 11.1.1 Ising Chain -- 11.1.2 The Two-Dimensional Ising Model -- 11.2 Fixed Points -- 11.2.1 The Vicinity of a Fixed Point -- 11.2.2 Derivation of Scaling Laws -- 11.3 Block-Spin Transformation -- 11.4 Continuum Limit of Non-interacting Scalar Fields -- 11.4.1 Correlation Length for Interacting Systems -- 11.5 Continuum Limit of Spin Models -- 11.6 Programs for Chap. 11 -- 11.7 Problems -- References -- Chapter 12: Functional Renormalization Group -- 12.1 Scale-Dependent Functionals -- 12.2 Derivation of the Flow Equation -- 12.3 Functional Renormalization Applied to Quantum Mechanics -- 12.3.1 Projection onto Polynomials of Order 12 -- 12.3.2 Changing the Regulator Function -- 12.3.3 Solving the Flow Equation for Non-convex Potentials -- Comparison with Weak-Coupling Perturbation Expansion -- 12.4 Scalar Field Theory -- 12.4.1 Fixed Points -- Scalar Fields in Three Dimensions -- Numerical Solution -- 12.4.2 Critical Exponents -- 12.5 Linear O(N) Models -- 12.5.1 Large N Limit -- Fixed-Point Analysis -- 12.5.2 Exact Solution of the Flow Equation -- Symmetry Breaking -- 12.6 Wave Function Renormalization -- 12.6.1 RG Equation for Wave Function Renormalization -- 12.7 Outlook -- 12.8 Programs for Chap. 12 -- 12.9 Problems -- Appendix: A Momentum Integral -- The Case |p+q|&lt -- k -- The Case |p+q|&lt -- k -- References -- Chapter 13: Lattice Gauge Theories -- 13.1 Continuum Gauge Theories
Chapter 8: Transfer Matrices, Correlation Inequalities and Roots of Partition Functions -- 8.1 Transfer-Matrix Method for the Ising Chain -- 8.1.1 Transfer Matrix -- Thermodynamic Potentials -- Correlation Functions -- 8.1.2 The "Hamiltonian -- Two Dimensions -- 8.1.3 The Anti-Ferromagnetic Chain -- 8.2 Potts Chain -- 8.3 Perron-Frobenius Theorem -- 8.4 The General Transfer-Matrix Method -- 8.5 Continuous Target Spaces -- 8.5.1 Euclidean Quantum Mechanics -- Continuum Limit -- 8.5.2 Real Scalar Field -- 8.6 Correlation Inequalities -- Application of Correlation Inequalities -- 8.7 Roots of the Partition Function -- 8.7.1 Lee-Yang Zeroes of Ising Chain -- 8.7.2 General Ferromagnetic Systems -- 8.8 Problems -- References -- Chapter 9: High-Temperature and Low-Temperature Expansions -- 9.1 Ising Chain -- 9.1.1 Low Temperature -- 9.1.2 High Temperature -- 9.2 High-Temperature Expansions for Ising Models -- 9.2.1 General Results and Two-Dimensional Model -- Correlation Functions -- Susceptibility -- Extrapolation to the Critical Point -- 9.2.2 Three-Dimensional Model -- Free Energy Density and Speci c Heat -- Susceptibility -- 9.3 Low-Temperature Expansion of Ising Models -- 9.3.1 Free Energy and Magnetization of Two-Dimensional Model -- Extrapolation to the Critical Point -- 9.3.2 Three-Dimensional Model -- 9.3.3 Improved Series Studies for Ising-Type Models -- 9.4 High-Temperature Expansions of O(N) Sigma Models -- 9.4.1 Expansions of Partition Function and Free Energy -- Order beta2 -- Order beta4 -- Order beta6 -- 9.5 Polymers and Self-Avoiding Walks -- 9.6 Problems -- References -- Chapter 10: Peierls Argument and Duality Transformations -- 10.1 Peierls' Argument -- 10.1.1 Extension to Higher Dimensions -- 10.2 Duality Transformation of Two-Dimensional Ising Model -- 10.2.1 An Algebraic Derivation -- 10.2.2 Two-Point Function -- 10.2.3 Potts Models
Antisymmetric Derivative
Free Energy of Non-interacting Scalars -- High-Temperature Expansion -- 5.3 Schwinger Function and Effective Potential -- Generalizations -- 5.3.1 The Legendre-Frenchel Transformation -- 5.4 Scalar Field on a Space-Time Lattice -- Boundary Conditions -- 5.5 Random Walk Representation of Green's Function -- 5.6 There Is No Leibniz Rule on the Lattice -- 5.7 Programs for Chap. 5 -- 5.8 Problems -- References -- Chapter 6: Classical Spin Models: An Introduction -- 6.1 Simple Spin Models for (Anti)Ferromagnets -- 6.1.1 Ising Model -- 6.2 Ising-Type Spin Systems -- 6.2.1 Standard Potts Models -- 6.2.2 The Zq Model (Planar Potts Model, Clock Model) -- 6.2.3 The U(1) Model -- 6.2.4 O(N) Models -- 6.2.5 Interacting Continuous Spins -- 6.3 Spin Systems in Thermal Equilibrium -- 6.4 Variational Principles -- 6.4.1 Principle for Gibbs State and Free Energy -- 6.4.2 