Semi-automatic segmentation of petrographic thin section images using a “seeded-region growing algorithm” with an application to characterize wheathered subarkose sandstone
Accurate imaging of minerals in petrographic thin sections using (semi)-automatic image segmentation techniques remains a challenging task chiefly due to the optical similarity of adjacent grains or grain aggregates rendering definition of grain boundaries difficult. We present a new semi-automatic...
Gespeichert in:
| Veröffentlicht in: | Computers & geosciences Jg. 83; S. 89 - 99 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.10.2015
|
| Schlagworte: | |
| ISSN: | 0098-3004, 1873-7803 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!