Fixed Average Field -- 6.5 Programs for the Simulation of the Ising Chain -- 6.6 Problems -- References -- Chapter 7: Mean Field Approximation -- 7.1 Approximation for General Lattice Models -- 7.2 The Ising Model -- 7.2.1 An Alternative Derivation -- 7.3 Critical Exponents alpha,beta,gamma,delta -- 7.3.1 Susceptibility -- 7.3.2 Magnetization as a Function of Temperature -- 7.3.3 Speci c Heat -- 7.3.4 Magnetization as a Function of the Magnetic Field -- 7.3.5 Comparison with Exact and Numerical Results -- 7.4 Mean-Field Approximation for Standard Potts Models -- 7.5 Mean-Field Approximation for Zq Models -- 7.6 Landau Theory and Ornstein-Zernike Extension -- 7.6.1 Critical Exponents in Landau Theory -- 7.6.2 Two-Point Correlation Function -- 7.7 Antiferromagnetic Systems -- 7.8 Mean-Field Approximation for Lattice Field Theories -- 7.8.1 phi4 and phi6 Scalar Theories -- 7.8.2 O(N) Models -- 7.9 Program for Chap. 7 -- 7.10 Problems -- Hint -- References
13.1.1 Parallel Transport -- Composition of Paths -- Stokes' Theorem -- Gauge Transformation -- Matter Fields -- 13.2 Gauge-Invariant Formulation of Lattice Higgs Models -- 13.2.1 Wilson Action of Pure Gauge Theories -- 13.2.2 Weak and Strong Coupling Limits of Higgs Models -- Vanishing beta and Unitary Gauge -- In nite beta and Axial Gauge on Periodic Lattices -- Vanishing kappa -- The Limit kappa-&gt -- infty -- 13.3 Mean Field Approximation -- 13.3.1 Z2 Gauge Model -- 13.3.2 U(1) Gauge Theory -- 13.3.3 SU(N) Gauge Theories -- 13.3.4 Higgs Model -- 13.4 Expected Phase Diagrams at Zero Temperature -- 13.5 Elitzur's Theorem -- 13.5.1 Proof for Pure Z2 Gauge Theory -- 13.5.2 General Argument -- 13.6 Observables in Pure Gauge Theories -- 13.6.1 String Tension -- 13.6.2 Strong Coupling Expansion for Pure Gauge Theories -- 13.6.3 Glueballs -- Cubic Group -- Projecting on Fixed Quantum Numbers -- 13.7 Gauge Theories at Finite Temperature -- 13.7.1 Center Symmetry -- 13.7.2 G2 Gauge Theory -- 13.8 Problems -- References -- Chapter 14: Two-Dimensional Lattice Gauge Theories and Group Integrals -- 14.1 Abelian Gauge Theories on the Torus -- 14.1.1 Z2 Gauge Theory -- 14.1.2 U(1) Gauge Theory -- 14.2 Non-Abelian Lattice Gauge Theories on the 2d Torus -- Gluing Loops and Migdal's Recursion Relation -- 14.2.1 Partition Function -- 14.2.2 Casimir Scaling of Polyakov Loops -- 14.3 Invariant Measure and Irreducible Representations -- Haar Measure of SU(2) -- Haar Measure for a General Lie Group -- 14.3.1 The Peter-Weyl Theorem -- 14.4 Problems -- References -- Chapter 15: Fermions on a Lattice -- 15.1 Dirac Equation -- 15.1.1 Coupling to Gauge Fields -- 15.2 Grassmann Variables -- 15.2.1 Gaussian Integrals -- 15.2.2 Path Integral for Dirac Theory -- 15.3 Fermion Fields on a Lattice -- 15.3.1 Lattice Derivative -- Forward and Backward Derivative
Title Statistical Approach to Quantum Field Theory
URI http://digital.casalini.it/9783642331053
https://cir.nii.ac.jp/crid/1130000793903419520
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3070912
http://link.springer.com/10.1007/978-3-642-33105-3
Volume 864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZYAYkb40OUsckHDkgoUhzbic2BQ6eySaDBYcBulhPbUg9kH2nR-Pe8rxOnzYSEONCD1VhuXD2PZb_fJuR17X1w6DPkpbSZkE5ndeF4FuADpw0PVRUThT9VZ2fq4kJ_Ga6W7OJ1AlXbqttbffVfqYY-IBtTZ_-B7vGl0AHfgXRogXZo70jE4-OQ1IFe9a63TadS4ShaXm8Avc2PtzFYrc9c_BUtARajHNd9ydcdd_z31VUYYx3txC6AdzRM7ALJLjjRFzloG5yjW_ePu-duwASMzHCozPj2qBgD-BYLBrIEF1Ltkb2qBK33_sny89ePo3krR9VaasymSXOyvt7R9j8kJ_NQ53cyJ4oJtrOYHQqnfrtaTTSAO07rKAucPyYzzA_ZJ_d8-4Q8jBG0TfeUvN-Bnyb46fqSDvDTCD_t4afvqG3pLvjPyLcPy_Pj02y4nCKzXHMlssYJEHVYXqvSydqzRjbalbUXwYIUnduaBaUrG4ItCm-DL5nStXdeOdbYQlr-nMzay9a_ILRxzDnYaZVwQZSwp1on4R1Cg3hhoWtODhIYBlZrX8u8M1Iw1EDn5BDwMc0KW4buyRyrHsKPBdOyyOeEJuRM9MAPYb9muTjGHV-zYk7eJEQNjuhMqmYNxBhugBgTiTH85V9mOyCPtqvxFZmtbzb-kDxofgIFN0fDMvkN7-o54A
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Statistical+approach+to+quantum+field+theory+%3A+an+introduction&rft.au=Wipf%2C+Andreas&rft.date=2013-01-01&rft.pub=Springer&rft.isbn=9783642331046&rft_id=info:doi/10.1007%2F978-3-642-33105-3&rft.externalDocID=BB10813458
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-642-33105-3